Apparatuses for applying a hot-melt adhesive, a so-called hot melt, to a substrate, in particular to a so-called disposable hygiene product, such as diapers or sanitary napkins, are already basically common knowledge from the prior art.
Particularly advantageous apparatuses have been developed, for example, as disclosed in commonly owned EP 1 429 029 A2, which discloses a corresponding apparatus in which use is made of so-called volumetric gear pumps in order to provide for precise metering of the quantity of molten adhesive which is to be dispensed. The adhesive actually exits from the dispensing nozzle (for example a slot nozzle) here on account of the prevailing pressure of the adhesive, for example once a delivery valve has been opened. In some cases, the exiting adhesive is also supplied heated modulation air, which is intended to delimit the exiting adhesive with shaping action, if appropriate it is subjected to turbulence or the like, en route to the substrate located beneath. The exit from the nozzle here always takes place on account of the prevailing adhesive pressure.
Even though such apparatuses operate optimally basically in most application cases, there are application cases in which in particular more complex application patterns of the hot-melt adhesive are desired.
Further known application systems apply a pattern using rotating cylindrical screens (rotary screen systems), in which the adhesive is dispensed onto the substrate from a stationary dispensing nozzle in the interior of the rotating cylinder, through the surface bearing a punched pattern. It is typically the case here that the substrate is brought into contact with the outer cylinder surface. The adhesive pressure here can prevail in particular permanently on the nozzle and, depending on the position of the cylinder surface, is alternately prevented from exiting and allowed to pass through, and therefore a pattern is produced on the contacting substrate. Pianalto, U.S. Pat. No. 4,911,948 discloses an example of an apparatus in which a regulated air pressure prevails on the adhesive store. In practice, however, such apparatuses have problems where the application pattern is concerned, in particular smearing.
Finally, there are also application systems in which application rollers which have, on their surface, either hollows or protuberances for retaining the adhesive are brought into contact with a substrate during their rotation. A corresponding apparatus is disclosed in EP 0 675 183 A1, wherein the rubber-coated heating roller has rubber protuberances on which a hot-melt-adhesive powder, that is to say not an adhesive which is already in a molten state, is deposited and dispensed under pressure, via the protuberances, onto the substrate. It is considered to be problematic in the case of such apparatuses, that such apparatuses are very complex and costly to produce. In addition, such systems usually do not achieve application speeds desired in particular for use with hygiene articles.
It is therefore an object of the present invention to provide an apparatus which is intended for applying hot-melt adhesives and allows for precise and reliable application along with optimal utilization of the adhesive used.
The invention achieves this object by way of an apparatus comprising a template, having at least one cavity for the hot-melt adhesive, and also comprising an adhesive-transfer infeed, which is assigned to the template and through which the adhesive can be introduced into the cavity, wherein the apparatus further comprises a transporting-fluid-supply opening, assigned to the template, and a device for displacing, in particular pivoting, the template between a first position, in which the cavity is assigned to the adhesive-transfer infeed, and a second position, in which the cavity is assigned to the transporting-fluid-supply opening, and therefore the adhesive, in the second position, can be discharged from the cavity by a transporting fluid flowing through the transporting-fluid-supply opening.
In an embodiment, rather than discharging the hot-melt adhesive (also abbreviated to “adhesive” hereinbelow) under continuously prevailing adhesive pressure (for example on account of volumetric pumps), is thus essentially that of separating in the first instance a small sub-quantity of adhesive from the adhesive infeed, subsequently displacing the sub-quantity and then discharging it from the apparatus (at a separate location) by a transporting fluid, in particular compressed air, and applying it to the substrate.
The adhesive which is to be discharged is separated off here by being separated from the prevailing pressure of the adhesive flowing on behind, and the separate transporting fluid ensures optimized application to the substrate.
The adhesive is transferred to the cavity of the template, or supplied to the same, via an adhesive-transfer infeed. It is possible here for the adhesive-transfer infeed to be connected, for example via channels in the apparatus, to an adhesive connection which, for its part, is connected to an adhesive store which is separate or integrated in the apparatus.
In the adhesive store, the hot-melt adhesive is preferably melted and directed onward, via the channels, to the adhesive-transfer infeed. These channels are usually heated. It is also possible for the adhesive-transfer infeed to be heated.
Once it has entered into the template, the at any rate partially liquefied adhesive is displaced, by a drive acting on the template, to a transporting-fluid-supply opening. When it reaches the transporting-fluid-supply opening, the chamber has its contents preferably blown out by the transporting fluid, in particular compressed air. For this purpose, it is possible to provide, in the region of the transporting-fluid-supply opening, a so-called air knife, which provides a very sharp formation of air for discharging the adhesive from the cavity. This generates a blade of air which guides the adhesive out of the cavity (preferably through an exit opening of the apparatus) directly to the substrate.
It should preferably be ensured here that the gap between the template (or possibly a separate exit opening of the apparatus) and the substrate located beneath is minimized, so that the shape of the cavity is reproduced as precisely as possible on the substrate by the adhesive applied. A precise reproduction of the geometric shape of the cavity (or of the arrangement of a plurality of cavities) is also assisted here by a blade of air which is as sharp as possible. Non-contact application to the substrate, that is to say without any contact taking place between the apparatus or exit opening and substrate, is advantageous here.
The apparatus according to the invention makes it possible, in a novel manner, for adhesive to be applied to a substrate in a very sharply defined and optimized manner. It is preferably ensured here that the cavity must/may accommodate only a relatively small quantity of the adhesive, preferably only a few drops of the adhesive. The cavity therefore has very small/narrow dimensions, only a cavity of relatively small/narrow dimensions also being capable of retaining during displacement (by the displacement device) the adhesive introduced into it. If the cavity were to have very generous dimensions, for example dimensioning of one centimeter times one centimeter, then, possibly on account of surface tensions being too low, the adhesive, when directed into a cavity of such large dimensions, rather than remaining in the cavity, would leave the cavity again even prior to the same being displaced.
Rather, it is therefore advantageously the case that the cavity, at least along one of its two surface dimensions, has a width of less than two millimeters, preferably of less than one millimeter.
The cavity here, as seen in plan view, is in particular in the form of dots or in linear form.
Accordingly, cavity, within the context of the present patent application, is understood as being not exclusively a fully closed-off and separated, hollow-like space in a material. Rather, cavity describes, in particular, a through-passage in the template. To this extent, the cavity is enclosed, for example, by lateral walls, but is open towards the top and bottom.
It is preferable for the template to have not just merely one cavity, but a multiplicity of cavities. This multiplicity of cavities may be arranged on the template in particular in the manner of a pattern. It is thus possible for there to be a first group of cavities which, together, form a first pattern in a raster-like manner (for example a rectangle which is formed from a multiplicity of dot cavities arranged in a rectangular shape). This pattern can then be arranged repeatedly on the template using further groups of cavities with a certain distance therebetween (however, it is also possible, as an alternative, for the pattern to be arranged on the template in varying form).
When adhesive is applied, the individual patterns of the template are guided one after the other past in the first instance the adhesive-transfer infeed and then the transporting-fluid-supply opening.
If the template is designed in the form of a rotary body which is made to rotate, or is pivoted, for displacement purposes, the individual patterns may be arranged in the manner of a circular ring, and therefore the pattern can be guided endlessly past the adhesive-transfer infeed and the transporting-fluid-supply opening. This makes it possible for application to be optimized in particular in the case of a substrate which is guided endlessly beneath the apparatus.
In an embodiment, the template is in particular pivoted by the displacement device. “Pivoting” here, for purposes of the present disclosure, in particular also covers rotation of the template and is understood in the form of a broadly encompassing term.
The template may be designed, in particular, in the geometrical form of a CD, having approximately the typical dimensions thereof. The cavities are then made through the surface of the CD-like body by etching, cutting operations or the like.
As already described, it is possible for a plurality of the cavities to make up a pattern which then continues in the same manner (or in varying form) over the template, preferably in the displacement direction of the template (that is to say in an annular manner in the case of rotation).
This means that, in addition to providing straightforward basic patterns (such as a rectangular arrangement of numerous cavities), more complex patterns are also made possible. It is thus possible for the adhesive to be applied to a baby's diaper for example in the form of motifs which are suitable for children (for example in the form of a teddy bear or of a teddy-bear head or also of a bird or the like). This may be desired, in the case of a diaper, for example for providing a so-called moisture or wetness indicator, in the case of which a, for example, transparent film, or some other transparent material layer, is also applied, in a later operating step, over the adhesive applied, and the adhesive changes color in dependence on the level of moisture of the substrate.
The rasterization of a pattern into various sub-dots can also give rise to the impression of continuous patterns, for example the impression of endless undulating lines or the like. It is indeed the case that the endless motifs are actually made possible by numerous separate cavities for the adhesive. However, in the application pattern, the dots of adhesive applied from the individual cavities then merge into one another visually or actually.
The preferably rotationally displaced template, according to the invention, can usually be activated by a drive (for example by a servomotor), which acts on the template typically via a drive shaft. The template here is incorporated in the apparatus such that it can be changed over without use being made of tools and/or auxiliary means. For example it is possible for an appropriate template to be designed in the manner of a CD and for the apparatus to provide a corresponding ejecting shaft or an ejecting drawer for the CD-like template. A user can store a plurality of templates with different cavity arrangements (pattern arrangements) and straightforwardly change over the templates manually by ejecting the template which has just been used and inserting a new one. As an alternative, it would also be possible to provide an apparatus for automatically changing over the template in the manner of a CD changer or the like.
In this context, the intention is to disclose, in particular, a system comprising an apparatus as claimed in claim 1 (or one of the following claims) and a second, alternative template, which can be changed over in a user-friendly manner in replacement of the first template, in particular with the aid of a tool-free opening mechanism of the apparatus. The opening mechanism here is provided such that the apparatus does not have to be specially dismantled. Rather, it is possible for the templates to be changed over without use being made of tools and/or auxiliary means.
The apparatus can be used to apply a so-called hot-melt adhesive to a substrate. The hot-melt adhesive is directed to the adhesive-transfer infeed when it is already in a liquid to pasty state. It is possible here for the adhesive to be kept in a tank or similar store when it is already in a liquid to pasty state or, as an alternative, also in a solid state (that is to say, for example, in the form of flakes). The critical factor is for the hot-melt adhesive to have reached a liquid to pasty state by being heated up prior to, or upon, reaching the adhesive-transfer infeed.
It is possible here for all the elements of the apparatus to be heatable in principle, that is to say, in particular, also the template, for example passively by way of the surrounding structural elements of the apparatus. The structural elements may have heating channels or the like or dispense a certain amount of heat to the template on account of their material properties.
The adhesive is discharged onto a substrate which, typically, is located directly beneath the apparatus. In this context, the apparatus is advanced as closely as possible up to the substrate, but does not make contact therewith.
A substrate is understood as being, in particular, an essentially sheet-like body which can be displaced preferably relative to the apparatus (or in particular relative to an exit opening). A substrate may be, in particular, a so-called endless material.
The apparatus can advantageously be used particularly in the field of so-called disposable hygiene products. These include, for example, diapers and sanitary napkins. During production thereof, in particular wing elements or closure elements are adhesively bonded to the basic substrate, for which purpose the basic substrate has to be wetted with adhesive. Another example is the already described wetness indicator.
A template, in practice, will have one or a multiplicity of cavities, it being possible for a first group of the multiplicity of cavities to form, for example, a first pattern and for a second group of a multiplicity of cavities then to form a second pattern, etc.
The apparatus presented makes it possible to dispense with extremely costly volumetric gear pumps which are known, in particular, in the prior art. It is usually sufficient for the adhesive to be supplied to the adhesive-transfer infeed in some other way. For example, normal piston pumps or similar pumping means can be used for this purpose.
This is because the dimensioning of the quantity applied is defined according to the present invention by the dimensioning of the cavities, and not by the dimensioning of a volumetric pump.
It should be noted, in addition, that the apparatus has, in principle, a control means which is in connection with the drive of the template and which is also connected to the drive mechanism of the substrate, and controls the same. This makes it possible for the drive speed of the template to be adapted to the drive speed of the substrate. For example, the speed of the template and substrate can be regulated such that the template executes a full revolution as precisely one substrate product which is to be wetted (for example a diaper or a sanitary napkin) is guided along beneath the template.
According to a particularly advantageous configuration, the apparatus has an exit opening which is assigned to the cavity when the template is located in the second position. In other words, the exit opening is assigned to the transporting-fluid-supply opening and is arranged in particular opposite the same (as seen in relation to the template).
In this way, the transporting fluid can drive the adhesive out of the cavity of the template and through the exit opening. In contrast to the template, the exit opening is of basically stationary design, i.e. it is at a fixed location and, in particular, at a fixed location relative to the substrate located beneath (at any rate if the latter is not being moved). The exit opening here is provided, in particular, by an outer termination plate or a nozzle plate of the apparatus, the plate usually covering the template. In this case, the exit opening is thus assigned to a separate component.
However, within the context of an embodiment, it is also conceivable in principle for the exit opening to be provided by the template or by a cavity outlet assigned to the substrate.
The exit opening of the apparatus here is advantageously adapted to the so-called air knife and the design thereof and is further advantageously arranged as closely as possible to the substrate, and even on the template.
A further advantageous configuration provides for the apparatus to have an adhesive-outflow channel, of which the inlet is assigned to the cavity when the template is located in the first position. In other words, the inlet of the adhesive-outflow channel is assigned to the adhesive-transfer infeed, and is arranged in particular opposite the same (as seen in relation to the template).
This configuration allows, on the one hand, an improved application pattern, but also, on the other hand, an optimized adhesive-supply circuit. It has thus been determined that the operation of filling the cavity with adhesive via the adhesive-transfer infeed is difficult if the initially empty cavity cannot have the air located there driven out of it.
The adhesive-outflow channel allows circulation or flow through the cavity when the cavity is being filled, and in particular allows the air located in the cavity to be discharged (this avoiding the situation where the adhesive displaced becomes mixed with the air).
The adhesive thus flows through the cavity during the filling operation and can be guided away from the template preferably on the other side of the template. It is particularly advantageous here for the adhesive-outflow channel to be designed in the form of an adhesive-return channel, in which case the unused adhesive can be guided back to the adhesive store, and an adhesive circuit is therefore formed. However, this is not imperative. For example, it is also possible for the adhesive-outflow channel to direct the adhesive out into a separate store, although the design in the form of an adhesive-return channel is considered, in principle, to be more advantageous. It is also possible for the adhesive-outflow channel to be heated.
The apparatus advantageously has a sealing wall, or a plurality of sealing walls, between the adhesive-transfer infeed (and possibly the inlet of the adhesive-outflow channel) and the transporting-fluid-supply opening (and possibly the exit opening). This ensures that the adhesive directed into the cavity remains in the cavity during (and upon) displacement of the template. For the case where the template is designed in the form of a disk, these walls would thus be arranged above and beneath the upper and lower surfaces of the disk. The structural elements which provide the walls here could also form the transporting-fluid-supply opening and the adhesive-transfer infeed (at any rate certain sections thereof).
These walls further advantageously consist of a sealing material which, in addition, has a particularly suitable coefficient of friction, since the walls, ideally, must not obstruct displacement of the template or, at most, must obstruct the same only to a very slight extent.
Accordingly, in an embodiment, the template is made to rotate by the displacement device. In this context, the template may be designed, for example, in the form of a disk, in particular in the manner of a CD, or for example also in the form of a cylinder tube. In both cases, the template can rotate about a central axis of rotation, and therefore a full revolution or rotation of the template results in the cavity or the cavities being guided precisely once past the adhesive-transfer infeed and/or past the transporting-fluid-supply opening. This allows, in particular, a very space-saving configuration of the apparatus, wherein, for the purpose of wetting a very long substrate, rather than having to use a very long template, it is sufficient to have a rotating template which, for a very long substrate, simply executes a plurality of revolutions per substrate through-passage.
Since the substrate is usually guided through linearly beneath the apparatus, a rotationally displaced template requires the arrangement of the cavities to be adapted in order to take account of the fact that the cavities are guided in rotation past the transporting-fluid-supply opening, while the substrate is moved linearly past the transporting-fluid-supply opening. This applies, in particular, to the template being designed in the form of a disk; less to the template being designed in the form of a cylinder tube.
In the first-mentioned case, it is possible to provide software which performs a conversion from an application pattern of the adhesive, as is intended to be subsequently produced on the wetted substrate, into a pattern as is introduced, by way of cavities, in the template designed, in particular, in the form of a disk. Such a conversion unit may be a constituent part of the apparatus, in particular of the control means of the apparatus.
In an embodiment, the template is designed in the form of a disk, the latter having in particular a diameter between 5 and 20 cm, more particularly between 7 and 14 cm, preferably of approximately 12 cm. This diameter here corresponds approximately to the diameter of a commercially available CD, as a result of which the template can be picked up in one hand and inserted into commercially available CD cases for storage purposes.
In the same way as a commercially available CD, it is also the case that the template, rather than being a closed disk, is advantageously of annular design. The template is further advantageously designed in the form of a round disk.
Cavities are introduced between the upper side of the template and the underside of the template, in order to allow specific application patterns of the adhesive on the substrate. The disk is preferably a stainless-steel disk, which is further advantageously subjected to laser cutting in order for the cavities to be introduced. As an alternative, however, it is also possible for the disk to be machined by means other than a laser cutter in order to form the template. For example, use can be made of etching techniques or water-jet cutters or the like.
A further advantage of the design of a disk with one of the aforementioned diameters is that, in the case of the cavities being arranged in the outer region of the disk, the cavities, during precisely one revolution of the disk, cover a distance which corresponds approximately to the application region of a diaper. If the intention is to wet a shorter product, for example a sanitary napkin, it is also possible for the openings or the patterns to be arranged more closely to the axis of rotation of the disk. As an alternative, for the purpose of wetting a shorter product, it is also possible to use a template which has a pattern progressing only over part of its circumference (for example only half or three quarters of the template has a pattern progressing over it). As a further alternative, for application to a shorter product, it is also possible for the speed of the template to be changed relative to the conveying speed of the substrate, in particular to be increased (account having to be taken, for the arrangement of the cavities in the template, of a corresponding application distortion).
The template further advantageously has a positioning marker. For calibration of the template or for first-time insertion, this positioning marker is intended to facilitate coordination with the substrate which is to be wetted. It is thus possible for the template to have patterns which necessarily provide a certain starting point (which are to be applied to a substrate first). The user can identify, from the positioning marker, the alignment in which the template is to be inserted into the apparatus or arranged on the apparatus.
The positioning marker may be, for example, a graphic marker, in the manner of a print, on the template or a physical marker, in the manner of a material cutout (notch) or an addition of material (material lug) or the like. The apparatus in this case is configured particularly advantageously if it has, in addition, a stationary counter-marker, which the user can use as a reference point for inserting or fitting the template. It is thus possible for the template to have, for example, a marker in the manner of an arrow and for the apparatus mount (e.g. a frame) for the template to have a second arrow, wherein the two arrows have to be aligned in relation to one another when the template is inserted. If the arrows are aligned with one another, then the user can assume that, when the apparatus is switched on, in the first instance the expected pattern will be applied to the substrate.
As an alternative to a graphic marker, however, it is also possible for an annular template to have, in the region of its central opening, a small lug or a notch which can be brought into form-fitting engagement with a counter-notch or counter-lug of the shaft driving it.
According to a further embodiment, the apparatus has an opening mechanism which allows the template used to be replaced by an alternative template without use being made of auxiliary means or tools. In particular for the case where the template is designed in the form of a disk, use can be made here of mechanisms which are known from CD players. For example it is possible for the apparatus to have an accommodating drawer for the template, the drawer being opened by the push of a button, or for the apparatus to have an introduction slot for the template. At any rate, the template can be installed or inserted even by a layman, there being no need for a person skilled in the art to dismantle the apparatus (in part at any rate).
The cavity provided in the template advantageously has a width of not more than two millimeters, preferably of not more than one millimeter. It is possible, in this context, for the cavity to be designed either essentially in the form of dots or else in linear form, the line then being of the maximum width mentioned (but being very much longer than two millimeters or one millimeter in the longitudinal direction).
In actual fact, a template usually has very many more than just one cavity. Rather, the template has patterns which are made up in each case of numerous cavities. Such patterns are introduced into the template in particular in a rasterized state, rather than over a continuous surface area.
The aforementioned, relatively narrow design of the cavities results in the adhesive remaining reliably in the cavity even when the template is being displaced between the adhesive-transfer infeed and the transporting-fluid-supply opening, and therefore it would not be imperative to provide sealing walls. The fact of the adhesive remaining in the cavity is also due, inter alia, to the surface tensions which occur, it being possible for the cavity width to be selected in dependence on the material property of the hot-melt adhesive used.
A method of applying a liquid to pasty hot-melt adhesive includes:
The method uses in particular advantageously an apparatus as described above, and it should be noted here that all the advantages presented in respect of the above-described, disclosed apparatus can also be transferred analogously to the above-described, disclosed method, and vice-versa.
The drive of the template is advantageously activated in dependence on displacement of the substrate. This provides, in particular, advantages for switching on the apparatus. This is because conventional prior-art apparatuses involve a so-called “ramp effect”, which ensures that the operation of applying adhesive, when the system is switched on/started up, can be adapted only to a certain extent to the start-up speed of the substrate located beneath.
The disadvantage here is that the substrate which is wetted during the start-up process of the system cannot be used industrially in its entirety and has to be disposed of. In particular for the case where the template, according to the method of the invention, is driven by a servomotor, however, the template and substrate, as presently disclosed, can be synchronized such that no ramp effect occurs. It is thus possible for the activation of substrate displacement to take place in dependence on the activation of the template, and therefore no ramp effect occurs and even that part of the substrate which is wetted first can be used industrially.
In particular it is possible for the control means of the template drive to be adapted to the substrate such that the individual cavities, when being displaced, have approximately a circumferential speed which corresponds to the linear speed of the substrate. However, if the pattern realized in the template is to be represented in a compressed state, the speed of the template can be increased. If, in contrast, the application pattern is to be equalized, the speed of the template can be reduced. Displacement of the template always takes place in dependence on displacement of the substrate. A joint apparatus control means may be provided for this purpose.
Further advantages of the present disclosure can be gathered with reference to the appended claims in their entirety and from the following description of the exemplary embodiments illustrated in the drawings, in which:
Ahead of the following description of the figures, it should be noted that, for the sake of simplicity, the same or comparable parts in comparable exemplary embodiments are provided with the same reference signs, in some cases with the addition of lower-case letters or of apostrophes.
A first exemplary embodiment of the apparatus is provided with the reference sign 10 in
A template, which will be described in more detail at a later stage in the text, can be introduced into the application head 11 according to
The apparatus of
The adhesive is directed into the apparatus 10 via an adhesive connection 18 illustrated in
The adhesive, which enters into the apparatus 10 via the connection 18, is directed first of all (in a manner which is not illustrated in
The adhesive transported along by the template is then discharged from the apparatus 10, out of an exit opening 21 of the application head 11, the opening being illustrated in
In order to clarify the construction of the application head 11,
During assembly here, a template 29 is introduced into the frame 24, that is to say beneath the first seal 23 and above the second seal 25. The template is of round design, in the form of a disk, and has approximately the diameter of a commercially available CD. It has a central engagement opening 30, which may be of, for example, hexagonal design and through which, during assembly, a head 31 of the shaft 15 is plugged in a form-fitting manner.
The template 29 consists, for example, of stainless steel and is provided with cavities which are arranged to form patterns (a plurality of identical patterns in the form of teddy-bear heads are evident in
Purely for the sake of completeness, it should be noted that the apparatus shown in
The operation of the apparatus 10 illustrated in
Beneath the transfer opening 33 in the first seal 23, the template 29, which is driven by the shaft 15 and has cavities which can be assigned to the transfer opening 33, rotates within the frame 24.
Accordingly, the adhesive can enter, from the transfer opening 33, into those cavities of the template 29 which are moving past the transfer opening 33. The cavities of the template 29 have in particular the adhesive which is exiting from the transfer opening 33 flowing through them and, once it has passed through the template 29 (at any rate at least in part), the adhesive passes into an outflow opening 34 in the second seal 25. From this outflow opening 34 in the second seal 25, the outflowing adhesive can then pass into an outflow channel within the nozzle plate 26 and, from there, be directed to the return connection or outflow connection 20 illustrated in
When the template 29 is displaced, however, a sub-quantity of the adhesive flowing through the template 29 is carried along by the template 29, and therefore, rather than passing into the outflow opening 34 in the second seal 25, this sub-quantity remains in the template 29 during displacement of the latter. The adhesive here, once it has entered into the template 29 from the transfer opening 33, is displaced to a fluid opening 35 in the first seal 23.
Exiting through the fluid opening 35 is a transporting fluid, in particular compressed air, which is supplied to the fluid opening 35 via the connection 16, which is illustrated in
The very sharp-edged compressed air exiting from the fluid opening 35 of the first seal 23 then drives the adhesive out of the adhesive-filled cavities in the template 29 which are being guided past beneath the air. The compressed air, together with the adhesive, is removed from, or blown out of, the apparatus 10 from the template 29, via a dispensing opening 37 in the second seal 25 and the exit opening 21 in the nozzle plate 26, and transferred onto the substrate located beneath.
In respect of the exemplary embodiment of
The template 29 illustrated in
At any rate,
According to
The rows of cavities between the first row 39 and the fifth row 40 have been filled with adhesive; those rows of cavities which follow the fifth row 40 are still empty.
In an embodiment, a feature which is illustrated in
This ensures that, each time the apparatus 10 is switched on or started up, the template always has its pattern arranged correctly in relation to the transfer opening 33 and the fluid opening 35 and the exit opening 21.
It can also be seen in
In respect of
And, in respect of
It is also clear from
Finally,
On its side assigned to the inside of the template 29′, as is indicated merely schematically in
In particular, the central body 47 has a cross section which corresponds essentially to
Number | Date | Country | Kind |
---|---|---|---|
10 2014 007 425 | May 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4911948 | McIntyre | Mar 1990 | A |
5360516 | Cutright et al. | Nov 1994 | A |
5569348 | Hefele | Oct 1996 | A |
6688498 | McGuffey | Feb 2004 | B1 |
20060027683 | Puffe | Feb 2006 | A1 |
20100064967 | Luebbecke | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
19854634 | Feb 2000 | DE |
0675183 | Mar 1994 | EP |
1429029 | Jun 2004 | EP |
Entry |
---|
English Translation of DE-19854634, Feb. 24, 2000. |
International Search Report for PCT/US2015/031988 dated Sep. 3, 2015. |
Number | Date | Country | |
---|---|---|---|
20150337426 A1 | Nov 2015 | US |