The present invention relates in general to computer technologies and in particular to an apparatus for an improved peripheral electronic interconnect device.
The functionality of many modern electronic host devices or hosts (e.g., personal computers, mobile phones, personal digital assistants, game consoles, etc.) can often be expanded by the addition of external devices.
Generally, market adoption of any new technology may be encouraged through the adoption of standards. For example, advances in technology in several areas have converged to bring about high functionality small footprint PC cards. These cards generally use some type of open interface standard (e.g., USB, EXPRESSCARD™, etc.), and are generally configured to communicate through an electronic interconnect device or connector (e.g., peripheral connector, host receptacle connector, etc.).
A common PC card configuration may include a plastic frame for supporting a printed circuit board. Peripheral connectors are typically coupled to one end of the frame for providing an electrical connection to the printed circuit board. Metal or plastic covers are then placed over the frame to shield and protect the printed circuit board. See, for example, U.S. Pat. No. 5,330,360; U.S. Pat. No. 5,339,222; U.S. Pat. No. 5,386,340; and U.S. Pat. No. 5,476,387.
Another type of card configuration does not require the separate plastic frame. In this frameless embodiment, peripheral connectors are separately placed and then soldered to the printed circuit board. The peripheral connectors and the printed circuit board are then covered with top and bottom metallic or plastic covers.
Referring now to
One common open interface standard is Universal Serial Bus (USB). Peripheral devices that implement USB do not generally require a specialized reader host device, but rather can be directly plugged into a USB host connector on a personal computer (PC) or other host device. Included on PC motherboards since 1997, USB is a serial bus architecture in which a USB host controller interface is coupled to the host chipset. USB supports dynamically loadable and unloadable drivers, allowing a user to insert the external device without having to restart the electronic device. The host is able to detect additions, interrogate newly inserted devices, and load appropriate drivers. USB may be commonly used for: wired and wireless LAN, wired PAN, flash memory, flash card adapters, security, legacy I/O (PS2, serial, parallel, optical disk drives, GPS receiver, etc.).
Another more recent standard is PCI Express. PCI Express comprises a multi-drop, parallel bus topology that may contain a host bridge coupled to a CPU, and a switch and several potential endpoints (the I/O devices) coupled to the host chipset. The switch replaces the multi-drop bus and is used to provide fan-out for the I/O bus, providing peer-to-peer communication between different endpoints and this traffic. In addition, because of a relatively low signal-count, simplified and physically smaller point-to-point connections may be constructed with peripheral connectors and cables. PCI Express may be commonly used for: wired LAN, broadband modems, TV tuners/decoders, I/O adapters (e.g., 1394a/b), magnetic disk drives, etc.
In general, peripheral connectors enable the PC card to plug into a port or interface in the host device. Most peripheral and host connectors are either male (containing one or more exposed pins), or a female (containing holes in which the male connector can be inserted). Peripheral and host connectors are commonly comprised of housings and contacts.
Housings protect the peripheral and host connectors against dust, dirt, moisture, electromagnetic interference (EMI), or radio frequency interference (RFI). Housings support contacts to ensure proper mating through keying or polarization and to provide “strain relief” protection to keep peripheral and host connectors united despite accidental pulls or strong vibrations. Mating is the joining of two halves of an electronic interconnect device when a male contact is united with the female contact. Keying is a mechanical means built into a peripheral or host connector housing that indicates the two correct connector halves necessary for mating. Polarization allows only one correct mating alignment of male and female connector halves. The most common metals used for connector contacts are brass, phosphor bronze and beryllium copper. Peripheral and host connector contacts are often plated (e.g., tin, nickel and gold) to increase efficiency and protect against corrosion.
A common contact configuration is stamped/formed. Stamped/formed contacts can be single beam (the receptacle contact holds the plug contact between itself and the housing wall), or dual beam (the female contact holds the male contact between two beams). For example, EXPRESSCARD™ peripheral and host connectors use a type of stamped/formed style called beam-on-blade.
Referring now to
Referring now to
Peripheral plug connector 300 is approximately 34 mm wide, 11 mm long and 5 mm thick. It generally includes lateral guides 302 that allow the user to insert and remove the PC card into receptacle host connector 400, and stopper 312 that generally prevents over insertion of peripheral plug connector 300 into the receptacle host connector 400, as shown in
Physically, top surface 308 and lateral guides 302 allow PC card assembly 306 to be firmly seated in the receptacle host connector with a specified mating and un-mating force value. In addition, lateral guides 302 also provide finger guides that allow the user to insert and remove the PC card from a host device.
Electrically, the set of metal contacts 310 (or blades) comprise a substantially straight layer for connection to a PCB, and a bended (gull-wing) layer for soldering to PCB substrate. The bended layer may allow the substrate board to be positioned at about the center height position of a PC card. Subsequently, integrated circuits (IC's) or chips and components may be mounted on both top and bottom sides of the PCB substrate.
Bottom housing layer 330B includes the layer of the peripheral plug connector that provides the underside protection to the metal contacts 310 against dust, dirt, moisture, electromagnetic interference (EMI), or radio frequency interference (RFI). It may also provide “strain relief” protection to keep peripheral plug connector and the host receptacle connectors united despite accidental pulls or strong vibrations.
Stopper layer includes the layer of the peripheral plug connector that contacts the bottom surface of receptacle host connector 400 when inserted, and prevents over insertion of peripheral plug connector 300 into the receptacle host connector 400, as shown in
Referring now to
Referring now to
However, as host devices become smaller and are implemented in non-traditional form factors (e.g., mobile phone, digital cameras, watches, etc.) card design flexibility may be substantially advantageous. For example, PC cards which implement the ExpressCard/34 of the specification, with a thickness of about 5 mm, are about half the size of a standard PCMCIA card. Further reductions in size that are still compatible with the appropriate specification would be even more beneficial. For example, in a configuration in which two EXPRESSCARD™ slots are stacked on top of each other, a thinner EXPRESSCARD™ design would allow for the simultaneous use of cards of varying thickness and functionality (i.e., cards that are both less than and greater than 5 mm), as long aggregate thickness as the was less than about 10 mm.
In view of the foregoing, there are desired improved peripheral electronic interconnect device apparatus.
The invention relates, in one embodiment, to a plug for coupling with an industry-standard EXPRESSCARD™ receptacle. The plug includes a bottom substrate. The plug also includes a plurality of plug-side metal contacts disposed on the bottom substrate, the plurality of plug-side metal contacts being configured for coupling with receptacle-side metal contacts in the industry-standard EXPRESSCARD™ receptacle, thereby rendering the plug electrically compatible with the industry-standard EXPRESSCARD™ receptacle, wherein surfaces of the plurality plug-side metal contacts that couple with the receptacle-side metal contacts are exposed when the plug is disconnected from the industry-standard EXPRESSCARD™ receptacle.
The invention relates, in another embodiment, to a peripheral device configured to be plugged into an industry-standard EXPRESSCARD™ receptacle. The peripheral device includes a plug having a bottom substrate and a plurality of plug-side metal contacts disposed on the bottom substrate, the plurality of plug-side metal contacts being configured for coupling with receptacle-side metal contacts in the industry-standard EXPRESSCARD™ receptacle, thereby rendering the plug electrically compatible with the industry-standard EXPRESSCARD™ receptacle, wherein surfaces of the plurality plug-side metal contacts that couple with the receptacle-side metal contacts are exposed when the plug is disconnected from the industry-standard EXPRESSCARD™ receptacle.
The invention relates, in another embodiment, to a peripheral device configured to be plugged into an industry-standard EXPRESSCARD™ receptacle. The peripheral device includes a circuit board having thereon a plurality of integrated circuit chips. The peripheral device also includes a plug portion integrally formed at one end of the circuit board, the plug portion having a bottom substrate and a plurality of plug-side metal contacts disposed on the bottom substrate, the plurality of plug-side metal contacts being configured for coupling with receptacle-side metal contacts in the industry-standard EXPRESSCARD™ receptacle, thereby rendering the plug portion electrically compatible with the industry-standard EXPRESSCARD™ receptacle, wherein surfaces of the plurality plug-side metal contacts that couple with the receptacle-side metal contacts are exposed when the plug portion is disconnected from the industry-standard EXPRESSCARD™ receptacle.
These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
As previously described, PC card design flexibility may be substantially advantageous in host devices that are smaller and implemented in non-traditional form factors (e.g., mobile phone, digital cameras, watches, etc.). Subsequently, further substantial reductions in PC card size that are still compatible with appropriate specifications would be beneficial over current designs. In a non-obvious fashion, PC card thickness may be substantially reduced by also substantially reducing the thickness of an electronic interconnect device in a fashion compatible to corresponding PC card specifications.
In one embodiment, the electronic interconnect device is compatible with the EXPRESSCARD™ standard. In another embodiment, the electronic interconnect device is compatible to the PCMCIA standard. In another embodiment, electronic interconnect device is a plug connector. In yet another embodiment, the peripheral plug connector is stand-alone. In yet another embodiment, the peripheral plug connector is discrete. In yet another embodiment, the peripheral plug connector is integrated into the PC card housing. In yet another embodiment, the peripheral plug connector is directly coupled to pads on a PCB.
Referring now to
In addition, in a non-obvious fashion, the inventor has also provided a mechanism to substantially maintain the amount of force required to mate and un-mate the slim connector with a receptacle by modifying stopper 612 (extended stopper). In general, removing the layer of the peripheral plug connector in the top housing layer 330A, as shown in
To elaborate, each guide channel 402, as shown in
A peripheral plug connector comprising a housing only in the bottom housing layer 330B and stopper layer 330C, however, would generally only contact each guide channel 402 on two surfaces (a layer of the height-inner surface 424, and bottom-width-inner surface 422 as shown in
In one embodiment, in a non-obvious fashion, the inventor has also provided a mechanism to sufficiently maintain the amount of force required to mate and un-mate the slim connector with a receptacle by extending both the width and the length of extended stopper 612. This modification is specifically not disclosed in the EXPRESSCARD™ specification, nor is there any motivation for it, since an EXPRESSCARD™ peripheral plug connector, as disclosed in the prior art, would not require an extended stopper 612 for proper structural support and sufficient mating and un-mating force.
As seen in
In addition, the enlarged volume area (e.g., width 634×length 632×height 621) of stopper 612 may provide a foundation for better alignment and more rigid and firmer contact with receptacle host connector 400, allowing alignment between lateral guides 602 and guide channels 402, as shown in
Furthermore, the horizontal bottom surface of the plug has an enlarged area (i.e., surface area=width 634×length 632 in the x-z plane of stopper 612) may also be supported by the PCB of the motherboard of the host, on which the EXPRESSCARD™ host receptacle connector is mounted. That is, the plug may be made sufficiently thick such that the enlarged horizontal bottom surface contact the PCB of the mother board when the plug is inserted into the receptacle host connector, thereby sandwiching the plug in between the socket-side metal contacts of the receptacle host connector and the PCB of the motherboard. Note that since this bottom horizontal surface is substantially longer (and wider) than the stopper of the prior art EXPRESSCARD™ plug, additional rigidity is provided. The additional alignment provides added rigidity between the contacts and compensates the reduced contact due to reduced height.
In addition, the extended surface area created by the extended width 636 of extended stopper 612 (see
Referring now to
In another embodiment, set of metal contacts 610 may be bent downward toward the bottom horizontal surface 608, which is in opposite to the upward bending as described in
In another embodiment, the set of metal contacts 610 are substantially straight (e.g., unbent, etc.) allowing chips and components to fit on two sides of the substrate board. Subsequently, the substrate may fit inside a thinner PC card assembly than normally allowed using the EXPRESSCARD™ peripheral plug connector of the prior, as shown in FIGS. 3.A–E.
Referring now to
Referring now to
Referring now to
It should be noted that although the current invention describes a slim connector for use with a peripheral device, it may also be used with a host device. Also, technologies and specifications other than EXPRESSCARD™ may be used.
Advantages of the invention include greater flexibility for small and non-traditional form-factor electronic devices. Additional advantages include minimizing manufacturing costs and increasing manufacturing throughput.
Having disclosed exemplary embodiments and the best mode, modifications and variations may be made to the disclosed embodiments while remaining within the subject and spirit of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5330360 | Marsh et al. | Jul 1994 | A |
5339222 | Simmons et al. | Aug 1994 | A |
5386340 | Kurz | Jan 1995 | A |
5420412 | Kowalski | May 1995 | A |
5450396 | Havermans | Sep 1995 | A |
5476387 | Ramey et al. | Dec 1995 | A |
5725395 | Lee et al. | Mar 1998 | A |
5941733 | Lai et al. | Aug 1999 | A |
6027375 | Wu et al. | Feb 2000 | A |
6091605 | Ramey et al. | Jul 2000 | A |
6165016 | Lai | Dec 2000 | A |
6314479 | Frederick et al. | Nov 2001 | B1 |
6334793 | Amoni et al. | Jan 2002 | B1 |
6354883 | Jaing | Mar 2002 | B1 |
6385677 | Yao | May 2002 | B1 |
6439464 | Fruhauf et al. | Aug 2002 | B1 |
6453371 | Hampson et al. | Sep 2002 | B1 |
6533612 | Lee et al. | Mar 2003 | B1 |
6561421 | Yu | May 2003 | B1 |
6567273 | Liu et al. | May 2003 | B1 |
6578768 | Binder et al. | Jun 2003 | B1 |
6581122 | Sarat | Jun 2003 | B1 |
6599152 | Oliphant et al. | Jul 2003 | B1 |
6602088 | Zhu | Aug 2003 | B1 |
6628498 | Whitney et al. | Sep 2003 | B1 |
6658516 | Yao | Dec 2003 | B1 |
6692268 | Kung et al. | Feb 2004 | B1 |
6692312 | Semmeling et al. | Feb 2004 | B1 |
6705902 | Yi et al. | Mar 2004 | B1 |
6712646 | Shindo | Mar 2004 | B1 |
6719570 | Tsuchioka | Apr 2004 | B1 |
6745267 | Chen et al. | Jun 2004 | B1 |
6752321 | Leaming | Jun 2004 | B1 |
6763408 | Sonoda | Jul 2004 | B1 |
6778401 | Yu et al. | Aug 2004 | B1 |
6783076 | Kondo et al. | Aug 2004 | B1 |
6801971 | Devine et al. | Oct 2004 | B1 |
6813662 | Park | Nov 2004 | B1 |
6854984 | Lee et al. | Feb 2005 | B1 |
6857897 | Conn | Feb 2005 | B1 |
6860609 | Olson et al. | Mar 2005 | B1 |
6871244 | Cahill et al. | Mar 2005 | B1 |
6874044 | Chou et al. | Mar 2005 | B1 |
6890207 | Kobayashi | May 2005 | B1 |
6914189 | Ling et al. | Jul 2005 | B1 |
20030094490 | Lee | May 2003 | A1 |
20030100203 | Yen | May 2003 | A1 |
20030104835 | Douhet | Jun 2003 | A1 |
20030145141 | Chen et al. | Jul 2003 | A1 |
20040087213 | Kao | May 2004 | A1 |
20050059301 | Chou et al. | Mar 2005 | A1 |