This U.S. utility patent application claims priority to German patent application serial no. 10 2004 043 211.2 filed Sep. 3, 2004.
The embodiments of the present invention pertains to a wireless data interface (telemetry data interface), and more specifically, to a cellular radio interface that is adapted to perform a data exchange by way of a wireless data network, and which further controls establishment and implementation of the data exchange on the basis of items of information stored on a user identity module.
Wireless data devices are known in principle and are used in medical monitoring for high-risk patients or remote maintenance and diagnosis of technical equipment. Such equipment may, communicate technical or medical data to a data acquisition and evaluation center by way of a cellular radio or wireless data network, and may possibly receive instructions from the same.
In that respect, portable devices are often utilized for the home monitoring of high-risk patients, such devices having a second telemetry interface for communication with an electromedical implant. Modern electromedical implants, in particular cardiac pacemakers, defibrillators and the like afford physician and patients a very high degree of security and comfort by virtue of those home-monitoring functions.
In that respect the implant processes diagnosis and therapy information and transmits items of information to an external patient device by way of a telemetry interface. From there the data are passed to what is referred to as a home monitoring service center (HMSC) where they are stored and displayed for the physician. In that way the physician can be informed directly about therapy progress and the current state of health of his patients and enjoys the possibility of reacting quickly to possible changes in health.
Without home monitoring the physician can obtain those items of information only in the context of an examination of the patient. In critical situations, that would result in unwanted delays in the flow of information. In addition any examination involves a considerable amount of time, both for the physician and the patient. Frequent examination has an adverse effect on the mobility and quality of life of the patient.
In home monitoring, the implant information is sent via the patient device (see U.S. Pat. Nos. 6,553,262 and 5,752,976) in the background without the patient being limited in terms of leading a normal life. In other words, the patient enjoys the security of physician monitoring without the stress of frequent examinations.
In the case of the technical device, continuous monitoring means that it is possible to recognize particular operating conditions so that further operation of the device can be guaranteed.
As the freedom of movement of a patient is not to be unnecessarily restricted, data transmission is preferably effected by way of one of the extensively available cellular radio networks, in particular the GSM, UMTS or a CDMA network. Data transmission by way of a WLAN network can also be envisaged. The advantage of ease of connection by way of one of those wireless communication networks is rather in the foreground, but it is also possible to imagine movable items of equipment in respect of which the aspect of unrestricted mobility is also to be considered. Thus a similar device could be used in vehicles involved in goods delivery or personal transport in order, for example, to communicate to a control center various data including location, loading and technical data such as the tank filling level or the temperature of the load space. In that case the vehicle and the device are usually combined to form one unit.
The development of a device of the described kind together with the cellular radio interface may be very complicated and expensive. In practice, therefore it may be made up in part from prefabricated modules, which afford given functions. That applies in particular to the cellular radio interface, which is normally embodied by a cellular telephone incorporated into the device or a prefabricated cellular radio module with full functional extent.
In order to authenticate the access authorization to a wireless communication network devices equipped with a cellular radio interface are provided with a user identity module which uniquely identifies the device or its operator on the basis of items of information stored on the user identity module. When logging on to a wireless communication network the device communicates those items of information to that network which then checks the access authorization of the device by a comparison with a centrally stored copy. Identification is inter alia therefore a necessary prerequisite for use of a mobile service as it is only thereby that the connection costs incurred can be billed. Therefore it is also always involved in so-called ‘roaming’, that is to say the use of network resources and services of cellular radio network operators in other region or countries. In the case of a device which is designed to communicate by way of a GSM network the user identity module is in the form of what is referred to as a SIM card, the copy of the access authorization is stored in what is referred to as the ‘home location register’ (HLR).
If an access authorization to the wireless communication network in question cannot be established, the wireless communication network communicates to the device, which is seeking to log on a request to refrain from further log-on attempts in relation to the same network in order to husband the resources thereof. As a standard procedure, cellular telephones and cellular radio modules take account of that information about a rejection and refrain from further log-on attempts in relation to the communication network in question. A further log-on attempt can be triggered only by operating the keypad of the cellular telephone or the cellular radio module. If there is no keypad or if it is inaccessible a further log-on procedure cannot be initiated at all.
A log-on attempt in relation to a communication network is also rejected thereby when checking of the access authorization is not possible. That occurs, for example, when a connection could not be made to the HLR, due to a fault. Such accesses can be the subject of interference particularly when roaming because of the more complicated access to the HLR.
Under some circumstances, a device may be rejected by all receivable networks and of its own accord ceases all further attempts to form a connection by way of a wireless communication network. It can then only be moved to make further log-on attempts by virtue of external intervention. As however either the user of the device is not to be bothered due to a complicated user interface or however there is no one at all present on the spot, operation of a device of the described kind in accordance with the state of the art can no longer be guaranteed.
Therefore, it would be advantageous to provide a device and a method of operating such a device, which even after rejection by all receivable wireless communication networks, permits a communication of the device with the home monitoring service center if the cause of the rejection is no longer there.
According to one aspect of an embodiment of the subject invention, a second control unit is adapted to render inoperative, or to limit in respect of the duration of its effect, a rejection of the user identity module expressed by the locally available cellular radio or wireless data networks in logging on to the cellular radio or wireless data network by suitable control of the first control unit in the further course of the log-on process by bypassing or erasing communicated information about the rejection.
Another aspect of an embodiment of the subject invention is attained by a method which renders inoperative, or limits in respect of the duration of its effect, a rejection of the user identity module expressed by the locally available cellular radio or wireless data networks when logging on to the cellular radio or wireless data network by bypassing or erasing communicated messages about the rejection.
In yet another aspect of an embodiment of the subject invention, the device it is portable.
Still another aspect of an embodiment of the subject invention includes a device that has a second telemetry data interface by way of which it can communicate with an electromedical implant, for example a cardiac pacemaker, and permits home monitoring of a patient by evaluation and/or forwarding of the technical and medical data received from the electromedical implant, by way of the first telemetry data interface to an HMSC.
In another embodiment, the communication connection is effected by way of the cellular radio interface and/or by way of a GSM, a UMTS, a CDMA or a WLAN network. In that case, the device can have any choice of interfaces with networks of the specified kinds. This may facilitate adaptation of the device to the actual conditions of the respective market and enhances the probability of a network connection in the corresponding environment.
At least one of the control units of the device may be adapted to recognize unsuccessful log-on because of rejection by all cellular radio or wireless data networks available on the spot. Thereupon, the particular steps of the method of an embodiment of the subject invention can be initiated.
In a further embodiment, the configuration of the first control unit may be adapted to produce a list of the locally receivable cellular radio or wireless data networks and make it available to the second control unit. In a particular variant of this embodiment, the second control unit may be adapted, after a failed log-on, to select another network from the list and to cause the first control unit to make a log-on attempt in relation to that network even if that network had already rejected a log-on in a preceding attempt. The second control unit may be adapted to cause a fresh list to be produced by the first control unit after unsuccessful log-on attempts in relation to all networks of the list.
In yet another embodiment, the second control unit may include a timer or may be connected to a timer. The control unit is designed in such a way that, after a failed log-on, it allows the elapse of a predetermined period of time measured by the timer, before it initiates a further log-on attempt in relation to the same network. That husbands both the resources of the network operators and also the battery life of the device.
In still another embodiment, the control units may be adapted to output and/or execute AT commands. AT commands represent a generally accepted standard, for which reason many prefabricated components and modules operate therewith; the use thereof therefore simplifies the structure of the overall system.
In even another embodiment, the second control unit may include a timer or is connected to a timer. It is so designed that it defers repeated log-on attempts that are unsuccessful in relation to all available cellular radio or wireless data networks for a given time, which is measured by the timer. Once again that measure husbands both the resources of the network operators and also those of the device.
The second control unit may advantageously be designed to predetermine and alter operating parameters such as, for example, the pause between two log-on attempts, the maximum number of log-on attempts and the maximum time which is used for a log-on attempt before it is broken off as being unsuccessful. The operating parameters to be adapted can be determined automatically in accordance with an algorithm as in a pseudo-random process or another process. In a particular variant of this embodiment, the second control unit is directly or indirectly connected to the cellular radio interface and so designed that the choice of the parameters can be affected and triggered from the HMSC by way of the cellular radio interface. In that way, in operation, it is still possible to effect optimizations in respect of the operating parameters, which for example allow a longer battery life or adapt the device to particular prevailing conditions of a country where it is located. A method involves firstly detecting an unsuccessful log-on by virtue of rejection by all cellular radio or wireless data networks available on the spot.
In another embodiment of the methods referred to, a list of the locally receivable cellular radio or wireless data networks is produced and a sequence of the individual entries in the list is established. In a particularly variant of that method, the sequence of the list of the locally receivable cellular radio or wireless data networks is determined in accordance with the respective reception strength so that networks of a higher reception strength are preferred. That measure increases the probability of error-free data transmission if firstly a log-on attempt is affected in relation to a better receivable network and the log-on is successful.
In another embodiment of the method, after a failed log-on in relation to a network, the network in the list which is next in the sequence thereof is selected and a log-on attempt is implemented in relation to that network, even if that network had already rejected a log-on in a preceding attempt.
After unsuccessful log-ons, in relation to all networks in the list, a new list is produced. That takes account of changes in the availability of networks, which are caused for example by a change in location while the method is being carried out.
In another embodiment of the method, after a predetermined time, a log-on attempt in relation to a network is considered to be failed and it is broken off if no positive return message has been given by the network.
In still another embodiment of the method, after a failed log-on, a predetermined time is allowed to elapse before a further log-on attempt is initiated in relation to the same network. The advantage of that measure lies in husbanding of resources on both sides.
In a further variant of the method, after a predetermined number of failed log-ons, further log-on attempts in relation to the same or other networks are deferred for a predetermined time. In this case also the respective resources are husbanded both on the part of the network operators and the device.
The variants of the method involve establishing whether a log-on attempt in relation to one of the available networks was successful and, in the event of success, the method is then concluded.
The invention will now be described in greater detail by means of embodiments by way of example with reference to the Figures in which:
Number | Date | Country | Kind |
---|---|---|---|
10 2004 043 211.2 | Sep 2004 | DE | national |