1. Field of the Invention
The present invention is directed to an attitudinal control apparatus for an airborne or water borne vehicle and, in particular, an apparatus for actuating a control surface of such vehicles.
2. Description of the Related Art
Airborne or water borne vehicles are often used to deliver a payload to a target location or to carry a payload over a desired area. For example, projectiles may be used in combat situations to deliver a payload, such as an explosive warhead or a kinetic energy penetrator to a target to disable or destroy the target. Surveillance vehicles may carry a payload designed to sense certain conditions surrounding the vehicle, such as objects on the ground or weather activity. Such vehicles typically include a plurality of control surfaces, such as fins, canards, flares, flaps, tabs, etc., that are articulated to control the vehicle's direction and attitude as it moves through an atmosphere or liquid.
In many conventional vehicles, a separate actuation apparatus (e.g., a motor and a power transmission system) is provided for each of the control surfaces. For example, if a projectile includes four fins, four separate motor and power transmission assemblies would be provided. In such vehicles, one or more computers determine the desired attitude components (i.e., pitch, yaw, and roll) of the vehicle depending upon its destination, direction of travel, obstacles in its path, and other factors. The computer or computers then calculate the required orientation of the control surfaces to attain the desired vehicle attitude and command each of the actuation apparatuses separately to orient the control surfaces accordingly.
It is generally desirable, however, for such vehicles to be lighter in weight, rather than heavier, so that their ranges may be extended while using an equivalent amount of propellant. Further, it is generally desirable for the contents of the vehicle other than the payload, e.g., the motors, power transmission assemblies, and the like, to be more compact, so that larger payloads may be used within the body of the projectile. It is also often desirable to decrease the complexity of calculating the required orientation of the control surfaces to attain the desired vehicle orientation and commanding the actuation apparatuses to orient the control surfaces accordingly.
The present invention is directed to overcoming, or at least reducing, the effects of one or more of the problems set forth above.
In one aspect of the present invention, an apparatus for actuating a control surface is provided. The apparatus includes a first spur gear; a first drive assembly engaged with the first spur gear; a second spur gear; and a second drive assembly engaged with the second spur gear. The apparatus further includes a gear assembly engaged with the first spur gear and the second spur gear and adapted to be coupled with the control surface.
In another aspect of the present invention, an apparatus for actuating a plurality of control surfaces is provided. The apparatus includes a first spur gear, a second spur gear, and a third spur gear; a first drive assembly engaged with the first spur gear; a second drive assembly engaged with the second spur gear; and a third drive assembly engaged with the third spur gear. The apparatus further includes a first gear assembly engaged with the first spur gear and third spur gear and adapted to be coupled to a first of the plurality of control surfaces and a second gear assembly engaged with the second spur gear and the third spur gear and adapted to be coupled to a second of the plurality of control surfaces.
In yet another aspect of the present invention, a vehicle is provided. The vehicle includes a plurality of control surfaces; a first spur gear, a second spur gear, and a third spur gear; a first drive assembly engaged with the first spur gear; a second drive assembly engaged with the second spur gear; and a third drive assembly engaged with the third spur gear. The vehicle further includes a first gear assembly engaged with the first spur gear and third spur gear and coupled with a first of the plurality of control surfaces and a second gear assembly engaged with the second spur gear and the third spur gear and coupled with a second of the plurality of control surfaces.
In another aspect of the present invention, a vehicle is provided. The vehicle includes a first yaw and roll control surface, a second yaw and roll control surface, a first pitch and roll control surface, and a second pitch and roll control surface. The vehicle further includes a yaw spur gear, a pitch spur gear, and a roll spur gear; a yaw drive assembly engaged with the yaw spur gear; a pitch drive assembly engaged with the pitch spur gear; and a roll drive assembly engaged with the roll spur gear. The vehicle also includes a first yaw and roll gear assembly engaged with the yaw spur gear and roll spur gear and coupled with the first yaw and roll control surface; a second yaw and roll gear assembly engaged with the yaw spur gear and roll spur gear and coupled with the second yaw and roll control surface; a first pitch and roll gear assembly engaged with the pitch spur gear and the roll spur gear and coupled with the first pitch and roll control surface; and a second pitch and roll gear assembly engaged with the pitch spur gear and the roll spur gear and coupled with the second pitch and roll control surface.
The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
FIG. 2–
FIG. 4–
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present invention relates to an apparatus and method for actuating control surfaces (e.g., fins, canards, flaps, flares, tabs, etc.) of an airborne or water borne vehicle. In particular, the present invention provides an apparatus for actuating a number of control surfaces with a lesser number of drive motors. For example, one embodiment of the present invention comprises an apparatus for actuating four control surfaces with only three drive motors, corresponding to roll, pitch, and yaw. Alternatively, the apparatus may be adapted to control four control surfaces with only two drive motors, corresponding to, for example, pitch and yaw.
FIG. 1–
The actuation apparatus 100 includes a roll spur gear 104a (not shown in FIG. 1–
Mounted to the housing 102 are a roll drive assembly 110a (not shown in FIG. 5–
Each of the drive assemblies 110a–110c and its corresponding spur gear 104a–104c comprises an input mechanism. For example, the roll drive assembly 110a and the roll spur gear 104a comprise a roll input mechanism, in that they provide a roll input to the remainder of the actuation mechanism connected thereto. Correspondingly, the yaw drive assembly 110b and the yaw spur gear 104b comprise a yaw input mechanism and the pitch drive assembly 110c and the pitch spur gear 104c comprise a pitch input mechanism.
A forward frame 118a (not shown in
Each of the gear assemblies 124a–124d is mechanically coupled with one of a plurality of output shafts 128a–128d (not shown in
Referring in particular to FIG. 4–
Referring now to the particular embodiment illustrated in
Referring now to FIG. 6–
Referring again to FIG. 6–
Note that the attitudes of the control surfaces 101a–101d may be initially positioned or tuned by loosening the jam nuts 138a–138d, 140a–140d and rotating the shafts 136a–136d. All, some, or one of the control surfaces 101a–101d may be initially positioned or tuned in this way.
Note that to effect a change in roll of the vehicle, a pair of opposed control surfaces 101 are rotated in opposite directions with respect to a vehicle datum, which the other pair of opposed control surfaces 101 are rotated in opposite directions with respect to the vehicle datum. Thus, referring to FIG. 6–
As presented above, the yaw drive gear 116b is meshed with and drives the yaw spur gear 104b that, in turn, is meshed with and drives the yaw gears 132b, 132d. As the yaw gears 132b, 132d are driven, they rotate the worms 144b, 144d that, in turn, drive the worm gears 154b, 154d, causing the output shafts 128b, 128d and the control surfaces 101b, 101d to rotate. Similarly, as the pitch gears 134a, 134c are driven, they rotate the worms 144a, 144c that, in turn, drive the worm gears 154a, 154c, causing the output shafts 128a, 128c and the control surfaces 101a, 101c to rotate.
In some situations, it may be desirable to only control roll and yaw or roll and pitch. For example, in some embodiments of the present invention, the pitch spur gear 104c, the pitch drive assembly 110c, and the gear assemblies 124b, 124d may be omitted, such that only roll and yaw are controlled. In other embodiments, the yaw spur gear 104b, the yaw drive assembly 110b, and the gear assemblies 124a, 124c may be omitted, such that only roll and pitch are controlled. Thus, the scope of the present invention encompasses embodiments wherein only some of roll, yaw, and pitch are controlled. Moreover, the actuation apparatus 100 mechanically combines two inputs (e.g., the desired changes in roll and yaw, or the desired changes in roll and pitch) into a single mechanical output to each of the control surfaces 101a–101d. While the accompanying figures illustrate the gear assemblies 124a–124d having a generally common design, the present invention is not so limited. Rather, one or more of the gear assemblies 124a–124d may have configurations other than those illustrated.
In the illustrated embodiment, the vehicle 900 comprises a rocket motor 910 (shown in phantom) that includes a blast tube 912. Generally, blast tubes (e.g., the blast tube 912) carry combustion products resulting from ignited propellant to the motor's nozzle (e.g., a nozzle 914). While not required, some embodiments of the present invention may utilize the blast tube 912 as the central tube 106 (shown in FIG. 1–
While the vehicle 900 is depicted in
It is to be noticed that the term “comprising”, used in the claims, should not be interpreted as being limitative to the elements listed thereafter. Thus, the scope of the expression “a device comprising elements A and B” should not be limited to devices consisting only of components A and B. It means that with respect to the present invention, the only relevant components of the device are A and B.
Similarly, it is to be noticed that the term “coupled”, also used in the claims, should not be interpreted as being limitative to direct connections only. Thus, the scope of the expression “a device A coupled to a device B” should not be limited to devices or systems wherein device A is directly connected to device B or an output of device A is directly connected to an input of device B. It means that there exists a connection path between A and B, which may be a path including other devices or means.
Further, even though the components of the present invention are described herein as being “roll”, “pitch”, or “yaw” components, the present invention is not so limited. Rather, the present invention encompasses the embodiments disclosed herein and their equivalents irrespective of whether the invention is used to control roll, pitch and/or yaw. In some embodiments, the labels “roll”, “pitch”, and “yaw” are merely identifiers for distinguishing elements of the apparatus of the present invention. For example, the scope of the present invention encompasses the use of the disclosed apparatus to combine two inputs (e.g., pitch and roll, or yaw and roll) into a single output (e.g., a pitch and roll output or a yaw and roll output).
This concludes the detailed description. The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
Number | Name | Date | Kind |
---|---|---|---|
6637699 | Banks et al. | Oct 2003 | B2 |
20050224632 | Turner | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060150765 A1 | Jul 2006 | US |