The present invention relates to apparatus comprising a tipping paper suction drum for assembling smoking articles, such as cigarettes.
Apparatus for assembling cigarettes attaches two tobacco rods to each end of a filter rod by wrapping a patch of tipping paper around a collation of tobacco and filter rods. The wrapped collation is then cut through the filter rod to produce two cigarettes.
In such apparatus, a web of tipping paper is fed onto a tipping paper suction drum and is cut into patches. The cut patches are then transferred to a rolling mechanism that wraps each cut patch around a collation of filter and tobacco rods to form cigarettes.
In accordance with embodiments of the invention, there is provided apparatus comprising a tipping paper suction drum adapted to receive a web of tipping paper which is cut on the tipping paper suction drum to form successive patches of tipping paper for wrapping smoking articles, the tipping paper suction drum being adapted to rotate at a speed greater than the speed at which the web of tipping paper is fed onto the tipping paper suction drum such that spaces are formed between the cut patches of tipping paper, wherein a peripheral surface of the tipping paper suction drum comprises suction holes arranged to pull the leading portion of the web of tipping paper towards the peripheral surface of the tipping paper suction drum in the time between successive cuts.
The apparatus may further comprise a rotary cutting unit arranged to cut the tipping paper against the peripheral surface of the tipping paper suction drum. The tipping paper suction drum and cutting unit may be configured to operate in synchronicity such that patches having regular size are cut on the tipping paper suction drum and the cut patches are equally spaced.
The apparatus may further comprise a suction control component adapted to deactivate suction through said suction holes as they move past the leading edge of the web of tipping paper.
The suction holes may comprise first suction holes to retain cut patches of tipping paper, and second suction holes to pull the leading portion of the web of tipping paper towards the peripheral surface of the tipping paper suction drum in the time between successive cuts.
The suction control component may be adapted so that for at least certain times during rotation of the tipping paper suction drum, suction is applied to either the first suction holes or to the second suction holes.
The suction control component may also be adapted to provide gaseous flow to the suction holes to push the cut patches of tipping paper away from the peripheral surface of the tipping paper suction drum.
Each of the first and second suction holes may be connected to a suction channel that extends to a second surface of the tipping paper suction drum.
Each suction channel may be connected to a row of suction holes extending across the peripheral surface of the tipping paper suction drum.
The suction control component may be disposed at the second surface to provide suction to the suction channels.
In one example, the second surface may be an end face of the tipping paper suction drum and the suction control component may be disposed at the end face of the tipping paper suction drum such that the tipping paper suction drum rotates relative to the suction control component.
In another example, the second surface may be an internal surface of the tipping paper suction drum, for example an inner cylindrical surface, and the suction control. component may be disposed within the tipping paper suction drum, for example within an internal cylindrical space in the tipping paper suction drum, such that the tipping paper suction drum rotates relative to the suction control component.
The suction channels may be arranged on a pitch circle diameter on the end face of the tipping paper suction drum, and the suction control component may comprise a recess that is aligned with suction channels.
Suction channels that are connected to the first suction holes may be disposed on a different pitch circle diameter to suction channels that are connected to the second suction holes.
In one example, the tipping paper suction drum may comprise a plurality of segments that form the peripheral surface of the tipping paper suction drum, and the segments may comprise cutting edges adapted to cooperate with a shear cutter to cut the web on the tipping paper suction drum.
In this example, each segment has a configuration of suction channels that can be selectively closed/opened to vary the suction control for that segment.
At least some suction holes of each segment may be connected to both first suction channels and second suction channels, such that said suction holes can be configured to act as first suction holes or second suction holes.
The suction channels may be selectively closed by a removable blocking member, for example a grub screw, bolt, cap, cover, lid, or insert.
In one example, a patch of tipping paper may extend over two adjacent segments, with each successive patch being cut against the cutting edge of alternate segments.
In a first example configuration of suction channels, the second suction channels of a first segment may be closed while the first suction channels are open, so that the suction holes of the first segment are configured to act as first suction holes. Also, in the first configuration of suction channels, at least one first suction channel of a second segment may be closed and at least one second suction channel of that second segment may be open, so that the second segment is configured to have first suction holes and second suction holes.
In a second example configuration of suction channels, the second suction channels of a second segment may be closed while the first suction channels are open, so that the suction holes of the second segment are configured to act as first suction holes. Also, in the first configuration of suction channels, at least one first suction channel of a first segment may be closed and at least one second suction channel of that first segment may be open, so that the first segment is configured to have first suction holes and second suction holes.
According to another aspect of the invention, there is provided a module of a modular apparatus for assembling smoking articles, comprising the apparatus described above.
According to another aspect of the invention, there is provided apparatus for assembling smoking articles comprising the apparatus or the module described above.
According to another aspect of the invention, there is provided a smoking article assembled using the apparatus.
According to embodiments of the invention, there is also provided a method of assembling smoking articles comprising:
The method may further comprise the step of deactivating the suction holes associated with the leading portion of the web of tipping paper as they become exposed.
According to another aspect of the invention, there is provided a smoking article assembled by the method described above.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
In one example explained in more detail with reference to
Referring to
A web 13 of tipping paper passes through an adhesive applicator 11 that applies adhesive to one surface of the tipping paper web 13. The tipping paper web 13 is then received on the tipping paper suction drum 10, which uses suction to hold the web 13 of tipping paper against the peripheral surface of the tipping paper suction drum 10. A cutting unit 12 cuts the web 13 of tipping paper into patches 8 on the tipping paper suction drum 10 and the patches are then transferred to the tobacco and filter rods 5, 6 on the tipping drum 7.
In one example, the cutting unit 12 comprises a crush cutter. In this case, the cutting unit 12 comprises a rotary blade and the tipping paper suction drum 10 acts as an anvil against which the tipping paper web 13 is cut by the rotary blade, in a transverse direction (i.e. across the web 13), to form patches 8 of tipping paper. The cutting unit 12 may have several rotary blades which protrude from a shaft in a radial direction so that as the shaft rotates the blades successively come into contact with the peripheral surface of the tipping paper suction drum 10 and cut the web 13 in a transverse direction (i.e. in the axial direction of the tipping paper suction drum 10 and cutting unit 12).
In another embodiment, the cutting unit 12 uses a shear cutter to cut the web 13. This embodiment is described in more detail with reference to
The cut patches 8 of tipping paper on the tipping paper suction drum 10 already have adhesive applied to their outwards facing surface, so at the position where the tipping paper suction drum 10 rotates closest the tipping drum 7 the suction acting on the tipping paper patches 8 is released and the patches 8 are transferred from the tipping paper suction drum 10 to the tipping drum 7, specifically onto the tobacco and filter rods 5, 6. The adhesive anchors the tipping paper patches 8 to the tobacco and filter rods 5, 6.
The tipping drum 7 then transfers the tobacco and filler rods 5, 6 and the tipping paper patch into the rolling unit 9 that rolls the tipping paper patch 8 around the tobacco and filter rods 5, 6 to form cigarettes. The rolled cigarettes are then conveyed for packaging.
Next, a tipping paper patch 8 is provided by the tipping paper suction drum (to, see
Next, the collation of tobacco rods 5, filter rod 6 and tipping paper patch 8 is rolled by the rolling unit (9, see
As shown in
Also shown in
The space 18 between each patch 8 is achieved by rotating the tipping paper suction drum 10 at a speed greater than the speed at which the web 13 of tipping paper is fed onto the tipping paper suction drum 10, such that a space 18 is formed between successive cut patches 8 of tipping paper. Specifically, the linear speed of the peripheral surface 14 of the tipping paper suction drum 10 is greater than the linear speed of the web 13. In this way, as each patch 8 is cut by the cutting unit (12, see
As shown in
The first suction holes 16a are provided to hold the cut patches (8, see
The first suction holes 16a are arranged as several spaced arrays 29 of first suction holes 16a, each array 29 corresponding to the position in which a patch 8 is retained after being cut. The cutting unit (12, see
The second suction holes 16b are provided to pull the leading edge portion 21 of the web 13 of tipping paper against the peripheral surface 14 of the tipping paper suction drum 10 in the time between successive cuts being made.
The tipping paper suction drum 10 has a series of suction channels 31 that are connected to the suction holes 16 and extend to an end face 28 of the tipping paper suction drum 10. The suction channels 31 are arranged such that one suction channel 31 is connected to a row of suction holes 16 extending in the axial direction across the peripheral surface 14 of the tipping paper suction drum 10.
The suction channels 31 are divided into first suction channels 31a and second suction channels 31b. Each first suction channel 31a is connected to a row of first suction holes 16a on the peripheral surface 14 of the tipping paper suction drum 10. Each second suction channel 31b is connected to a row of second suction holes 16b on the peripheral surface 14 of the tipping paper suction drum 10.
As described in more detail with reference to
As shown in
The second suction channels 31b and second suction holes 16b are disposed in between spaced arrays 29 of first suction channels 31a and first suction holes 16a. In this example, the second suction channels 31b are formed on a pitch circle diameter greater than the first suction channels 31a on the end face 28 of the tipping paper suction drum 10.
As described below, providing the first suction channels 31a at different pitch circle diameter to the second suction Channels 31b makes it possible to activate and deactivate the suction applied to the first and second suction holes 16a, 16b at different points of rotation of the tipping paper suction drum 10. This allows suction to be applied to the leading edge portion (21, see
It will be appreciated that in an alternative example the second suction holes 31b could be formed on a pitch circle diameter that is smaller than the pitch circle diameter of the first suction holes 31a.
The first suction holes 16a are disposed in arrays 29 where the cut patches 8 of the tipping paper 8 are carried on the peripheral surface 14 of the tipping paper suction drum 10. The second suction holes 16b are arranged in between the arrays 29 of the first suction holes 16a. Therefore, as shown in
Specifically,
However, as the tipping paper suction drum 10 is rotating at a greater speed than the web 13 of tipping paper is travelling, these two rows 35 of second suction holes 16b will become exposed before the next patch is cut. As will now be described, the suction ring 27 shown in
Referring again to
The suction ring 27 has a second recess 33 that, in this embodiment, is joined to the first recess 32 such that the second recess 33 is an enlarged region of the first recess 32. However, as will become apparent, the second recess 33 may be separate to the first recess 32. In either case, the second recess 33 is provided with suction via the suction supply port 36 of the first recess 32 or via an additional suction supply port.
The second recess 33 extends partially around the suction ring 27 in a circumferential direction at a pitch circle diameter equivalent to the second suction channels 31b on the tipping paper suction drum 10. Therefore, second suction channels 31b that are aligned with the second recess 33 will be provided with suction. As the tipping paper suction drum 10 rotates the second suction channels 31b will move into and out of alignment with the second recess 33 and suction through the second suction holes 16b will be sequentially activated and then deactivated.
The first recess 32 and the second recess 33 are formed at different pitch circle diameters and extend partially around the suction ring 27 in a circumferential direction. Therefore, the tipping paper suction drum has three distinct regions of rotation:
It will be appreciated that the first and second suction holes 16a, 16b alternate around the peripheral surface 14 of the tipping paper suction drum 10, so at a position where one of the first suction holes 16a is positioned within the first region 37, another of the first suction holes 16a may at the same time be positioned within the second region 38 or the third region 39.
In the manner described above, as the tipping paper suction drum 10 rotates the first and second suction channels 31a, 31b move into and out of alignment with the first and second recesses 32, 33 respectively, and suction is either activated or deactivated for the first and second suction holes.
The suction ring 27 also has a third recess 40, which has a compressed air supply port 41 that connects the third recess 40 to a pressure source, for example a compressed air reservoir and/or pump. The third recess 40 lies on the same pitch circle diameter as the first recess 32 such that as the first suction channels 31a rotate past the third recess 40 a gaseous flow is created through the first suction channels 31a and first suction holes 16a, which ads to push the tipping paper patches 8 away from the peripheral surface 14 of the tipping paper suction drum 10. The gaseous flow provided by the third recess 40 can be used to aid the transfer of the tipping paper patches 8 from the tipping paper suction drum 10 to the tipping drum (7, see
The first suction channels 31a are disposed on the end face 28 of the tipping paper suction drum 10 at a first pitch circle diameter and the second suction channels 31b are disposed between the arrays 29 of first suction Channels 31a and at a different, in this case larger, pitch circle diameter to the first suction channels 31a. Therefore, the first suction channels 31a will move into and out of alignment with the first recess 32 as the tipping paper suction drum 10 rotates relative to the suction ring 27. Meanwhile, the second suction channels 31b will move into and out of alignment with the second recess 33 as the tipping paper suction drum 10 rotates relative to the suction ring 27. Furthermore, the first suction channels 31a will move into and out of alignment with the third recess 40 as the tipping paper suction drum 10 rotates relative to the suction ring 27.
The second recess 33 is arranged to activate suction in the second suction channels 31b and second suction holes in the time between successive cuts.
The second recess 33 is arranged such that the suction in the second suction channels 31b and second suction holes is deactivated as, or immediately before, the leading edge 19 of the web 13 is overtaken by those second suction holes 31b, i.e. before the second suction holes 16b become exposed.
To achieve this, the second recess 33 extends partially around the suction ring 27 from a first end 43, which is positioned before (i.e. upstream of) the cut position 15, to a second end 44, which is positioned after (i.e. downstream of) the cut position 15 and located such that the leading edge portion 21 of the web 13 of tipping paper always covers any second suction holes (16b, see
As described above with reference to
Also shown in
Moreover, shortly after passing the end of the first recess 32 those first suction channels 31a will become aligned with the third recess 40, which provides a gaseous flow through the first suction channels 31a and first suction holes (16a, see
Therefore, the tipping paper patches 8 are quickly and accurately transferred from the tipping paper suction drum 10 the tipping drum (7, see
As shown, the tipping paper suction drum 10 has a series of segments 45 that form the peripheral surface 14 of the tipping paper suction drum 10, against which a web 13 of tipping paper is received. Spaces 46 are formed between adjacent segments 45, which comprise cutting edges 47.
The segments 45 include first segments 45a and second segments 45b), which are alternately arranged around the tipping paper suction drum 10.
In this embodiment, the cutting unit 12 (see
In the same manner as explained with reference to the embodiments of
Specifically, the linear speed of the peripheral surface 14 of the tipping paper suction drum 10 is greater than the linear speed of the web 13. In this way, as each patch 8 is cut by the cutting unit (12, see
As previously explained, the segments 45 comprise first segments 45a and second segments 45b that are alternately arranged around the tipping paper suction drum 10 such that the spaces 46 are formed between each adjacent segment 45a, 45b. In this way, the trailing edge of each of the first segments 45a forms a cutting edge 47 against which the tipping paper web 13 is shear cut by the cutting unit 12 (see
As shown, when a first patch 8 is cut, the leading edge 19 of the tipping paper web 13 is aligned with a cutting edge 47 of a first segment 45a and the tipping paper web 13 overlies the upstream second segment 45b. However, because the peripheral surface 14 of the tipping paper suction drum 10 is moving more quickly than the tipping paper web 13, when the next patch 8 is cut the leading edge 19 of the tipping paper web 13 will be positioned part-way across a second segment 45b, as shown by the position of the leading edge 48 of the cut patch 8.
Therefore, each cut tipping paper patch 8 extends over a first segment 45a, over a space 46 between adjacent first and second segments 45a, 45b, and partially onto the adjacent second segment 45b.
As shown in
The second segments 45b comprise first suction holes 16a and second suction holes 16b. The second suction holes 16b are provided to pull the leading edge portion 21 of the tipping paper web 13 against the peripheral surface 14 of the tipping paper suction drum 10 in the time between successive cuts being made.
As shown in
The first and second suction channels 31a, 31b extend to an end face 28 of the tipping paper suction drum 10 and a suction ring, similar to the suction ring 27 described with reference to
In this example, the first suction channels 31a are arranged around a larger pitch circle diameter on the end face 28 of the tipping paper suction drum 10 than the second suction channels 31b. Therefore, it will be appreciated that the suction ring 27 of
As previously described, the suction ring 27 (see
The suction ring 27 (see
In this embodiment, at least some of the suction channels 31a, 31b can be selectively closed, so that the suction holes of each segment 45a, 45b can be configured to be first suction holes 16a or second suction holes 16b. This means the first and second segments 45a, 45b) are interchangeable and the shear cutting unit 12 (see
Therefore, when the cutting edges 47 of the first segments 45a become worn, the tipping paper suction drum 10 can be reconfigured to cut the tipping paper web 13 using the second segments 45b. This increases the operational time between having to replace or repair the segments 45a, 45b of the tipping paper suction drum 10.
In a first suction configuration, when the cutting edges 47 of the first segments 45a are used to cut the tipping paper web 13, the second suction channels 31b associated with the first segments 45a are closed, and at least some of the first suction channels 31a associated with the second segments 45b are closed. Specifically, as shown in
Therefore, in this configuration, the suction holes 16 of the first segments 45a are all configured to act as first suction holes 16a, and the second segments 45b are configured to have some suction holes 16 that act as first suction holes 16a and some suction holes 16 that act as second suction holes 16b. In this way, suction is applied to the leading edge portion 21 of the tipping paper web 13, via the second suction holes 16b in the second segments 45b, in the time between successive cuts being made.
In a second suction configuration, when the cutting edges 47 of the second segments 45b are used to cut the tipping paper web 13, at least some of the first suction channels 31a associated with the first segments 45a are closed, and the second suction channels 31b associated with the second segments 45b are closed.
Therefore, in this configuration, the suction holes 16 of the second segments 45b are all configured to act as first suction holes 16a, and the first segments 45a are configured to have some suction holes 16 that act as first suction holes 16a and some suction holes 16 that act as second suction holes 16b. In this way, suction is applied to the leading edge portion 21 of the tipping paper web 13, via the second suction holes 16b in the first segments 45b, in the time between successive cuts being made.
To change the tipping paper suction drum 10 from the first suction configuration (shown in
The relevant suction channels 31a, 31b can be selectively closed using a blocking member, for example a grub screw, bolt, cap, cover, lid, or insert.
In an alternative embodiment which is not shown in the drawings, the suction control component may comprise a suction control drum, which is fixedly positioned within a cylindrical opening in the tipping paper suction drum. The suction control drum may have a series of first and second recesses on its circumferential face and as the tipping paper suction drum rotates relative to the suction control drum the first and second suction holes will move into and out of alignment with the first and second recesses in the suction control drum. In this case, the first and second suction holes, and thus the associated first and second recesses in the suction control drum, have to be offset from each other in an axial direction. Moreover, the suction control drum may include a third recess provided with a gaseous flow, for example compressed air, and the first suction holes may move into and out of alignment with the third recess as the tipping paper suction drum rotates.
It will also be appreciated that in other embodiments the suction holes can be arranged differently. For example, the first suction holes may only be provided to align with edge portions of the tipping paper patches. In other examples, one, two, three or more rows of second suction holes may be positioned in between each array of first suction holes, depending on the size, of the tipping paper patches and the required space between each patch.
It will be appreciated that the suction supplied to the first and second recesses of the suction control component (the suction ring or control drum) may be provided by a vacuum pump, low pressure reservoir or any other means for generating a pressure which is lower than ambient. Also, the gaseous flow supplied to the third recess of the suction control component may be provided by a compressed air pump, reservoir or other source of gaseous flow.
The second suction holes act to control the leading edge portion of the web of tipping paper immediately after the web is cut. In particular, the leading edge portion of the web is held against the suction drum. Holding the leading edge portion in this way helps to prevent the leading edge portion of the web becoming loose in the time between successive cuts, which might otherwise occur and result in defective smoking articles, especially in the case that longer than usual tipping paper patches are required.
Advantageously, the second suction holes can be deactivated before they are exposed so that suction is not wasted, which would lead to increased energy consumption, loss of suction strength in other suction holes, and increased noise.
The tipping paper patches 8 that are cut on the tipping paper suction drum 10 may have a length which is sufficient to wrap the tipping paper patch 8 at least twice around the filter and tobacco rods 5, 6 when forming smoking articles.
If the length of the tipping paper patches 8 is increased then the length of the leading edge portion 21 of the tipping paper web 13 is also increased. Therefore, it is even more advantageous to provide suction holes 16b to control the leading edge portion 21 of the tipping paper web 13 in the time between successive cuts.
As used herein, the term “smoking article” includes smokable products such as cigarettes, cigars and cigarillos whether based on tobacco, tobacco derivatives, expanded tobacco, reconstituted tobacco or tobacco substitutes and also heat-not-burn products. The smoking article may be provided with a filter for the gaseous flow drawn by the smoker.
As used herein, the term “tipping paper” includes any material suitable for attaching the filter to a rod of smokable material and therefore includes any suitable type of paper, metallic foil, or other sheet material.
In order to address various issues and advance the art, the entirety of this disclosure shows by way of illustration various embodiments in which the claimed invention(s) may be practiced and provide for superior assembly comprising a tipping paper suction drum. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed features. It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilised and modifications may be made without departing from the scope and/or spirit of the disclosure. Various embodiments may suitably comprise, consist of, or consist essentially of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. In addition, the disclosure includes other inventions not presently claimed, but which may be claimed in future.
Number | Date | Country | Kind |
---|---|---|---|
1408922.1 | May 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2015/051416 | 5/14/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/177516 | 11/26/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3348552 | McCarthy | Oct 1967 | A |
4334449 | Hinz | Jun 1982 | A |
6425323 | Steuer | Jul 2002 | B1 |
20040123710 | Rizzoli | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
04088975 | Mar 1992 | JP |
2012164067 | Dec 2012 | WO |
Entry |
---|
International Preliminary Report on Patentability for corresponding application PCT/GB2015/051416 filed May 14, 2015; dated Aug. 10, 2016. |
International Search Report for corresponding application PCT/GB2015/051416 filed May 14, 2015; dated Aug. 17, 2015. |
Response to the Written Opinion of the International Preliminary Examining Authority for corresponding application PCT/GB2015/051416 filed May 14, 2015; Report dated Jun. 8, 2016. |
Written Opinion of the International Search Authority for corresponding application PCT/GB2015/051416 filed May 14, 2015; dated Aug. 17, 2015. |
Japanese Office Action for corresponding application 2016-568426; Office Action dated Nov. 14, 2017. |
Number | Date | Country | |
---|---|---|---|
20170079320 A1 | Mar 2017 | US |