Apparatus for antenna optimization and associated methods

Information

  • Patent Grant
  • 11862872
  • Patent Number
    11,862,872
  • Date Filed
    Thursday, September 30, 2021
    2 years ago
  • Date Issued
    Tuesday, January 2, 2024
    4 months ago
Abstract
An apparatus includes a module comprising an antenna having at least one antenna component. The apparatus further includes at least one tuning component coupled to the at least one antenna component. The at least one tuning component is external to the module.
Description
TECHNICAL FIELD

The disclosure relates generally to radio-frequency (RF) wireless apparatus and associated methods. More particularly, the disclosure relates to apparatus for antenna optimization of radio modules and associated methods.


BACKGROUND

With the advent of technologies such as Internet of things (IoT), the number of wireless devices has increased. Radio modules are generally used to speed up time to market and to reduce the certification burden of end products. While the modules provide a benefit of providing plug in pre-certified solution for the end product manufacturers, the benefit typically comes with a penalty of suboptimal performance and trade off in the mechanical design of the end product. This is because with the modules the antenna is not optimal in the end product assembly. The antenna of a module is affected by the installation, and the module installation in the end product may lead to reduced communication range, increased power consumption, and EMC issues.


IoT devices in general are designed for long battery life, and increased power consumption will have a direct impact on the battery lifetime of the end product. Depending on the modulation type, a detuned antenna may also lead the module to become non-compliant in regional certifications, and can lead to technical challenges that are relatively difficult to solve in the end product because the module itself cannot be modified. The module is certified as-is, and it cannot be modified by the end product's manufacturer.


The description in this section and any corresponding figure(s) are included as background information materials. The materials in this section should not be considered as an admission that such materials constitute prior art to the present patent application.


SUMMARY

A variety of apparatus and associated methods are contemplated according to exemplary embodiments. According to one exemplary embodiment, an apparatus includes a module comprising an antenna having at least one antenna component. The apparatus further includes at least one tuning component coupled to the at least one antenna component. The at least one tuning component is external to the module.


According to another exemplary embodiment, an apparatus a module comprising a ground (GND) radiating loop antenna having at least one antenna component. The apparatus further includes at least one tuning component coupled to the at least one antenna component. The at least one tuning component is external to the module. The at least one tuning component is used to tune a center frequency of the antenna.


According to another exemplary embodiment, a method of tuning an antenna, which has at least one antenna component and is included in a module, includes coupling at least one tuning component to the at least one antenna component. The at least one tuning component is external to the module.





BRIEF DESCRIPTION OF THE DRAWINGS

The appended drawings illustrate only exemplary embodiments and therefore should not be considered as limiting the scope of the application or of the claimed subject-matter. Persons of ordinary skill in the art will appreciate that the disclosed concepts lend themselves to other equally effective embodiments. In the drawings, the same numeral designators used in more than one drawing denote the same, similar, or equivalent functionality, components, or blocks.



FIG. 1 shows a circuit arrangement for a conventional RF module.



FIG. 2 shows an apparatus for antenna optimization according to an exemplary embodiment.



FIG. 3 shows a circuit arrangement for antenna optimization according to an exemplary embodiment.



FIG. 4 shows another circuit arrangement for antenna optimization according to an exemplary embodiment.



FIG. 5 shows another circuit arrangement for antenna optimization according to an exemplary embodiment.



FIG. 6 shows another circuit arrangement for antenna optimization according to an exemplary embodiment.



FIG. 7A-7B show tuning components according to exemplary embodiments.



FIG. 8A-8B show tuning components according to exemplary embodiments.



FIG. 9 shows a tuning component according to an exemplary embodiment.



FIG. 10 shows an apparatus including a loop antenna.



FIG. 11 shows another apparatus including a loop antenna.



FIG. 12 shows another apparatus including a loop antenna.



FIG. 13 shows another apparatus including a loop antenna.



FIG. 14 shows another apparatus including a loop antenna.



FIG. 15 shows another apparatus including a loop antenna.



FIG. 16 shows another apparatus including a loop antenna.



FIG. 17 shows another apparatus including a loop antenna.



FIG. 18 shows an apparatus for antenna optimization according to an exemplary embodiment.



FIG. 19 shows another apparatus for antenna optimization according to an exemplary embodiment.



FIG. 20 shows another apparatus for antenna optimization according to an exemplary embodiment.



FIG. 21 shows another apparatus for antenna optimization according to an exemplary embodiment.





DETAILED DESCRIPTION

The disclosed concepts relate generally to surface mountable wireless apparatus including antennas. More specifically, the disclosed concepts provide apparatus and methods for antenna optimization, and associated methods. The terms optimization, tuning, and fine-tuning are used interchangeably in this document to refer to optimizing antenna performance and/or characteristics for a given application or end-use.



FIG. 1 shows a circuit arrangement for a conventional RF module 5. The RF module 5 includes the RF circuit 6, the matching circuit 7, and the antenna 8. The matching circuit 7 matches the impedance of the RF circuit 6 to the impedance of the antenna 8. The operation of the circuit is well understood and well known to persons of ordinary skill in the art.


The antenna 8 in the module 5 uses a ground plane as part of resonator and as the radiator. Virtually all antennas are more or less sensitive to size and shape of the ground plane and to capacitive loading, such as from the module's plastic enclosure, printed-circuit board (PCB) conformal coating, or protective potting compound. In normal case (when not using a module) the antenna is tuned particularly for the end product and this Is not a problem.


However, when the module 5 is used, the matching circuit 7 and the antenna 8 are embedded (or included or encapsulated) into the module 5, and the module integrator does not have any access to the components to change the characteristics of, and optimize, the antenna 8.


Because the various circuits and components are embedded into the module 5, a user or integrator of the module 5 cannot tune the various characteristics of the circuitry/devices with in the module 5 because of the lack of physical access mentioned above. Thus, when using the module 5 with the integral antenna 8, there is a trade-off between the convenience of an inclusive module (which includes the RF circuit, the matching circuit, and the antenna) with the performance of the circuit, in particular, the antenna.


In exemplary embodiments, antennas may be tuned, fine-tuned or optimized by using one or more components external to a surface mountable module that includes the antenna. In the exemplary embodiments, the antenna constitutes an embedded (into a module) LC loop antenna. By using one or more tuning components (which are external to the module that includes the antenna), the center frequency of the antenna can be adjusted higher or lower, and thus compensate, correct, or minimize the effects of the end-product installation (including the module) or mechanical design (including the module) on the antenna's performance.


In exemplary embodiments, the module may be an RF module, as desired. Generally, the module may be an enclosure that does not allow access (or does not allow easy access, say, without opening, disassembling, or removing part of the module) to the antenna components in order to tune the antenna.


In exemplary embodiments, ground (GND) radiating loop antennas embedded in a module, which are difficult or impractical or impossible to optimize or tune as noted above, may be tuned by using one or more external tuning components. Generally, the external tuning component(s) is/are coupled in parallel with an antenna component, such as radiator loop component (e.g., a capacitor) or a feeding loop component (e.g., a capacitor).


By virtue of using external tuning component(s), in exemplary embodiments the antenna may be tuned without access to the internal (to the module) antenna structures. In other words, without opening, disassembling, removing part of, or otherwise gaining physical access to the circuitry within the module, the antenna may be tuned by using one or more external tuning components.


In order to couple the external tuning component(s) to the internal (to the module) antenna component(s), one or more pads (not shown in the figure) of the module may be used. More specifically, the module typically has a set of pads (usually beneath or at the perimeter of the module's physical enclosure). The pads may be used to provide a coupling to one or more internal antenna components.


The pads may further be coupled to one or more external tuning components. The internal antenna component(s) is/are therefore coupled to the external tuning component(s). As a result, the antenna may be tuned or optimized without physical access to, or modifying or changing, the antenna components.


The number, type, and values of the tuning components depend on factors such as antenna design and specifications (e.g., how may antenna components are used, and their types and values), available materials and components, cost, desired performance, implementation, end-use or target product or market, etc., as persons of ordinary skill in the art will understand. The type and/or values of the tuning components may be determined by using simulation, trial and error, etc., as persons of ordinary skill in the art will understand.



FIG. 2 shows an apparatus 200 for antenna tuning according to an exemplary embodiment. The apparatus 100 includes a substrate 105. The substrate 105 may have a variety of forms (e.g., multi-layered) and may be constructed of a variety of materials (e.g., PCB base, FR4, etc.), as persons of ordinary skill in the art will understand. Generally speaking, the substrate 105 has a non-conducting base (e.g., FR4), with one or more conductive layers formed on and/or below the non-conducting base.


A surface mountable module 110 is affixed or mounted or physically attached to the substrate 105. The module 110 may be an RF module. In that case, the module 110 may include RF circuitry (receiver, transmitter, or transceiver), impedance matching circuitry, etc., as persons of ordinary skill in the art will understand.


As noted above, the module 110 has a set of pads that are used to electrically couple the module 110 to other circuitry. In some embodiments, the pads may be used to physically attach the module 110 to the substrate 105 (e.g., by using the pads to solder the module 110 to the substrate 105).


The substrate 105 has one or more conductive layers (e.g., copper). Traces may be formed in the conductive layer(s) to couple various circuits or blocks together. For example, traces may be used to couple the module 110 to other circuitry (not shown) coupled to the substrate 105 via traces.


The module 110 includes an antenna. The antenna constitutes a ground radiating loop antenna, as noted above. The antenna is formed by using a loop and one or more antenna components 150. The loop is coupled to the antenna component(s) 150. In the example shown in the figure, two antenna components 150 are used.


The loop is formed by removing (e.g., etching part of a copper layer of the substrate 105) part of a conductive layer of the substrate 105. The removed part leaves a void (or clearance area) 120.


In other words, the void 120 lacks any conductive material (because part of a conductive layer was removed to form the void 120) and does not conduct current. As a result, a loop is formed around the void 120. The loop is used together with the antenna component(s) to form a ground radiating loop antenna, as persons of ordinary skill in the art will understand.


In the example shown in the figure, two tuning components 160 are used. The tuning components 160 are coupled to the two respective antenna components. The tuning components 160 are used to tune the antenna, as noted above. More specifically, the tuning component(s) are used to change the center frequency of the antenna, by either increasing or decreasing its value, in order to tune the antenna for a particular implementation, end-use, product, etc.


In the example shown in the figure, the antenna uses two antenna components 150. As persons of ordinary skill in the art will understand, however, different numbers of antenna components 150 may be used, depending on factors such as antenna design and specifications, available materials and components, cost, desired performance, implementation, end-use or target product or market, etc.


Furthermore, in the exemplary embodiment shown, two antenna tuning components 160 are used. As persons of ordinary skill in the art will understand, however, different numbers of tuning components 160 may be used, depending on factors such as antenna design and specifications, available materials and components, cost, desired performance, implementation, end-use or target product or market, etc. As described below in detail, the tuning components may use a variety of electrical components.


In exemplary embodiments, the antenna components 150 may constitute one or more capacitors, one or more inductors, and/or one or more chip antennas (including a mix of one or more capacitors, one or more inductors, and one or more chip antennas), as persons of ordinary skill in the art will understand. The number, type, values, and configuration or topology of capacitor(s), inductors, and/or chip antenna(s) depends on factors such as antenna design and specifications, available materials and components, cost, desired performance, implementation, end-use or target product or market, etc., as persons of ordinary skill in the art will understand.


Furthermore, in exemplary embodiments, the tuning components 160 may constitute one or more capacitors and/or one or more inductors (including a mix of one of or more capacitors with one or more inductors). The number, type, values, and configuration or topology of capacitor(s) and/or inductor(s) depends on factors such as antenna design and specifications, available materials and components, cost, desired performance, implementation, end-use or target product or market, etc., as persons of ordinary skill in the art will understand.



FIG. 3 shows a circuit arrangement for antenna optimization according to an exemplary embodiment. More specifically, the circuit arrangement shows an antenna that is “symmetrical” or has two branches. In other words, the RF feed is provided to two antenna halves, on the right-side branch and on the left-side branch, respectively, each of which includes one or more antenna components 150. Each branch also has a tuning component 160 coupled in parallel with one or more of the antenna components 150.


Note that the exemplary embodiment in FIG. 3 shows one side or end or terminal of the tuning components 160 coupled to ground. Depending on the number of antenna components 150 on each branch of the antenna, the tuning components 160 may alternatively be coupled to one or more antenna components 150 that do not have one end or side or terminal coupled to ground (e.g., in parallel with a middle capacitor in a cascade of three series-coupled capacitors, i.e., the antenna components 150 including three series-coupled capacitors).



FIG. 4 shows a circuit arrangement for antenna optimization according to an exemplary embodiment. More specifically, the circuit arrangement shows an antenna that is “asymmetrical” or has one branch. In other words, the RF feed is provided to one or more antenna components 150 without a mirror or symmetrical branch (as opposed to the “symmetrical case in FIG. 3). Referring again to FIG. 4, the circuit arrangement includes a tuning component 160 coupled in parallel with one or more of the antenna components 150.


Note that the exemplary embodiment in FIG. 4 shows one side or end or terminal of the tuning components 160 coupled to ground. Depending on the number of antenna components 150, the tuning components 160 may alternatively be coupled to one or more antenna components 150 that do not have one end or side or terminal coupled to ground (e.g., in parallel with a middle capacitor in a cascade of three series-coupled capacitors, i.e., the antenna components 150 including three series-coupled capacitors).



FIG. 5 shows a circuit arrangement for antenna optimization according to an exemplary embodiment. The circuit arrangement is a more specific or specialized case of the embodiment shown in FIG. 3. More specifically, the antenna components 150 on each side or in each branch include three capacitors coupled in cascade or series.


The tuning components 160 includes a single capacitor in this example, which is coupled to the middle capacitor of the antenna components 150 using pads 170 of the module 110 (in other words, pads 170 were included at the time of manufacture and/or assembly of the module 110 to facilitate later addition of the tuning components 160).



FIG. 6 shows a circuit arrangement for antenna optimization according to an exemplary embodiment. The circuit arrangement is a more specific or specialized case of the embodiment shown in FIG. 4. More specifically, the antenna components 150 on the single antenna branch include three capacitors coupled in cascade or series.


The tuning components 160 includes a single capacitor in this example, which is coupled to the middle capacitor of the antenna components 150 using pads 170 of the module 110 (in other words, pads 170 were included at the time of manufacture and/or assembly of the module 110 to facilitate later addition of the tuning components 160).


Note that the embodiments shown in FIGS. 3-6 constitute merely exemplary embodiments. As noted and as persons of ordinary skill in the art understand, a variety of structures may be used for ground radiating loop antennas. For example, “symmetrical” or “asymmetrical” configurations may be used, or the topology or configuration or the number of loops used may vary from design to design, as persons of ordinary skill in the art will understand.


Regardless of the specific antenna structure used, external (to the module 110) one or more tuning components may be used to tune the antenna, as desired. Depending on the number of tuning components used, appropriate or corresponding number of pads 170 of the module 110 may be used to couple the tuning components 160 to the antenna components 150 in order to tune the antenna after the manufacture or assembly of the module 110.


As noted above, in exemplary embodiments, the tuning components 160 may constitute one or more capacitors and/or one or more inductors (including a mix of one of or more capacitors with one or more inductors). FIGS. 7-9 show some examples.


More specifically, FIG. 7A shows a tuning component 160 that includes a single capacitor C. Conversely, FIG. 7B shows a tuning component 160 that includes more than one capacitor, as indicated by the cascade coupling of a number of capacitors C (which may or may not have the same values, depending on the application). Note that taps may be used to access one or more of the internal nodes of the tuning component 160 and couple such node(s) to antenna structures 150, as desired.



FIG. 8A shows a tuning component 160 that includes a single inductor L. Conversely, FIG. 8B shows a tuning component 160 that includes more than one inductor, as indicated by the cascade coupling of a number of inductors L (which may or may not have the same values, depending on the application). Note that taps may be used to access one or more of the internal nodes of the tuning component 160 and couple such node(s) to antenna structures 150, as desired.



FIG. 9 shows a tuning component 160 that includes both inductors and capacitors. In the example shown more than one inductor and more than capacitor are used. Generally, in exemplary embodiments, one or more inductors and one or more capacitors may be used, as desired.


Referring again to FIG. 9, the tuning component 160 includes two inductors and four capacitors, all coupled in cascade. Note that the order of the components in the cascade as well as the type of components may be changed from the exemplary embodiment shown. The components (inductors and capacitors) may or may not have the same values, as desired.


In the example shown in FIG. 9, three capacitors are used in series fashion. Using a cascade of capacitors allows using larger-value capacitors, which would decrease the sensitivity of the overall capacitor cascade to tolerances of individual capacitors. Note that taps may be used to access one or more of the internal nodes of the tuning component 160 and couple such node(s) to antenna structures 150, as desired.


As noted above, the tuning components 160 may be used to tune a variety of configurations of ground radiating loop antennas. FIGS. 10-17 show examples of such antennas. Note that a variety of the number of antenna components 150 and the number and shape/configuration of loop(s) may be used in the antennas, as the examples in FIGS. 10-17 illustrate.


Regardless of the exact configuration of the ground radiating loop antennas, tuning components 160 may be used to tune such antennas. FIGS. 18-21 provide examples. More specifically, FIGS. 18-21 show tuning component(s) 160 added to the antennas shown in FIGS. 10-13, respectively, to tune them.


Referring to FIG. 18, the antenna has a single antenna component 150. Using traces 200 of the substrate 105 and the pads 170 of the module 170, a tuning component 160 is coupled to the antenna component 150 in order to tune the antenna.


Referring to FIG. 19, the antenna has three antenna component 150. Using traces 200 of the substrate 105 and the pads 170 of the module 170, two tuning components 160 are coupled to the top-most antenna components 150 in order to tune the antenna.


Similarly, referring to FIG. 20, the antenna has three antenna component 150. Using traces 200 of the substrate 105 and the pads 170 of the module 170, two tuning components 160 are coupled to the top-most antenna components 150 in order to tune the antenna.


Referring to FIG. 21, the antenna has four antenna component 150. Using traces 200 of the substrate 105 and the pads 170 of the module 170, two tuning components 160 are coupled to the top-most antenna components 150 in order to tune the antenna.


Note that the examples shown in FIGS. 10-21 are merely illustrative. Different antenna structures, which may have different numbers of antenna components 150, and different numbers/configurations of tuning components 160 may be used in other embodiments, as desired, and as persons of ordinary skill in the art will understand.


Referring to the figures, persons of ordinary skill in the art will note that the various blocks shown might depict mainly the conceptual functions and signal flow. The actual circuit implementation might or might not contain separately identifiable hardware for the various functional blocks and might or might not use the particular circuitry shown. For example, one may combine the functionality of various blocks into one circuit block, as desired. Furthermore, one may realize the functionality of a single block in several circuit blocks, as desired. The choice of circuit implementation depends on various factors, such as particular design and performance specifications for a given implementation. Other modifications and alternative embodiments in addition to the embodiments in the disclosure will be apparent to persons of ordinary skill in the art. Accordingly, the disclosure teaches those skilled in the art the manner of carrying out the disclosed concepts according to exemplary embodiments, and is to be construed as illustrative only. Where applicable, the figures might or might not be drawn to scale, as persons of ordinary skill in the art will understand.


The particular forms and embodiments shown and described constitute merely exemplary embodiments. Persons skilled in the art may make various changes in the shape, size and arrangement of parts without departing from the scope of the disclosure. For example, persons skilled in the art may substitute equivalent elements for the elements illustrated and described. Moreover, persons skilled in the art may use certain features of the disclosed concepts independently of the use of other features, without departing from the scope of the disclosure.

Claims
  • 1. An apparatus, comprising: a module comprising an antenna having at least one antenna component; andat least one tuning component coupled to the at least one antenna component, wherein the at least one tuning component is external to the module.
  • 2. The apparatus according to claim 1, wherein the antenna comprises a ground (GND) radiating loop antenna.
  • 3. The apparatus according to claim 1, wherein the at least one antenna component comprises a capacitor, an inductor, or a chip antenna.
  • 4. The apparatus according to claim 1, wherein the at least one tuning component comprises at least one capacitor.
  • 5. The apparatus according to claim 1, wherein the at least one tuning component comprises at least one inductor.
  • 6. The apparatus according to claim 1, wherein the at least one tuning component comprises at least one capacitor coupled to at least one inductor.
  • 7. The apparatus according to claim 6, wherein the at least one capacitor is coupled in cascade with the at least one inductor.
  • 8. The apparatus according to claim 1, further comprising a substrate, wherein the module is physically attached to the substrate.
  • 9. The apparatus according to claim 8, wherein the at least one tuning component is physically attached to the substrate, and wherein the at least one tuning component is electrically coupled to the module using a set of pads of the module.
  • 10. An apparatus, comprising: a module comprising a ground (GND) radiating loop antenna having at least one antenna component; andat least one tuning component coupled to the at least one antenna component, wherein the at least one tuning component is external to the module, and wherein the at least one tuning component is used to tune a center frequency of the antenna.
  • 11. The apparatus according to claim 10, wherein the at least one tuning component comprises at least one capacitor.
  • 12. The apparatus according to claim 10, wherein the at least one tuning component comprises at least one inductor.
  • 13. The apparatus according to claim 10, wherein the at least one tuning component comprises at least one capacitor coupled to at least one inductor.
  • 14. The apparatus according to claim 10, further comprising a substrate, wherein the module and the at least one tuning component are physically attached to the substrate, and wherein the at least one tuning component is electrically coupled to the module using a set of pads of the module.
  • 15. A method of tuning an antenna, having at least one antenna component and included in a module, the method comprising coupling at least one tuning component to the at least one antenna component, wherein the at least one tuning component is external to the module.
  • 16. The method according to claim 15, wherein the antenna comprises a ground (GND) radiating loop antenna.
  • 17. The method according to claim 15, wherein the at least one antenna component comprises a capacitor, an inductor, or a chip antenna.
  • 18. The method according to claim 15, wherein the at least one tuning component comprises at least one capacitor.
  • 19. The method according to claim 15, wherein the at least one tuning component comprises at least one inductor.
  • 20. The method according to claim 15, wherein the at least one tuning component comprises at least one capacitor coupled to at least one inductor.
US Referenced Citations (132)
Number Name Date Kind
4328501 DeSantis May 1982 A
4799066 Deacon Jan 1989 A
5631611 Luu May 1997 A
5874926 Tsuru Feb 1999 A
5889445 Ritter Mar 1999 A
5949299 Harada Sep 1999 A
5995814 Yeh Nov 1999 A
6009318 Freed Dec 1999 A
6329886 Ogoro Dec 2001 B1
6603430 Hill Aug 2003 B1
6862441 Ella Mar 2005 B2
6980776 Shimada Dec 2005 B2
6990357 Ella Jan 2006 B2
7034630 Rijks Apr 2006 B2
7058372 Pardoen Jun 2006 B1
7088307 Imaizumi Aug 2006 B2
7116185 Ohi Oct 2006 B2
7155252 Martin Dec 2006 B2
7193477 Chang et al. Mar 2007 B2
7199684 Aigner Apr 2007 B2
7248844 Rofougaran Jul 2007 B2
7323939 Han et al. Jan 2008 B2
7330085 Ezzeddine Feb 2008 B2
7466277 Ishizuka Dec 2008 B2
7489914 Govind Feb 2009 B2
7518469 Kemmochi Apr 2009 B2
7557757 Deavours Jul 2009 B2
7586388 Harada Sep 2009 B2
7683733 Li Mar 2010 B2
7755435 Lu et al. Jul 2010 B2
7978024 Cheng Jul 2011 B2
8068795 Bavisi Nov 2011 B2
8081047 Royak Dec 2011 B2
8138853 Chu Mar 2012 B2
8164387 Apel Apr 2012 B1
8174390 Kim May 2012 B2
8229367 Chan et al. Jul 2012 B2
8306489 Schwarzmueller Nov 2012 B2
8344952 Yi Jan 2013 B2
8368481 Jin Feb 2013 B2
8436695 Mu May 2013 B2
8493126 Sankaranarayanan Jul 2013 B2
8633781 Bradley Jan 2014 B2
8842410 Chan Sep 2014 B2
9059681 Tanaka Jun 2015 B2
9083301 Tanaka Jul 2015 B2
9106204 Fritz Aug 2015 B2
9306535 Bradley Apr 2016 B2
9316723 Tayrani Apr 2016 B2
9397720 Jerng Jul 2016 B2
9520854 Kim Dec 2016 B2
9647706 Salfelner May 2017 B2
9680442 Salfelner Jun 2017 B2
9917566 Salfelner Mar 2018 B2
9939471 Omoumi Apr 2018 B1
9991597 Velandia Jun 2018 B2
10071605 Liang Sep 2018 B1
10305532 Jantzi May 2019 B1
10374300 Rahikkala Aug 2019 B2
20020118075 Ohwada Aug 2002 A1
20030012808 Ella Jul 2003 A1
20030174093 Huber Sep 2003 A1
20030210189 Jinushi Nov 2003 A1
20050003771 De Ruijter Jan 2005 A1
20050174297 Cake Aug 2005 A1
20050208917 Roufoogaran Sep 2005 A1
20060044080 Hagiwara Mar 2006 A1
20060092079 de Rochemont May 2006 A1
20060103578 Landaeus May 2006 A1
20070001704 O'Mahony Jan 2007 A1
20070024377 Wang et al. Feb 2007 A1
20070268092 Inoue Nov 2007 A1
20080129610 Tsafati et al. Jun 2008 A1
20080174383 Zolomy et al. Jul 2008 A1
20080186106 Christian Aug 2008 A1
20080278258 Liu Nov 2008 A1
20090015500 Hoshiai Jan 2009 A1
20090085689 Rohani Apr 2009 A1
20090121959 Li May 2009 A1
20090130999 Chen May 2009 A1
20090174618 Huang Jul 2009 A1
20090251382 Umehara Oct 2009 A1
20090315792 Miyashita Dec 2009 A1
20090322617 Tseng Dec 2009 A1
20100073248 Motta Mar 2010 A1
20100109846 Nagai May 2010 A1
20100231451 Noguchi Sep 2010 A1
20100238079 Ayatollahi Sep 2010 A1
20100253581 Tsou Oct 2010 A1
20100265145 Chung Oct 2010 A1
20100289700 Yang Nov 2010 A1
20110223873 Qiu Sep 2011 A1
20110256841 Kakuya Oct 2011 A1
20120001821 Nakano Jan 2012 A1
20120112972 Ogawa May 2012 A1
20120154071 Bradley Jun 2012 A1
20120229360 Jagielski Sep 2012 A1
20120314734 Zierdt Dec 2012 A1
20130033410 Wong Feb 2013 A1
20130214812 Koo Aug 2013 A1
20130307742 Hu Nov 2013 A1
20130314288 Tayrani Nov 2013 A1
20130334215 Chen Dec 2013 A1
20130341411 Kai Dec 2013 A1
20130342421 Katz Dec 2013 A1
20140111381 Lee Apr 2014 A1
20140111382 Lee Apr 2014 A1
20140113679 Wehrmann Apr 2014 A1
20140125540 Tetsuno May 2014 A1
20140125548 Jouanlanne May 2014 A1
20140125552 Takisawa May 2014 A1
20140320351 Wei Oct 2014 A1
20140327494 Sato Nov 2014 A1
20140375507 Lin Dec 2014 A1
20140375527 Rutfors Dec 2014 A1
20150022402 Gavilan Jan 2015 A1
20150048896 Kovac Feb 2015 A1
20150311881 Nagumo Oct 2015 A1
20150349726 Han et al. Dec 2015 A1
20160156335 Takeuchi Jun 2016 A1
20160164474 Beltran Jun 2016 A1
20160268992 Salfelner Sep 2016 A1
20160336649 Yu Nov 2016 A1
20170214378 Black Jul 2017 A1
20170244442 Mizokami Aug 2017 A1
20180062254 Rahikkala Mar 2018 A1
20180123221 Finn May 2018 A1
20180145410 Ban May 2018 A1
20180316082 Keller Nov 2018 A1
20190190149 Vida Jun 2019 A1
20190280383 Zolomy Sep 2019 A1
20200127628 Zolomy Apr 2020 A1
Foreign Referenced Citations (3)
Number Date Country
106505962 Mar 2017 CN
2214306 Aug 2010 EP
20150072119 Jun 2015 KR
Non-Patent Literature Citations (80)
Entry
U.S. Appl. No. 15/250,719, filed Aug. 2016, Rahikkala.
U.S. Appl. No. 16/439,458, filed Jun. 2019, Rahikkala.
U.S. Appl. No. 15/823,319, filed Nov. 2017, Zólomy.
U.S. Appl. No. 15/845,327, filed Dec. 2017, Vida.
U.S. Appl. No. 15/845,369, filed Dec. 2017, Vida.
U.S. Appl. No. 16/237,511, filed Dec. 2018, Zólomy.
U.S. Appl. No. 16/237,583, filed Dec. 2018, Zólomy.
U.S. Appl. No. 16/420,111, filed May 2019, Voor.
U.S. Appl. No. 16/420,116, filed Feb. 2019, Zólomy.
U.S. Appl. No. 16/719,925, filed Dec. 2019, Vida.
U.S. Appl. No. 16/724,160, filed Dec. 2019, Zólomy.
U.S. Appl. No. 17/491,195, filed Sep. 2021, Hänninen.
Johanson Technology, High Frequency Ceramic Solutions, 4 pgs., 2016.
Johanson Technology, High Frequency Ceramic Solutions, 4 pgs., 2014.
AN91445, Antenna Design and RF Layout Guidelines, Cypress, 60 pgs., 2014-2016.
Amotech Co., Ltd., Datasheet, 8 pgs., 2009.
Office communication in U.S. Appl. No. 15/250,719, 9 pgs.
Office communication in U.S. Appl. No. 15/250,719, 8 pgs.
Office communication in U.S. Appl. No. 15/823,319, 18 pgs.
Office communication in U.S. Appl. No. 15/823,319, 29 pgs.
Office communication in U.S. Appl. No. 15/823,319, 32 pgs.
Office communication in U.S. Appl. No. 15/823,319, 16 pgs.
AN923: EFR32 sub-GHz Matching Guide, Silicon Labs, Jun. 29, 2016, 25 pgs.
D.C. Youla, A New Theory of Broad-band Matching, IEE Transactions on Circuit Theory, Mar. 1964, 21 pgs.
Károly Géher: Linear Networks, 4th edition 1979, Hungarian Technical Book Press (pp. 434-436; translated portions included).
AN643: Si446x/Si4362 RX LNA Matching, Silicon Labs, 2014, 26 pgs.
Office communication in U.S. Appl. No. 15/845,327, 12 pgs.
Office communication in U.S. Appl. No. 15/845,327, 18 pgs.
Office communication in U.S. Appl. No. 15/845,327, 15 pgs.
Office communication in U.S. Appl. No. 15/845,327, 14 pgs.
Web page, “3.1 Multi-band Sub-1GHz tunable RF sub-system for smart meters” (Apr. 27, 2017, 2 pgs.), available at https://training.ti.com/multi-band-sub-1ghz-tunable-rf-sub-system-smart-meters.
Office communication in U.S. Appl. No. 16/237,511, 10 pgs.
Office communication in U.S. Appl. No. 16/237,511, 14 pgs.
Office communication in U.S. Appl. No. 16/237,583, 10 pgs.
Office communication in U.S. Appl. No. 16/237,583, 8 pgs.
Office communication in U.S. Appl. No. 16/237,583, 9 pgs.
Office communication in U.S. Appl. No. 16/420,111, 9 pgs.
Office communication in U.S. Appl. No. 16/420,111, 10 pgs.
Office communication in U.S. Appl. No. 16/420,116, 9 pgs.
Office communication in U.S. Appl. No. 16/420,116, 7 pgs.
Office communication in U.S. Appl. No. 16/719,925, 13 pgs.
Office communication in U.S. Appl. No. 16/719,925, 19 pgs.
Office communication in U.S. Appl. No. 16/719,925, 17 pgs.
Office communication in U.S. Appl. No. 16/724,160, 8 pgs.
AN427: EZ Radio Pro™ Si433X & Si443X RX LNA Matching, Silicon Labs, 2009, 22 pgs.
Liu et al., Excitation Techniques of Loop Current Mode of Ground Antenna, 2011 Cross Strait Quad Regional Radio Science and Wireless Technology Conference, 2011, 4 pgs.
Zahid et al., Analysis of a loop type ground radiation antenna based on equivalent circuit model, IET Microwave, Antennas & Propagation Journal, 2016, 6 pgs.
Cho et al., Loop-type ground antenna using capacitor, Electronics Letters, Jan. 6, 2011, vol. 47, No. 1, 1 pg.
Zhang et al., Bandwidth enhancement of ground antenna using resonant feeding circuit, Electronics Letters, Mar. 28, 2013, vol. 49, No. 7, 2 pgs.
Qu et al., Circular Polarized Ground Radiation Antenna for Mobile Applications, IEEE Transactions on Antennas and Propagation, vol. 66, No. 5, May 2018, pp. 2655-2660.
Zahid et al., Decoupler Deign for MIMO Antennas of USB Dongle Applications Using Ground Mode Coupling Analysis, Progress in Electromagnetics Research M, vol. 76, 113-122, 2018, 10 pgs.
Liu et al., Loop-Type Ground Radiation Antenna for Dual-Band WLAN Applications, IEEE Transactions on Antennas and Propagation, vol. 61, No. 9, Sep. 2013, pp. 4819-4823.
Qu et al., Compact dual-band antenna using inverted-L loop and inner rectangular loop for WLAN applications, Electronics Letters, Nov. 5, 2015, vol. 51, No. 23, pp. 1843-1844.
Liu et al., Excitation Techniques of Loop Current Mode of Ground Antenna, 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2011, pp. 1732-1735.
Qu et al., Performance enhancement of ground radiation antenna for Z-wave applications using tunable metal loads, Electronics Letters, Oct. 27, 2016, vol. 52, No. 22, pp. 1827-1828.
Shin et al., Ground Radiation Antenna using Magnetic Coupling Structure, IEEE (date unknown, but before filing of the instant application), 3 pgs.
Qu et al., Ground Radiation Antenna for Mobile Devices, IEEE, 2017, 3 pgs.
Xu et al., Improvement of ground radiation antenna performance using compact EBG in presence of battery effects, Electronics Letters, Jun. 28, 2018, vol. 54, No. 13, pp. 789-800.
Qu et al., Decoupling between ground radiation antennas with ground-coupled loop-type isolator for WLAN applications, IET Microwaves, Antennas & Propagation, 2018, pp. 546-552.
Liu et al., Loop-type ground antenna using resonated loop feeding, intended for mobile devices, Electronics Letters, Mar. 31, 2011, vol. 47, No. 7, 2 pgs.
Piao et al., MIMO Ground-Radiation Antennas Using a Novel Closed-Decoupling-Loop for 5G Applications, IEEE 2020, pp. 142714-142724.
Kim et al., Miniaturized dual-band loop-type ground radiation antenna with enhanced bandwidth for mobile devices, Microw Opt Technol Lett., 2019, pp. 239-243.
Zahid et al., Performance evaluation of loop-type ground radiation antenna based on its optimum impedance level, Electronics Letters, Mar. 30, 2017, vol. 53, No. 7, pp. 446-448.
Hassan et al., A wideband loop-type ground radiation antenna using ground mode tuning and optimum impedance level, Microw Opt Technol Lett., 2019, pp. 1-6.
Johanson Technology, High Frequency Ceramic Solutions, 5 pgs., Oct. 12, 2020.
Office communication in U.S. Appl. No. 15/845,369, 17 pgs.
Office communication in U.S. Appl. No. 15/845,369, 15 pgs.
Office communication in U.S. Appl. No. 15/845,369, 12 pgs.
Office communication in U.S. Appl. No. 16/237,511, 15 pgs.
Office communication in U.S. Appl. No. 16/719,925, 15 pgs.
Office communication in U.S. Appl. No. 16/724,160, 28 pgs.
Search report in CN application 201911132444X, 2 pgs.
Office communication in U.S. Appl. No. 15/845,327, 3 pgs.
Office communication in U.S. Appl. No. 16/237,511, 22 pgs.
Office communication in U.S. Appl. No. 16/719,925, 18 pgs.
Office communication in U.S. Appl. No. 16/719,925, 22 pgs.
Office communication in U.S. Appl. No. 15/845,327, 6 pgs.
Office communication in U.S. Appl. No. 15/845,369, 10 pgs.
Office communication in U.S. Appl. No. 16/237,511, 31 pgs.
Office communication in U.S. Appl. No. 17/705,260, 7 pgs.
Related Publications (1)
Number Date Country
20230096605 A1 Mar 2023 US