Rewinders are used to convert large parent rolls of paper into retail sized rolls and bathroom tissue and paper towels. Two types of rewinders are commonly used—center rewinders and surface rewinders. Center rewinders are described, for example, in U.S. Reissue Pat. No. 28,353 and wind the web on a core which is rotated by a mandrel. Surface rewinders are described, for example, in U.S. Pat. Nos. 4,723,724 and 5,104,055 and wind the web on a core which is rotated by a three roll cradle.
The critical operation in both center rewinders and surface rewinders is the sequence of steps referred to as cutoff and transfer. The web must be severed to end the winding of one roll, the leading edge of the severed web must be transferred to a new core, and the new core must be rotated to begin winding a new roll. These steps must be accomplished repeatedly and reliably while the web is moving at high speed. It is also desirable that each roll have exact sheet count and that the web is wound uniformly and substantially without wrinkles.
In U.S. Pat. No. 4,723,724 a stationary plate or dead plate (217 in
U.S. Pat. No. 5,137,225 also describes a surface rewinder which uses a stationary surface to effect a temporary braking of the web between the stationary surface and the core, thus causing a tearing of the web between the just-finished roll and the incoming core. This process, which uses the core to pinch and slow down the web, stretches the web from the pinch point of the core to the finished wound roll to snap a perforation between the two points. This long distance between the core and the finished roll must be elongated by at least the percentage of stretch in the material, commonly 6 to 25%. This elongation is created by the core being pinched to the stationary surface with the core insertion speed being less than the web speed. In effect, there is at least the same amount of slack web generated upstream of the inserted core as is required to elongate and break the web downstream of the core, plus the distance the core must still travel before it reaches the first winding roll and is accelerated to web speed.
The problems with this method are the significant amount of slack web generated upstream, and the difficulty in running short perforations which result in more than one perforation between the inserted core and the finished wound roll. The excess generated slack causes uncontrollable wrinkling and web tension problems which limit the speed of the machine. The long distance from the core to the finished wound roll also limits the length of perforation which can be run, and the maximum stretch which can be run. This method also requires a stiff core to pinch the web to the stationary surface to minimize slippage of the web as it is stretched, thus increasing the cost of the cores.
European Patent 0 694 020B1 and U.S. Pat. No. 5,979,818 use a pad/presser member to cooperate with surface portions of the first winding roll which have a low coefficient of friction. This low coefficient of friction on the first winding roll is highly undesirable as it permits winding products to become unstable during winding due to slippage between the product and the winding drums. This is explained in U.S. Pat. Nos. 5,370,335 and 5,505,405.
The invention rapidly applies a longitudinally extending stripe of glue along the length of a core while the core is under the control of a core handling apparatus of a winding machine. The position of the stripe of glue is therefore accurately controlled. The core handling apparatus moves the core into position for insertion into the web winding apparatus so that the glue stripe is located to contact the web at the proper time in a new winding cycle.
The invention will be explained in conjunction with illustrative embodiments shown in the accompanying drawing, in which—
Referring to
The first winding roll 20 preferably has a uniform outer surface with a high coefficient of friction so that the web does not slip on the rotating roll. For example, the surface can be formed from 600 RA tungsten carbide which extends over the entire surface of the roll which engages the web. The first winding roll rotates at web speed.
The second winding roll 21 can be movably mounted on the rewinder so that the roll can move toward and away from the first winding roll as described in U.S. Pat. Nos. 4,828,195 and 4,909,452. The second winding roll can also have a variable speed profile as described in U.S. Pat. No. 5,370,335.
The rider roll 22 is pivotably mounted so that it moves away from the second roll as the winding log builds.
Before the web reaches the first winding roll 20, it travels over a stationary pinch bar 24 which is mounted adjacent the first winding roll. The pinch bar has a web-pinching surface 25 which has a relatively low coefficient of friction so that there is little or no drag on the web during normal winding. In one specific embodiment, the pinch bar surface 25 was formed from smooth steel.
A stationary plate 27 (also referred to as a transfer plate or dead plate) is mounted below the first winding roll 20 upstream of the second winding roll 21. The upstream end 28 of the stationary plate is spaced from the first winding roll a distance slightly greater than the diameter of the cores C. The spacing between the remainder of the stationary plate and the first winding roll is slightly less than the diameter of the cores so that the cores will be compressed slightly and will be rolled along the stationary plate by the rotating winding roll. The stationary plate preferably has a high friction surface, for example, tungsten carbide, in order to begin core rotation as soon as possible.
A pinch arm 30 is mounted on a rotatable shaft 31. Either a single pinch arm or a plurality of axially spaced pinch arms can be mounted on the shaft 31. The pinch arm includes a core-engaging surface 32 and a pinch pad 33. The pinch pad is preferably formed from compliant, compressible, resilient, high friction material such as 40 Shore A rubber or polyurethane. The pad may also have a high durometer surface on a low durometer base to decrease wear.
In
In
In
A modified pinch arm 42 is illustrated in
In
A pinch pad 54 on each pinch arm pinches the web against stationary pinch bar 24 to sever the web at perforation P1. The severed web is picked up by an axial glue line 55 on the core.
Using the pinch arm to insert the core between the stationary plate and the first winding roll facilitates the proper timing between the severance of the web and the contact of the core with the web and simplifies the structure of the core insertion device. However, other means for inserting the core can be used. For example, the core can be inserted by a conveyor, a pusher, or other equivalent devices.
After a log is wound on a mandrel, the mandrel is stripped from the log to provide a coreless log having a center opening. The stripped mandrel is then recycled for additional winding cycles. U.S. Pat. No. 5,421,536 describes an apparatus for winding and recycling mandrels.
The rewinder 65 includes a frame 66 on which two pairs of draw rolls 67 and 68 are mounted. The draw rolls advance web W through a perforator 69 to a three roll winding cradle formed by a first winding roll 70, a second winding roll 71, and a rider roll 72. The perforator 69 includes a rotating perforator roll 75 and a knife bar or anvil 76 for forming longitudinally spaced transverse lines of perforation in the web.
Referring to
The web travels from the draw rolls 68 over a pinch bar 80 which is mounted on the frame upstream of the first winding roll 70. The pinch bar has a smooth, low friction surface. If desired, the pinch bar can be positioned so that the web does not contact the pinch bar during normal winding.
A curved stationary plate 82 is mounted below the first winding roll 70 on a bar 83 on the frame. The stationary plate includes an upstream portion 84 on which is mounted a pad 85 (
A pinch arm 90 is mounted on a shaft 91 which is rotatably mounted on the frame. A pinch pad 92 is mounted on the pinch arm and extends beyond the end of the pinch arm. The pinch pad is formed from compliant, compressible, resilient high friction material such as rubber or polyurethane.
Returning to
The glue applicator 101 includes a pivoting arm 105 (
Referring to
When the perforation for the last sheet for the winding log L is just downstream of the mandrel M2, the rotation of the shaft 91 causes the pinch pad 92 to pinch the web against the stationary pinch bar 80. Although the pinch pad is moving in the same direction as the web, the pinch pad is moving at a slower speed than the web, preferably at about ½ of web speed. The web is therefore slowed down by the pinch pad. The pinch pad continues to pinch the web as the pinch arm 90 rotates, and the web is tensioned and stretched so that it severs at the desired perforation to form a leading edge 110 as shown in FIG. 13.
Rotation of the pinch arm 90 also moves the mandrel M2 past the retainer spring 108 (
As is well known in the art, the speed of either or both of the second winding roll 71 and the rider roll 72 is changed at an appropriate time so that the winding log L moves past the lower winding roll 71 and the rider roll 72 and down the exit ramp 112. The mandrel is thereafter stripped from the wound log by a mandrel stripper assembly 113 (FIG. 11), and the stripped mandrel is returned by means of a chute 114 to a mandrel hopper 115 where the recycled mandrels are picked up by the mandrel conveyor 99.
Referring again to
A log L is being wound on a hollow core C1 in a three roll winding cradle formed by a first winding roll 127, a second winding roll 128, and a rider roll 129. The first winding roll 127 rotates on a fixed axis, and the second winding roll 128 and the rider roll 129 are pivotally mounted as previously described. The first winding roll and the rider roll each have a rough surface with a high coefficient of friction to the web.
The web travels from the draw rolls 123 over a pinch bar 131 which is mounted on the frame upstream of the first winding roll 127. The pinch bar has a smooth, low friction surface.
A curved stationary plate 132 is mounted below the first winding roll 127 and upstream of the second winding roll 128. The stationary plate is formed from sheet metal and has a smooth surface. For example, the stationary plate can be formed from steel with 125 micro inch finish. However, it may be advantageous to provide at least the upstream portion of the stationary plate with a high friction surface for the purpose of initiating core rotation. Cores are delivered to the transfer plate by a core conveyor 135 which is entrained on pulleys 136 and 137.
Referring to
The conveyor 135 deposits the core on an upstream holding portion 143 of the stationary plate 132 where it is retained by a core retaining spring 144 (FIG. 17).
A plurality of axially spaced pinch arms 146 are mounted on a shaft 147 which is rotatably mounted on the frame. A pinch pad 148 is mounted on the pinch arm and extends beyond the end of the pinch arm. The pinch pad is formed from compliant, compressible, resilient, high friction material of the same type which was previously described.
When the perforation for the last sheet for the winding log L is just downstream of the core C3 the rotation of the shaft 147 causes the pinch pad 148 to pinch the web against the stationary bar 131 to tension and sever the web at the desired perforation to form a leading edge 149 (FIG. 18). Rotation of the pinch arm 146 also moves the core C3 past the retainer spring 144 so that the core contacts the web and begins to roll on the stationary plate 132 under the influence of the first winding roll 127. The stationary plate 132 and the holding portion 143 thereof can be provided with slots to permit the axially spaced pinch arms 146 to pass therethrough. As the core rolls on the stationary plate, the line of glue on the core picks up the web slightly upstream of the leading edge 149 of the web, the web is transferred to the core, and the leading end portion of the web folds back over the outside of the glued portion of the web portion.
As is well known in the art, the core C3 which begins a new log can move through the nip between the first winding roll 127 and the second winding roll 128 by moving the second winding roll away from the first winding roll and/or changing the speed of the second winding roll relative to the speed of the first winding roll.
A core conveyor 235 is entrained on pulleys 236 and 237. The conveyor is inclined upwardly and extends past top and bottom core infeed wheels 251 and 252 (see also FIGS. 20 and 21). The core infeed wheels rotate to move a core C axially into a position where it is adjacent the conveyor 235 and is supported by a stationary core support 253 which is mounted on frame 221. The conveyor 235 can be provided by a plurality of axially spaced belts, and the core support 253 can be provided by a plurality of fingers which extend through the spaces between adjacent belts and which are supported by a mounting plate 254 on the frame of the rewinder.
The core infeed wheels 251 and 252 are driven by pulleys 255 and 256 which are driven by a belt 257 which extends around a drive pulley 258. As the core is moved axially by the core infeed wheels, a glue applicator 259 applies an axial strip of glue (
After the core is positioned on the core supports 253, the core is held against the supports by pivotable arms 260. The pivotable arms 260 are mounted on a pivot pin 261 and are pivoted by a reciprocable ram 262. The arms 260 are mounted between the conveyor belts.
A plurality of core pushers or guides 264 are mounted on each of the conveyor belts 235 for movement with the conveyor belts, and one or more pins 265 are mounted on each core pusher.
Referring to
When it is time for the web to be severed, the shaft 247 is rotated to move the pinch arm 246 and the pinch pad 248 into position to pinch the web against the pinch plate 231. Continued rotation of the pinch arm 246 causes the pinch arm to engage the core C and move the core away from the pins 265 and into the nip between the first winding roll 227 and the stationary plate 232.
The invention can be used to wind a web on either a hollow paper core, a recycled mandrel, or other type of “center member”.
The timing of the devices for introducing the cores or mandrels to the stationary plate and the timing and speed of the rotating pinch arms can be accurately controlled in a manner well known in the art by microprocessors and servo motors. The timing of the web pinch can be precisely controlled so that the web is severed at the desired perforation to give each log an exact sheet count. The duration of the pinch can also be accurately controlled to provide minimal slack. Minimizing slack improves transfer, foldback of the web, and decreases wrinkling.
In the foregoing embodiments, the relative speed difference between the pinch pad and the first winding roll stretches the web and causes web separation. The high friction pinch pad pinches the web against a low friction pinch bar. The speed difference must be great enough over the duration of pinch to overcome the stretch limit of the web. This will limit the uppermost speed at which the pinch pad and core insertion operate relative to web speed. The surface speed of the pinch pad can be within the range of 10% to 80% of web speed.
If the materials were reversed, i.e., a low friction pinch pad and a high friction pinch bar, the web would go to zero speed for the duration of the pinch. This is described in U.S. Pat. No. 4,723,724. The high friction surface could be a resilient material (such as polyurethane) in a narrow strip, e.g., ¼ inch wide in the machine direction.
Unlike U.S. Pat. No. 4,723,724, the pinch duration could be made very short by the speed of the pinch pad and the width of the friction strip on the pinch bar. Secondly, the core or mandrel could be made to contact the web and winding roll immediately after the pinch to minimize the slack in the leading edge of the web. The surface speed of the pinch pad could be between 50% and 120% of web speed.
The advantage would be to have the insert speed of the core be equal to the web speed at the point where they first contact at the surface of the first winding roll. The core would then drop in translation speed and pick up rotational speed as it came under the influence of the transfer plate and the first winding roll. The work required to change the motion of the core would come from the friction between the transfer plate and the core, on the opposite side of the core from where web transfer is taking place. This would optimize the transfer condition and further help to reduce any slack in the incoming web due to slip between winding roll and core.
Any change in core speed that will need to be caused by the first winding roll will be limited by the stress that the web nipped between them can tolerate. Any energy added to the core by the winding roll will be accompanied by some slip between them until they match speed. This could result in rips in the first sheet at transfer.
The terms “low friction” and “high friction” as applied to the pinch pad, pinch bar, and upper winding roll are relative terms but are well understood by those skilled in the art. A quantitative value for the friction is not necessary for those skilled in the art, and indeed, quantitative values are difficult to measure because of differences in webs. What is important is that there be a difference in friction between the pinch pad and the pinch bar so that the higher friction surface controls the web. The high friction surface should have a friction which is greater than twice the friction of the low friction surface. The low friction surface can have a coefficient of friction within the range of about 0.01 to 0.5, and the high friction surface can have a coefficient of friction within the range of about 0.5 to 0.8.
The rewinder 270 is a surface winder which is similar to the winders which have been previously described. The rewinder includes a frame 273 and a dual perforator assembly 274 which includes a common anvil 275 and a pair of rotating perforating rolls 276 and 277. The perforating roll 276 is used for perforating the web at relatively short intervals, e.g., 41% inches for bathroom tissue. The perforating roll 277 perforates the web at greater intervals for household paper towels.
A web W is advanced over a spreader roll 179, around draw rolls 280 and 281 and between the appropriate perforator roll and the anvil. The perforated web is advanced by draw rolls 283 and 284 to a three roll winding nest formed by upper winding roll 286, lower winding roll 287, and rider roll 288. The web is wound on a core in the winding nest to form a log L.
A stationary pinch plate 290 is mounted on the frame upstream from the upper winding roll 286. A plurality of spaced stationary transfer fingers 291 are mounted on the frame below the upper winding roll and upstream from the lower winding roll 287.
A stack of elongated cylindrical cores C is stored in a chute 294. The bottom core is supported by a support plate 295 (FIG. 23). A reciprocating core pusher 296 pushes the bottom core out of a stack to a rotatable core inserter 297. The core pusher 296 includes a core-engaging end 298 (
Referring to
Pinch pads 307 are mounted on the end of pinch arms 308 which are attached to the core inserter. The pinch pads are engaged with the pinch plate 290 as the core inserter rotates.
A pair of L-shaped pivot arms 316 are mounted on a shaft 317 which is rotatably mounted on the frame. The pivot arms are mounted adjacent the sides of the rewinder and straddle the cores. Each pivot arm includes a downwardly extending end portion 318, and a pair of wires 319 and 320 extend between the end portions of the two pivot arms.
Referring to
In
In
As the web severs, the core inserter continues to rotate moving the core C1 into contact with the web on the upper winding roll 286 and the stationary transfer fingers 291. The core begins to roll on the transfer fingers, and the stripe of glue moves into contact with the web as the core is compressed between the upper winding roll and the transfer fingers. The leading end of the severed web is thereby transferred to the core C1 as illustrated in FIG. 27. As the core continues to roll on the transfer fingers, the web is wound around the core to begin a new log. The core inserters 297 rotate in the spaces between the transfer fingers and return to the position illustrated in
If desired, the wires 319 and 320 can be replaced by an elongated bar which has greater rigidity than a wire. Also, the width of the glue stripe can be varied by varying the width of the bar.
Another embodiment of a glue applicator is illustrated in
A plurality of spaced-apart rolls 335 and spaced-apart rolls 336 are rotatably mounted in a glue tank 337. The bottom rolls 335 rotate counterclockwise and the top rolls 336 rotate clockwise. The bottom rolls are immersed in glue 338 and transfer glue to the top rolls. Doctor blades 339 remove excess glue from the bottom rolls.
A presser plate 341 (
The top rolls 336 are mounted on a common drive shaft which can be rotated by a conventional drive, for example, a servo motor. The speed of the piston 332 of the core pusher can also be controlled by a servo motor. The drives for the core pusher and the top rolls 336 are advantageously controlled by a controller 345 so that the velocity of the piston can be adjusted relative to the surface velocity of the top rolls while the core is in contact with the top rolls.
In
A sprayer 357 is slidably mounted on a rail 358 which extends parallel to the cores. The sprayer is driven along the rail by motor 359. Glue is supplied to the sprayer by hose 360, and a stream of glue 361 is sprayed from a nozzle 362 on the sprayer.
As the sprayer moves along the rail 358, the stream 361 applies a longitudinally extending stripe of glue on the core. If desired, the stream may be interrupted automatically so that glue does not hit the support fingers 353.
After the stripe is applied the glued core is advanced to the core inserter 355 by the core pusher. The structure and operation of the core pusher 355 is the same as the structure and operation of the core pushers of
The glue applicator applies a longitudinal stripe of glue to the core just prior to insertion of the core in the winding machine. The width of the stripe can be adjusted as desired to optimize the amount of glue which is used and the holding strength of the glue. Since the glue is applied just prior to core insertion, the glue does not have time to dry. The glue which is applied to the core is “fresh” glue, and culling of dried cores at start-up is not required. If the stripe of glue on a core does dry before use, a new stripe can be applied without difficulty.
The position of the glue stripe on the core is accurately controlled by the core pusher and the core inserter. The glue stripe can therefore be positioned as desired with respect to the pinch pads and the web so that the glue will contact the severed web at the proper time to transfer the web to the core.
In
Glue applications which apply a longitudinal stripe of glue are simpler than applicators which apply transverse rings of glue. Although linear glue applications have been used in the past, the applicators of
Access to the glue applicators is quick and easy and clean up is facilitated.
The glue applicators described herein have the potential for very high cycle rates, for example, greater than 40 logs per minute.
While in the foregoing specification a detailed description of specific embodiments of the invention was set forth for the purpose of illustration, it will be understood that many of the details herein given can be varied considerably by those skilled in the art without departing from the spirit and scope of the invention.
This application is a division of U.S. patent application Ser. No. 09/559,865, filed Apr. 26, 2000, now U.S. Pat. No. 6,497,383, which was a continuation-in-part of U.S. patent application Ser. No. 09/204,906, filed Dec. 3, 1998, now U.S. Pat. No. 6,056,229.
Number | Name | Date | Kind |
---|---|---|---|
3704835 | Harley | Dec 1972 | A |
3795221 | Michael | Mar 1974 | A |
RE28353 | Nytsrand | Mar 1975 | E |
4327877 | Perini | May 1982 | A |
4487377 | Perini | Dec 1984 | A |
4723724 | Bradley | Feb 1988 | A |
4828195 | Hertel | May 1989 | A |
4856725 | Bradley | Aug 1989 | A |
4909452 | Hertel | Mar 1990 | A |
4962897 | Bradley | Oct 1990 | A |
5040738 | Biagiotti | Aug 1991 | A |
5104055 | Buxton | Apr 1992 | A |
5137225 | Biagiotti | Aug 1992 | A |
5368252 | Biagiotti | Nov 1994 | A |
5370335 | Vigneau | Dec 1994 | A |
5421536 | Hertel | Jun 1995 | A |
5505405 | Vigneau | Apr 1996 | A |
5542622 | Biagiotti | Aug 1996 | A |
5603467 | Perini et al. | Feb 1997 | A |
5643398 | Lumberg | Jul 1997 | A |
5653401 | Biagiotti | Aug 1997 | A |
5769352 | Biagiotti | Jun 1998 | A |
5800652 | Vigneau et al. | Sep 1998 | A |
5820064 | Butterworth | Oct 1998 | A |
5979818 | Perini | Nov 1999 | A |
6056229 | Blume et al. | May 2000 | A |
6098557 | Couillard et al. | Aug 2000 | A |
6422501 | Hertel et al. | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
694 020 | Sep 1997 | EP |
WO 9534498 | Dec 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20030037725 A1 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09559865 | Apr 2000 | US |
Child | 10271040 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09204906 | Dec 1998 | US |
Child | 09559865 | US |