1. Field of Invention
The present invention relates to an apparatus for acoustically improving an environment and to a related method.
2. Description of Related Art
Noise has been recognized as a major problem in industrial, office, and domestic environments for many years now. Advances in materials technology have provided some solutions. However, the solutions have all addressed the problem in the same way, namely: the sound environment has been improved by decreasing noise levels in a controlled space. This relatively inflexible approach has been regarded as a major design guideline in the design of spaces as far as noise abatement is concerned.
In particular, U.S. Pat. No. 5,355,418 describes a hearing aid for wearing as an ear piece, which is designed to monitor ambient noise for frequency components above a pre-selected threshold level and to filter out such frequencies utilizing an adaptive digital filter.
U.S. Pat. No. 5,105,377 concerns an active noise cancellation system arranged to sense residual noise and to generate an electronic waveform for activating an acoustic activator to produce an acoustic cancellation signal. In this system, an adaptive filter is employed whose filtering characteristics are adjusted on the basis of the residual noise and of the estimated effects of the cancellation signal as well as the system impulse response. The adaptive filter thus filters the estimated noise to generate the cancellation signal.
U.S. Pat. No. 5,315,661 concerns an arrangement for sound reduction employing a passive sound absorbing panel, a sensor, and an activator for actively attenuating sound signals received by the sensor.
The present invention seeks to provide a more adaptable apparatus for, and method of, acoustically improving an environment.
According to an embodiment of the invention, an apparatus for acoustically improving an environmental space comprises: a partitioning screen for producing a discontinuity in a sound conducting medium in the environmental space, the partitioning screen acting as a sound absorber; means for receiving acoustic energy from the environmental space and for converting the acoustic energy into an electric input signal; means for analyzing the input signal and for providing a control signal based on such analysis; means responsive to the control signal for generating an electrical output signal; and output means for converting said output signal into sound.
Sounds are interpreted as pleasant or unpleasant, i.e., wanted or unwanted, by the human brain. For ease of reference, unwanted sounds are hereinafter referred to as “noise”.
The means for analyzing may include a micro-processor or digital signal processor (DSP). A desktop or laptop computer can also be used. In either case an algorithm is employed to define the response of the apparatus to sensed noise. Noise to sound transformation is advantageously based on the algorithm, which is executed by the processor or computer chip.
The algorithm advantageously works on the basis of building a real time transformation of ambient noise to create a more pleasing sound environment. The algorithm analyzes the structural elements of the ambient noise and produces a transformation that either masks the original noise or emphasizes harmonic elements in it in order to produce a pleasant sound environment.
A preferred algorithm employs a series of band-pass filters, whose center frequencies are multiples of a base frequency (i.e. lowest frequency). The algorithm is capable of recording the mean energy of the frequency bands positioned symmetrically around those frequencies and of using those indexes to adjust the relative levels of output of the corresponding filtering functions in order to create a smoother sound output.
In a particularly preferred embodiment, the algorithm is modeled on the human auditory perception system and relevant experimental data available in handbooks of experimental psychology of hearing. Several case studies have been carried out in different situations/locations with diverse sound/noise environments. Digital recordings were made and the sound signals were then played back in different locations. The sound signals were also analyzed with spectrograms and their results were compared to spectrograms of pieces of music and recordings of natural sounds. The analysis of the data has resulted in design criteria that were incorporated into the algorithm. The algorithm tunes the sound signal by analyzing, in real time, incoming noise and produces a sound output which can be tuned by the user to match different environments, activities, or aesthetic preferences. In an embodiment of the invention, the algorithm is programmed in MAX, a programming language available for Apple Macintosh™ computers. However, other programming languages can be used, the identification and implementation of which is apparent to one of skill in the art. An example of the algorithm is described below.
The digital signal processing unit may be any conventional programmable processor. In an embodiment of the invention, the physical size of the processor is approximately 100 by 150 mm. Such a unit may include circuitry for data input through a PC using a parallel port. In an alternative embodiment of the invention, a non-reprogrammable DSP chip may be used instead and the parallel port would be omitted.
The apparatus preferably has a partitioning device in the form of a flexible curtain. However, it will be appreciated that such device may also be solid.
The curtain preferably has one or more rigid or semi-rigid portions, which carry the output means.
The curtain may be formed from a plurality of modules manufactured from a flexible material, such as polyurethane or silicon rubber. Preferably each module has a substantially constant thickness of between 1 and 2 mm. Modules can be assembled together to form screens or space dividers of different heights and constant width. A basic module size is typically 1200×400-450 mm (width by height).
Each module advantageously includes an electrically conductive pathway molded integrally within or deposited on the curtain. In an embodiment of the invention, the conductive pathway is deposited on the curtain via a screen printing technique.
Two different modules may be used to create a screen: the first curtain module may have conductive pathways and incorporate the audio output means, and the second may also have conductive pathways and may connect to a power supply via a transformer, and to other curtain module(s) via the conductive pathways.
In a preferred embodiment, the second module(s) may include a DSP unit which performs digital signal processing on the input signal to produce a transformed signal, which is then output to one or more output devices. Power may be provided by a rechargeable lithium battery or a main voltage supply via a transformer. Optionally the DSP unit may be configured to accept an infra-red input, e.g., remote control device, to the curtain, thereby allowing a user to tune or switch on/off the output pleasant sound environment.
The curtain may also comprise two or more materials of differing acoustic properties. The materials may be separated by a space or volume, which may be evacuated or filled with a fluid, such as air or other material. At least one of the surfaces may be relatively stiff so as to act as a sound reflector. Examples of a stiff material include: glass, steel, and laminates, such as carbon-fiber epoxy or Kevlar™ epoxy. Such a stiff material may also be combined with a sound absorption material such as foam or woven fabrics, such as velvet or woven Kevlar™.
A particularly effective curtain includes a semi-flexible modular curtain formed from a sandwich material of aluminum honeycomb core and having a latex, polyurethane, or elastomer, e.g., rubber, skin.
The partitioning medium may be translucent for visual appeal. However, it will be appreciated that it may also be opaque or transparent.
According to another embodiment of the invention, a method of manufacturing a curtain comprises the steps of: embedding an electrically conductive pathway in, or on, a flexible material, the electrical pathway being adapted to connect to a means for receiving audio energy and a means for converting said energy into a signal, so as to modify its composition and to provide, in use, a pathway for said modified signal to an audio output means.
The electronic sound screening system of the present invention provides a pleasant sound environment by transforming noise into non-disturbing sound. The partitioning device can be seen as a smart textile that has a passive and an active element incorporated. The passive element acts as a sound absorber bringing the noise level down by several decibels. The active element then transforms the remaining noise into pleasant sound. The latter is achieved by recording and then processing the original sound signal with the use of an electronic system. The transformed sound signal may then be played back through speakers connected to the partitioning device.
The invention has a myriad of applications. For example, it may be used in shops, offices, hospitals, or schools as an active noise treatment system.
Instead of resolving complex equations in order to construct a system that cancels noise in well described and controlled cavities (like the interiors of a car or the cavity of the human ear), a universal system is provided that functions in any sound environment by modifying its output.
Preferably, the invention reduces the noise level down by 6-12 decibels.
The foregoing, and other features and advantages of the invention, will be apparent from the following, more particular description of the preferred embodiments of the invention, the accompanying drawings, and the claims.
For a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
Preferred embodiments of the present invention and their advantages may be understood by referring to
Referring to
Preferably, the curtain 10 comprises a flexible material, for example a translucent velvet textile woven from a transparent nylon or monofilament polyester yarn, or a molded synthetic rubber or polyurethane sheet. Other suitable materials include woven fabrics and laminates formed from KEVLAR™ or carbon-fiber epoxy. Such materials all have good sound absorbing properties. The material may also be woven or overprinted with visual designs, information or colors, to provide an aesthetically pleasing result.
The microphones 12 receive ambient noise from the surrounding environment and convert such noise into electrical signals for supply to the DSP 14. A spectrogram 17 representing such noise is illustrated in
A first embodiment of the present invention will now be described with reference to
In addition to the wires 22, the curtain module 20 also carries a respective microphone 12 and a respective loudspeaker 16 in the form of a power amplifier 34 and an exciter or vibrator 36. The exciter 36, which is mounted on a stiffened portion of the material of the curtain module 20, is shown in
The following is a description of how the curtain module may be manufactured relatively cheaply by molding a synthetic rubber material:
a) Rotational molding: In this case, polyurethane (PU) rubber is poured into a rotating drum which spins and also applies heat to the PU rubber. This procedure produces sheets of substantially constant thickness, but has a limitation in the size of the PU sheet, which is restricted by the size of the drum (the biggest sheet found in a U.K. manufacturer was 2400 mm long by 900 mm wide).
b) Sheet molding: A lump of PU rubber of nearly the weight required to fill a flat mold is set on the center of the mold in a semi-solid state, before being vulcanized. A steel tool presses the PU rubber to close the mold letting the PU rubber escape from certain outlets. Heat is applied and the PU rubber sets. The advantage of this procedure is that both sides of the PU sheet can be textured and can also have extruded characteristics (as opposed to only one part of the sheet being textured in the rotational molding process). The obvious disadvantage is the fact that the bigger the size of the sheet to be cast, the higher the cost of the tool.
In the present instance, a transparent two-part polyurethane (PU) rubber compound is employed in the molding process. The compound is mixed as a liquid, passed through a vacuum chamber to be degassed, and then poured into the lower part 50 of the mold 48 and spread by means of aluminum straps (not shown) spanning the full width of the mold in order to obtain an even thickness. The mold 48 is then closed for molding.
A “spark” or sandblasted finish may be applied to an inner surface of the mold to render the sheet translucent instead of transparent and/or to produce desired visual qualities. The polyurethane employed in the compound may if desired be pigmented to generate different colors in selected areas of the curtain module 20 to produce aesthetic designs. The liquid compound employed in the molding process may also be modified with fire retardant for enhancing safety. Ultra-violet stabilizers may also be added.
In an alternative embodiment, wires 22 are integrated into curtain module 20 in such a way that the wires 22 can not be seen.
In order to produce stiffened portions in the material of the curtain module 20 to provide structural areas for carrying the various electrical components, a number of different approaches are possible. For example, hardeners can be added to selected regions of the fluid compound prior to or during molding, or such regions can be cured or heat treated or resin may be applied following molding. Alternatively, stiffened panels may be applied to the mold prior to introduction of the polyurethane compound, or polyurethane compounds of different hardness can be molded together by means of a double molding process. Another possibility is for the curtain to be formed from two or more layers of polyester or Mylar™ screen printed with the conductive pathways and layered together to incorporate rigid panels between them.
Respective wires 22 of each curtain module 20 are electrically inter-connected by way of the connectors 32 to respective wires 22 of the adjacent curtain module 20. It will be seen from
The DSP 14 serves to transform the electrical signals supplied from the microphones 12 into modified electrical signals for driving the exciters 36. For this purpose, the DSP 14 employs an algorithm programmed in, for example, but not limited to Opcode MAX/MSP software, which is available in Macintosh™ computers. The DSP 14 implements a series of digital filters arranged to be active one at a time. Each digital filter comprises a number of bandpass filters, one of which has a low center frequency and the others of which have frequencies which are multiples of this base frequency. A graphical interface is provided for a user to facilitate tuning of the parameters of each filtering function, and the algorithm is programmed to make decisions in order to change the filtering function according to the incoming noise signal.
The algorithm serves firstly to adjust the output level in order to modify or not modify peaks of the input noise signal. When sound incidents are happening, the output signal is increased to mask them. In this case, it is preferable for the overall sound energy for the controlled environment to increase, because that decreases the effect of noise disturbance caused to the brain. The same effect is achieved by producing a steady tone, like a constant hum, so as to concentrate on something when somebody is speaking. The algorithm serves secondly to adjust the filtering according to the quality of the incoming noise signal. This feature involves pattern recognition embedded in the software and enables the software to distinguish speech from traffic noise and thereby to adjust the filtering.
The sound transformation is based on principles derived from the psychology of hearing and the study of the human auditory perception. On the one hand, the algorithm is based on masking principles, which are well documented in the science of auditory perception. This effect relates to the incapability of the human auditory system to perceive certain sounds [the maskee sounds] in the presence of other sounds [the masker sounds] with a specific frequency and amplitude relationship.
The frequency and amplitude content of the filtered output are such that the filtered signal can mask the noise signal, thus rendering parts of the noise spectrum inaudible. The achieved masking weakens the “sound identity” of certain disturbing sound events, which become unrecognizable, and therefore does not bring any unpleasant connotations to the user.
Furthermore, the algorithm output is built on known principles of the human auditory system that relate to the grouping of sound events. The close relation between the sensed and the transformed signals ensures that the two are grouped together by the listeners auditory system and are perceived as the new sound environment in the space, which is generated by the co-existence of the environmental noise and the harmonic output. This, in effect the algorithm redefines the sound context into which noise events are experienced and groups unpleasant sound events with more pleasing sounds with aesthetic content favorable to the user.
Another important aspect relates to the effects of noise that are associated with control. The algorithm provides the user with a way to tune their sound environment by exercising an increased level of control on how the new sound environment is generated. This alleviates the disturbance and noise related stress associated with the lack of control.
The algorithm will now be described in greater detail with reference to
Referring to
The first stages of R will be described first.
In step 106, a ratio for the relative output level of the two filter groups is determined and is set. The input signal 100 is then supplied in step 108 to two groups 1 and 2 of five filters: the steepness (q-factor) and the gain of each filter are automatically adjusted, as described below, according to the criteria in sub-routine 102. The center frequencies F0 to F5 of the five filters of each filter group are arranged to have a harmonic relation to one another. The center frequencies are selected within the algorithm by first selecting a base frequency, which is the center frequency of the first filter, and the multiplying this value by four numbers that correspond to a chord. For each selected frequency, there is identified a set of possible chords that the algorithm may use, determined by the programmer/composer. In this way, the tonal possibilities of the system can be controlled to achieve the desired aesthetic result.
In an embodiment of the invention, exemplary chords used in the algorithm are as follows [chord name followed by 4 multipliers, one for each filter center frequency]: Fifth, 7 12 14 24; Octave, 12 24 36 48; Fifth_Through, 7 14 21 28; Major_Triad, 4 7 12 16; Major_Extended, 7 12 16 24; Minor_Triad, 3 7 12 15; Minor_Extended, 7 12 15 24; Major7, 4 7 11 16; Maj7th_3rd, 3 7 11 15; Minor7, 3 7 10 15; Dominant7, 4 7 10 16; Dom7_Sus4, 5 7 10 17; Dom7_Flat5, 4 6 10 16; Dom7_Flat9, 7 10 13 16; Dom7_Aug9, 4 10 15 24; Dom7_Alt9, 4 8 10 15; Dom7_Aug11, 10 16 18 24; Augmented, 4 8 12 16; Dim7_Closed, 3 6 9 12; Dim7_Open, 15 24; Sixth, 4 7 9 12; Minor_Sixth, 3 7 9 12; Sixth_Add9, 4 7 9 14; Dominant9, 4 7 10 14; Major9, 4 7 11 14; Minor9th, 3 7 10 14; Dom9_Sus4, 10 14 17 24; Dom9_Aug5, 4 8 10 14; Dom9_Flat5, 4 6 10 14; Dom9_Flat13, 10 14 16 20; Thirteenth, 10 14 16 21; and Thirteenth_Flat9, 10 13 16 21. For instance, for a base frequency of 60 Hz and a Major_Triad selected, the center frequencies of the 5 filters of one filter group would be 60 Hz, 240 Hz, 420 Hz, 720 Hz, and 960 Hz. The sequences corresponding to the two filter groups can have the same or a different amount of members to produce a fixed or a virtually indefinite number of possible harmonic transitions when transitions between the two filter groups occur.
The signal output from the two groups 1 and 2 of filters in step 108 is passed in step 110 to further filters for adding reverberation and echo frequencies, and this signal is mixed back in with the output of the two groups 1 and 2 of filters in step 112.
The resultant signal has its amplitude controlled in step 114 according to a predetermined level set by the user in step 116. Finally, the signal is passed in step 118 through a high pass filter for output in step 132.
In the series of stages L, the signal from the output 100 is passed through a control step 120 in which it is determined whether the original noise is to be heard in the output or not. If not, the input signal is filtered out in step 124. If it is, the signal is passed through a gate in step 124. The determination in step 120 is effected by the user by way of manual control and, if the user indicates that the original noise is to be heard, then they will also set a level of control in step 126. The signal output from the gate in step 124 is then controlled to the desired level in step 128 according to the predetermined amount set in step 126. Finally, the resultant signal is passed through another high pass filter in step 130 for output in step 132.
The signals obtained in steps 118 and 130 are combined in step 132 and are passed through a D/A converter to supply to the amplifiers to drive the exciters 36.
The active decision sub-routine 102 will now be described with reference to
If desired, a further control may be imposed on the control output through a harm control sub-routine 148, which is illustrated in
Referring to
Turning now to
Referring to
The first series of stage R will be described first.
These stages include the groups 1 and 2 of five band-pass filters, designated as filter groups 108a in
The signals output from the two groups 1 and 2 of filters in filter groups 108a are mixed in a mixer 108b and passed through an effects processor 110a for adding reverberation and echo frequencies, and the output from this processor 100a is mixed back in with the output of the mixer 108b in a further mixer 112a.
The resultant signal from the mixer 112a is amplified in an amplifier 114a whose gain is set to a predetermined level through a user input 116a. Finally, the amplified signal is passed through a high pass filter 118a to an output D/A converter 132a.
In the series of stages L, the signal from the input 100a is passed to a gate 124a where a user control input 120a determines whether the original noise is to be heard in the output or not. If not, the input signal is filtered out at the gate 124a. If it is, the signal is passed through the gate 124a. The user control input 120a is effected by the user by way of a manual control and, if the user indicates that the original noise is to be heard, then they will also set a level of control applied as a user control input 126a to an amplifier 128a. The signal output from the gate 124a is then amplified to the desired level in amplifier 128a according to the control input 126a. Finally, the resultant signal is passed through another high pass filter 130a for output by the D/A converter 132a.
The signals from the high pass filters 118a and 130a are combined in the D/A converter and are supplied to the amplifiers 34 to drive the exciters 36.
The analysis circuit 102a will now be described in further detail with reference to
The filter amplitude evaluator 244 is arranged to receive the input signal from the input 140a and to compute the mean amplitude of the sensed input in each of five frequency bands determined according to the center frequencies output by the harmonic frequency generator 242 and according to a band width set by a control input 244a.
Following the analysis, the filter amplitude evaluator 244 supplies, as an output from the processor 142a, a control output which is passed firstly to an amplifier 144a and secondly to a setting circuit 146a. The output from the amplifier 144a serves to set the gain of each of the five filters in the two filter groups 1 and 2. The circuit 146a is arranged to supply an output for setting the steepness or q-factor in each of the filter groups 1 and 2, for example on the basis of a simple function defining the steepness of each filter as inversely proportional to the gain.
If desired, a further control may be imposed on the signal supplied to the filter groups 108a through a harm control circuit 148a, which is arranged to receive the signal from the input 140a and is illustrated in
Referring to
A second embodiment of the invention will now be described with reference to
In the second embodiment, the microphones 12 are mounted on a portion of the curtain 10, as well as the loudspeakers 16. The DSP 14 and the power supply 66, in the form of a rechargeable battery and/or an AC/DC transformer, are also mounted on the curtain 10.
A third embodiment of the invention is illustrated in
In the third embodiment, the microphones 12 and the DSP 14 are spaced at a distance from the curtain 10, and the loudspeakers 16 are mounted on the curtain 10. In this instance, each loudspeaker comprises an exciter 36 mounted on a rigid panel 210, which is inserted into the mold during molding of the curtain 10 or which is produced as a part of the curtain with a double molding process.
One possible form of the rigid panel 210 is illustrated in
Finally, a modification of the connection means illustrated in
It will be appreciated that a number of further modifications are possible in the invention as described without departing from the scope of the invention.
In particular, the wiring, and electrical circuit components, may be screen printed on to the surface of the curtain 10, rather than molded in situ as described. Conductive inks are commercially available providing a very flexible, low resistance, screen printable medium. In this instance, the ink may need to be heat Treated for a short time, for example 5 to 15 seconds, at a raised temperature in the range, for example, of 80 to 120 degrees centigrade.
The described exciters 36 may also be replaced by alternative loudspeakers 16, for example, piezo-electric speakers or other small sized flat speaker arrangements. Another possibility is to employ flexible piezo speaker film for the whole surface of the curtain 10, to act as the loudspeaker. The film may be stretched or curved in order to increase output quality.
In the embodiments described above, stiffened portions have been provided in the curtain 10 for mounting the loudspeakers 16. If the curtain material is stiff enough, however, such portions may be omitted altogether for ease of manufacture. Alternatively, if stiffened portions are provided, they may be selected to have a range of stiffnesses as desired.
Furthermore, the panel shown in
According to the described embodiments of the present invention, ambient noise detected by the microphones 12 is replaced with a particular quality of relaxing, soothing or musical sound. The present invention records environmental sound, applies simple transformations to signals representing the sensed sound using a filtering process, for example by means of digital filters, and provides an output thus based on the received sound. There are many types of filtering arrangements that can be used to achieve such a transformation, including the filter groups described above, the use of delay circuitry or delay lines, and many others, all designed to process and preserve a substantial amount of information from the input sound.
Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all U.S. patents, are hereby incorporated herein by reference in their entirety. Although the invention has been particularly shown and described with reference to several preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
9927131.4 | Nov 1999 | GB | national |
The present application is a continuation-in-part of International Application PCT/GB00/02360, with an international filing date of Jun. 16, 2000, published in English under PCT Article 21(2) and now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
4052720 | McGregor et al. | Oct 1977 | A |
4423289 | Swinbanks | Dec 1983 | A |
4438526 | Thomalla | Mar 1984 | A |
4686693 | Ritter | Aug 1987 | A |
4771472 | Williams et al. | Sep 1988 | A |
5024388 | Kaneko et al. | Jun 1991 | A |
5105377 | Ziegler, Jr. | Apr 1992 | A |
5315661 | Gossman et al. | May 1994 | A |
5355418 | Kelsey et al. | Oct 1994 | A |
5371657 | Wiscombe | Dec 1994 | A |
5781640 | Nicolino, Jr. | Jul 1998 | A |
6446751 | Ahuja et al. | Sep 2002 | B1 |
7003120 | Smith et al. | Feb 2006 | B1 |
Number | Date | Country |
---|---|---|
03276998 | Dec 1991 | JP |
WO0145082 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20030002687 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/GB00/02360 | Jun 2000 | US |
Child | 10145097 | US |