It is common practice to use sampling probes and the like to extract fluid samples from pressurized pipelines or the like for analysis in the field or for off-site, laboratory analysis. This especially true in the natural gas industry, where the monetary value of the gas is dependent on its compositional analysis. Likewise, the chemical and oil refining industries also have needs for extracting fluid samples from pressurized fluid sources.
Recent offshore pipeline safety concerns since the 2010 Deepwater Horizon offshore incident have renewed an emphasis on the need for isolation devices such as double block and bleed sample valves, as well as compliance with OSHA standards in such activities. The use of an emergency valve shutoff in an isolation device is not believed compatible with the use of conventional sample probes situated as passing through the isolation device (i.e., with the valve in an open position), as said sample probes would be required to be manually or automatically removed to allow for valve closure. Accordingly, since the removal cannot be assured to occur in a timely fashion in an emergency, such an arrangement could not be relied as it may prevent the valve closure in an emergency event, resulting in failure of the emergency shutoff.
Current isolation device technology such as double block and bleed valves use a hollow tube “quill” below the valve as an option for sampling or injection through the open valve, but this system has not shown, suggested, or contemplated the mounting of analytical sample conditioning components or the like therein, and retaining same with the valve in a closed position. Thus, in the prior art, the quill is simply a hollow tube formed to act as a pass-through to facilitate the removal or injection of a sample, and no receiver or retainer function is contemplated.
In an improvement over the prior art, as embodied in the present invention, a quill is formed to receive a component(s) such as a conditioning component or the like, in the vicinity of (upstream) the isolation device, so that the isolation device (valve) may be closed in an emergency with no interference from said conditioning component(s).
In effect, the present invention provides a redesign of the quill for the novel use as a means to receive and retain the component, a probe which is on the pressurized process gas side of the isolation device, and a probe which may be isolated on demand and without delay, should the need arise.
The component(s) utilized in the present device may comprise, for example, sample conditioning components such as membrane separators (e.g., phase separation membrane) regulators and regulator components, isokinetic sampling components, coalescing filters, particulate filters (screens, sintered metal, sintered plastics, thermoplastics, borosilicate glass, etc.), inertial separators, valves (i.e., throttling, needle, metering, ball, switching, etc) and others, and could be provided in a single component housing, or stacked for serial flow therethrough (see for example,
The term “conditioning component” is not intended to be limiting as similar components may likewise be used in the present invention, including sensors and monitoring components such as corrosion coupons, wireless monitoring devices such as thermometers, wireless monitoring devices, moisture sensors, gas sensors (e.g. H2S and others), etc.
For a further understanding of the nature and object of the present invention, reference should be had to the following detailed description, taken in conjunction with the accompanying drawings, in which like parts are given like reference numbers or letters, and wherein:
Referring to
Socket 15 (shown in an exemplary hexagonal configuration shown in
As mentioned, component 11 may comprise a single component which may be single function or multifunction, or alternatively may comprise one or more modular components 11′ “stacked” (either within a common cartridge or one or more stacked cartridges in the receiver) in series in fluid sealed fashion so as to allow the contained flow of fluid therethrough so as to condition same, or have other features such as monitoring, sampling, or the like (
Thus, the present installation allows a flow-through, when desired, of fluid flowing from the process gas stream 47 associated with the main. Accordingly, if component 11 comprises a conditioning component, with the valve 1 in an open position, fluid from the main flows 25 from the main 47, through any intermediary lateral, through the quill 17, into the cartridge 16, and through conditioning component(s) 11 situated therein, conditioning same so as to provide conditioned gas, for selective flow through valve 1 or vent 27 (
This “flow through” feature may also be useful in a monitoring capacity, such as a corrosion coupon or the like. If no flow-through is desired, the downstream valve need only be closed, or alternatively, the cartridge 16 may not have a passage through the first 2 end, or the component may only have an opening at the end associated with the second end 2′ of cartridge.
Alternatively, if the component is for sampling such as fluid collection, or monitoring such as pressure, temperature, liquids, etc, flow-through as a feature may or may not be utilized.
Further, if a monitoring component is utilized in lieu or in conjunction with a conditioning component, the fluid is being monitored upstream the valve, it thus may provide a monitoring of the gas on the process stream 47 side of the isolation device, even where said device is closed.
As shown, the system of the present invention is formed so as to allow a tool to be inserted thru the open valve or other passage to allow access to the quill for insertion/removal of the cartridge 16, as well as offering the ability to inspect, maintain, replace, install the cartridge with component therein below/upstream the valve, even while the pipeline is still pressurized.
Referring to
Situated within said longitudinal passage 33 of said threaded rod 31 is a control rod 52 having first 53 and second 53′ ends and a length which is longitudinally adjustable relative to rod 31, as will be more fully discussed herein.
Said second end 32′ of said threaded rod 31 has formed at its longitudinal passage 33 a cavity 55 formed to slidingly receive and support a drive 34 (for example, a square or hexagonal profile, see
Continuing with the drawings, body 37 is provided having first 38 and second 38′ ends, said body having a threaded longitudinal passage 39 formed therethrough to threadingly engage said threaded rod 31, said first 38 end of said body having a sealing nut 51 associated therewith for selectively providing sealing force on the packing gland 54, therewith making a seal on threaded rod 31, said second end of said body further comprising a profile 48 (for example, square profile with corner fillets) so that a wrench or the like may engage same, and a threaded end 40, formed to engage a threaded socket in an opening 41 associated with a threaded opening of a valve 1 (
Referring to the figures, for an exemplary use of the insertion/retrieval system of the present invention with a double block and bleed (DBB) valve 1′, a quill 17 having a receiver 9 formed therein must be first mounted upstream the DBB. Generally, this installation will include an initial component, for example, a sample conditioning component 11 in a cartridge 16, threadingly seated in the receiver 9. Once the quill 17 installation is complete, the system can be serviced and maintained without the need for pressure shutdown, as will be shown, below.
Referring to
Threaded end 40 of body then is positioned to engage threaded socket opening 41 (
After confirming the vent 27 on the DBB valve 1′ is closed, 42, 42′ can now be opened and the pressure contained as the threaded end 40 of body engaging threaded socket opening 41′ of the DBB valve forms a plug. With the insertion/retrieval tool 30 in place and the valves opened, there is now provided a clear passageway to the quill 17 and any component therein.
To lower 44′ the second end 32′ of threaded rod to facilitate engagement to cartridge 16 already in the quill 17, the hex adapter 36 is turned 43, so as to lower the threaded rod 31 into the valve, through the valve passage and open valves 42, 42′, until the second end 32′ of the threaded rod with drive 34 is in the vicinity of the cartridge.
To cause drive 34 to emerge 44′ from the second end 32′ of threaded rod so as to engage socket 15 of cartridge 16, hex nut 46 is turned, urging 44 control rod 52 toward the DBB valve 1, causing drive 34 to extend 44′ from the tool, through the open valve, until it extends into the locked position so as to engage socket 15 of cartridge 16, and biased ball 35 of drive 34 engages an indent formed in the sidewall of socket 15, to releasably engage same. Knob 49 may be provided so as to allow an operator to manually position drive 34 axially by turning control rod 52 (
Once drive 34 has engaged socket, hex adapter 36 is rotated 43′ in reverse direction, raising the rod while rotating drive 34 engaging socket 15, rotating cartridge 16, thereby disengaging threaded end 8 of cartridge from threaded portion 13 of quill receiver, urging cartridge 16 through quill then through the open valve(s) or isolation device, to the second end 32′ of tool 30.
Once the cartridge 16 is drawn into to the second end 32′ of body 37 of the tool 30, the cartridge and threaded rod should be clear the outer valve opening 41 (41′ of the DBB valve/isolation device), said outer valve 42′ is then closed and any residual gas between the closed outer valve 42 and the second end 38′ of tool 30 is vented via the vent 27. At that point, the profile 48 on the body 37 can be turned 43′ to disengage the threaded engagement between the threaded end 40 of body 37 and threaded socket at the opening 41′ on the DBB valve/isolation device (or opening 41 in a regular valve as in
While the above example illustrated removal of a cartridge in the quill, the same procedure may be used to insert and install the cartridge into the quill, utilizing a similar variation of the above procedure, but with some of the steps in reverse.
Referring to
Alternatively, a quill 2 may be provided to removeably engage the component, for example, via threaded connection, but not necessarily accessible from outside the installation. For example, the component might threadingly engaging the end 3′ of the quill distal the end 3 of the quill 2, which is threaded to threadingly engage a threaded OD in flange 4 (
The invention embodiments herein described are done so in detail for exemplary purposes only, and may be subject to many different variations in design, structure, application and operation methodology. Thus, the detailed disclosures therein should be interpreted in an illustrative, exemplary manner, and not in a limited sense.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/716,656 filed Oct. 22, 2012, entitled “Apparatus for Analytical Sampling and/or Conditioning of a Process Gas with Selective Isolation Capability, and method Therefore”, listing Valmond Joseph St Amant, III and Steven Douglas Calverley as inventors.
Number | Name | Date | Kind |
---|---|---|---|
2736201 | Ohlsen et al. | Feb 1956 | A |
3084554 | Perilloux | Apr 1963 | A |
3184973 | Bradley | May 1965 | A |
3282113 | Sachnik | Nov 1966 | A |
3439897 | Priese | Apr 1969 | A |
3726143 | Enarsson | Apr 1973 | A |
4147062 | Jaeger | Apr 1979 | A |
4262533 | Jaeger | Apr 1981 | A |
4262534 | Morrison | Apr 1981 | A |
4307620 | Jiskoot | Dec 1981 | A |
4475410 | Jaeger | Oct 1984 | A |
4580452 | Masson | Apr 1986 | A |
4744255 | Jaeger | May 1988 | A |
4887472 | Jansen | Dec 1989 | A |
4957706 | Romette | Sep 1990 | A |
5085086 | Johnson | Feb 1992 | A |
5129267 | Nicholls | Jul 1992 | A |
5301560 | Anderson | Apr 1994 | A |
5587539 | Carpenter | Dec 1996 | A |
5629471 | King | May 1997 | A |
5948998 | Witte | Sep 1999 | A |
6289752 | Nimberger | Sep 2001 | B1 |
8701509 | Anders | Apr 2014 | B2 |
8726747 | Kennett | May 2014 | B2 |
9151700 | Gransæther | Oct 2015 | B2 |
9194502 | Decker | Nov 2015 | B2 |
20070272038 | Schadt | Nov 2007 | A1 |
20090013805 | Zollinger | Jan 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
61716656 | Oct 2012 | US |