This invention relates to a spinal fusion device. More specifically, the present invention relates to an implant and fixation device used to reconstruct spinal disk space and facilitate fusion across the spinal disk space.
Articulations between bony vertebrae of a human spine frequently deteriorate with age or trauma and become a source of pain. A spinal disk is one of these articulations and with the aging process it loses its normal consistency and volume and collapses allowing for abnormally painful motion within the anterior spinal column The spinal disk is a complex cylindrical weight-bearing fibrous structure with a non-compressible viscous center. The spinal disk articulates with bony vertebrae above and below through a large surface area circular interface known as an endplate. The endplate is a thin (1-3 mm) approximately round 2-4 cm in diameter plate of dense bone and cartilage accounting for a majority of the weight-bearing capacity.
Surgical treatment of disk disorders frequently requires elimination of movement across an abnormal spinal disk. This is accomplished by allowing bone to grow between adjacent vertebrae and through a disk space of the abnormal spinal disk. It is desirable to reconstruct the disk space to its prior normal height by opening the space previously occupied by the removed spinal disk while retaining normal curvature of the spine determined by the differential height between the front and the back of the spinal disk (
Implants utilized in fusion of a human spine and delivered in a straight trajectory through the front of the spine and into the disk space are well known to those skilled in the art. They vary in shape but possess similar characteristics with upper and lower surfaces conforming to a shape of vertebral endplates and a vertical design aiming to open or reconstruct the collapsed disk space. These implants are sufficiently porous or hollow to allow bone to grow through the implants and bridge two vertebrae referred to as bone fusion. These implants perform well with vertical loading of the spine or in flexion. However, these implants are not able to restrict the movement between two vertebrae when vertebrae are pulled apart or are in extension and lateral bending. Further, these implants provide negligible restriction during sliding motion (translation) and rotation.
Devices that cut into or have protrusions directed into or through the endplate, are also known in the related art. These protrusions penetrate the endplate and potentially create channels for a bone growth, yet the protrusions do not alter structural properties of the endplate. The protrusions reduce the risk of extrusion of the implant out of the disk space. These protrusions negligibly restrict translation or sliding motion but they do not restrict extension and lateral bending. This necessitates additional fixation (immobilization) usually consisting of posterior pedicle screws.
There would be a substantial benefit in an anterior fixation device which would on its own rigidly fixate the spine in all direction of motion.
A device for reconstruction, fixation and bone fusion through anterior approach to the human spine. This device enables rigid fixation in all planes of motion including extension of the spine, it possesses structural characteristics necessary to reconstruct and maintain disk height, it provides space for bone grafting material and produces a plurality of extension of the spine, it possesses structural characteristics necessary to reconstruct and maintain disk height, it provides space for bone grafting material and produces a plurality of perforations through endplates above and below to enhance bony fusion.
In some aspects or embodiments, there is provided a fixation device. The fixation device includes a housing, first and second shafts, at least one first blade, and at least one second blade. The housing includes at least a leading surface and a trailing surface. The first and second shafts run from the leading surface to the trailing surface of the housing.
The at least one first blade has at least one first cutting extension with a sharp leading edge extending from the first shaft in a first orientation about the first shaft, while the at least one second blade has at least one second cutting extension with a sharp leading edge extending from the second shaft in a second orientation about the second shaft. The second orientation is opposite to the first orientation.
The at least one first blade is rotatable in a direction according to the first orientation and the at least one second blade is rotatable in an opposite direction according to the second orientation, such that the at least one first cutting extension of the at least one first blade and the at least one second cutting extension of the at least one second blade are enabled to break an endplate of a vertebra, hook into the vertebra, and rigidly secure the vertebra to the fixation device to prevent separation of the vertebra from the fixation device during spinal motion.
In some aspects or embodiments, the at least one first blade can include a first set of opposing cutting extensions with sharp leading edges that are enabled to break endplates of adjacent vertebrae, hook into the adjacent vertebrae, and rigidly secure the adjacent vertebrae in relation to each other and to the fixation device to prevent separation of the vertebrae from the fixation device during spinal motion. Moreover, the at least one second blade can include a second set of opposing cutting extensions with sharp leading edges that are enabled to break the endplates of adjacent vertebrae, hook into the adjacent vertebrae, and rigidly secure the adjacent vertebrae in relation to each other and to the fixation device to prevent separation of the vertebrae from the fixation device during spinal motion.
In some aspects or embodiments, the at least one first blade can rotate in a clockwise direction according to the first orientation, while second blade can rotate in a counterclockwise direction according to the second orientation.
In some aspects or embodiments, the at least one first blade and the at least second blade are imbricated between each other. Moreover, the at least one first blade and the at least second blade can be rotated individually or as a group. Further, the at least one first blade and the at least second blade can vary in size.
In some aspects or embodiments, the at least one first blade and the at least second blade can include portions that are configured to expand a disk space between adjacent vertebrae. Moreover, the portions can be configured to provide weight-bearing support to the adjacent vertebrae.
In some aspects or embodiments, the first and second shafts can serve as axis of rotation to the at least one first blade and the at least second blade. The first and second shafts can be fixed in relation to each other. Moreover, the first and second shafts can move away from each other when the housing is expanded at least in part in vertical and horizontal directions.
In some aspects or embodiments, the first and second shafts can run perpendicularly to the leading surface of the housing. Moreover, the housing can have a configuration of a box, a cylinder, or another geometric shape, wherein the configuration includes a height of the deep surface that is smaller than a height of the trailing surface.
In some aspects or embodiments, the housing can include at least one material selected from metal, plastic ceramic, graphite, coral, and human bone product. The housing can be formed at least in part from a porous material. Moreover, the housing can be absorbable.
An implant device for reconstruction, fixation and bone fusion of bone vertebrae through an anterior approach to the human spine. This implant device enables rigid fixation in all planes of motion including extension of the spine, it possesses structural characteristics necessary to reconstruct and maintain disk height, it provides space for bone grafting material and produces a plurality of perforations through endplates above and below to enhance bony fusion.
The implant device consists of the outer structure or shell which is designed to conform to the disk space, provide openings for bony ingrowths and maintain the disk height by providing adequate structural strength and sufficient weight bearing surface. The shell or housing contains a shaft (10) which runs through its central axis from the back (9) to the front (8) and is fixed to the shell (
In the preferred embodiment the shell is impacted into the disk space (
Once the shell is placed in a correct position between vertebrae (1), individual blades (
Once all the blades are engaged, a tightening nut is threaded onto the end (21) of the shaft (10) of
In an alternative embodiment, alternating clockwise and counterclockwise blades (
In another embodiment the housing expands horizontally and contains two shafts, which separate from each other upon expansion of the housing. In the initial collapsed configuration, preloaded clockwise and counterclockwise blades threaded on different shafts imbricate between each other. After the housing is expanded, the blades are pulled apart.
In another embodiment, a body (14) of a blade is configured as an oval so that the disk space is expanded as a blade is rotated.
The present application is a divisional of U.S. patent application Ser. No. 13/335,382, filed Dec. 5, 2011, which is a continuation of U.S. patent application Ser. No. 12/567,691, filed on Sep. 25, 2009, which is a divisional of U.S. patent application Ser. No. 11/321,936, filed on Dec. 29, 2005, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2864421 | Schmidt | Dec 1958 | A |
5522441 | Anselm et al. | Jun 1996 | A |
6012372 | Laster et al. | Jan 2000 | A |
6159211 | Boriani et al. | Dec 2000 | A |
6227093 | Rensky, Jr. | May 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6443990 | Aebi et al. | Sep 2002 | B1 |
6447544 | Michelson | Sep 2002 | B1 |
6447547 | Michelson | Sep 2002 | B1 |
6527803 | Crozet et al. | Mar 2003 | B1 |
6558424 | Thalgott | May 2003 | B2 |
6770096 | Bolger et al. | Aug 2004 | B2 |
6824564 | Crozet | Nov 2004 | B2 |
7238203 | Bagga et al. | Jul 2007 | B2 |
7594932 | Aferzon et al. | Sep 2009 | B2 |
8070819 | Aferzon et al. | Dec 2011 | B2 |
9039770 | Aferzon et al. | May 2015 | B2 |
20020143401 | Michelson | Oct 2002 | A1 |
20030004576 | Thalgott | Jan 2003 | A1 |
20030187436 | Bolger et al. | Oct 2003 | A1 |
20040138752 | Michelson | Jul 2004 | A1 |
20070270968 | Baynham et al. | Nov 2007 | A1 |
20080255666 | Fisher et al. | Oct 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20150265416 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13335382 | Dec 2011 | US |
Child | 14719895 | US | |
Parent | 11321936 | Dec 2005 | US |
Child | 12567691 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12567691 | Sep 2009 | US |
Child | 13335382 | US |