NOTE TO SELF TO FILL IN PRIORITY INFORMATION
Not Applicable
Not Applicable
Apples and other similar fruits are grown all over the world and every apple grower has the same concern—reducing the apples that are bruised before sale. In most cases, after apples are picked they are sent to a packing factory where they are washed (and sometimes waxed), sorted according to size, and then deposited in storage bins. Sorting is automated. Apples may be evaluated for color, sugar content, size, or some combination thereof while moving through a series of conveyors. The sorted apples are loaded into an appropriate storage bin.
Apples that are sold for eating or baking have shiny skin, are firm, and are free of bruises. Not only is bruising unappealing to the eye but it can also become a source of bacterial growth. Apples that are bruised are sold for processed products such as juice. Bruised apples are sold for up to several hundred dollars per ton less than apples sold for eating or baking.
Most apples are bruised when they moved from a supply conveyor to large bins for storage. This bruising usually occurs when the apple lands into a storage bin at high velocities, when apples collide with each other, and when apples collide with machinery.
Efforts have been made to reduce bruising when apples are moved from a supply conveyor belt into storage bins. For example, Fruit Handling Systems, www.fruithandling.co.nz, and Durand Wayland, www.durand-wayland.com, produce rotating head bin fillers. Since both systems are comparable, they are referred to, individually and in combination, as the fill apparatus. As can be seen in
The fill apparatus (10) has multiple drawbacks. If fruit is loaded unevenly onto the fill conveyor (11), it will be loaded unevenly into the storage bins. As a consequence, the fruit will fall from a higher location, in the storage bin, to a lower location causing fruit collision and bruising. Additionally, if the storage bin (30) is loaded unevenly, the sensor may stop the filling process prematurely reducing fill efficiency. If fruit has not achieved a sufficiently low velocity after leaving the chute (14), the fruit may also collide into the edge of the storage bin (30) causing the fruit to bruise.
It is therefore, a purpose of this invention to provide an apparatus that allows a storage bin to be efficiently and evenly loaded while providing an environment which prevents fruit from colliding into each other and into machinery.
Other features and advantages of the present invention will become apparent in the following detailed descriptions of the preferred embodiment with reference to the accompanying drawings, of which:
In the description of the invention above and in the detailed description of the invention, and the claims below, and in the accompanying drawings, reference is made to particular features of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally. Referring now in detail to the
The Apparatus (100) is generally shown in
The frame assemblies (203) consist of two portions—an inlet portion (201) and an outlet portion (202). The inlet portion (201) accepts fruit from the vibrating brush assembly (300) which accepts feed from a supply conveyor (20), for example. The outlet portion (202) is attached to the discharge head (400). The inlet portion (201) and the outlet portion (202) have a near end (204) and a far end (205). The inlet portion (201) and outlet portion (202) of the frame assemblies (203) are hinged together 210) at the near end (204). The hinged frame assemblies (203) allow the discharge head (400) to travel in the vertical direction as a storage bin fills.
Referring to
Referring to
Optimally, the directional brushes (310) are made from nylon bristle and are glued within the vibrating brush assembly (300) at an angle of 45 degrees to the direction of fruit flow from the supply conveyor (20). And, optimally, the triangular projection (320) is embedded on the vibrating brush assembly and projects approximately 20 degrees off the vertical. The bristles of the directional brush are tilted 20 degrees off of vertical downstream, towards the discharge head (400), to promote movement.
The combination of directional brushes (310), triangular projection (320) and a reflective photo eye sensor equally splits a single flow of fruit coming from a supply belt to the parallel framed assemblies (203). Additionally, the reflective photo eye sensor allows for automated operations.
The photo eye sensor has two modes—off and on. When in the on mode, fruit accumulates in the vibrating brush assembly (300) until the photo eye sensor “sees” the fruit. Once the photo eye sensor “sees” the fruit, the conveyor belts (204) turn on for a predetermined period of time, carrying the fruit towards the discharge head (400). After the predetermined period of time, the conveyor belts (204) stop moving and fruit is allowed to accumulate. This operating system allows more gentle conveyance of fruit from the feed.
Referring to
Optimally, the conveyor (200) to discharge head (400) rotation is 3 to 1 and the discharge head (400) has six spokes (401). Fewer/greater spokes reduces the amount of fruit that safely enters the discharge head (400) at one time. With six spokes, the Apparatus (100) can load, depending on fruit size, approximately 16-19 bins per hour. Prior art fillers load approximately 12 bins per hour.
A section arm (404) extends from each spoke (401). Each section arm (404) and spoke (401) defines an open space (405).
The conveyor (200) flat top base flights (208) are synchronized with each section of the discharge head. This is accomplished with a right angle thru bore helical gear box (420). The drive shaft (403) is located at the approximate center of the discharge head (400) and each spoke (401) is attached to this drive shaft (403). Each spoke (401) of the discharge head (400) is attached to a paddle (402) that swings freely. Each paddle (402) is attached to a spoke (401) using ¼″ rod. The ¼″ rod mates with the sensor actuator. Each ¼″ rod has an inside end and an outside end. The inside end of each ¼″ rod is comprised of a disc which mates with the sensor actuator and actuates a proximity switch. When the proximately switch is activated, the discharge head (400) raises to allow even flow of fruit into the storage bin.
The paddles (402) in combination with the sensor actuator and the proximity switch, are known as the sensor actuating assembly. The proximity switch looks for the sensor actuator. When the sensor actuator is raised to a pre-set level, the Apparatus (100) raises. The level of the actuator is determined by each of the plurality of paddles (402). As the storage bin (30) fills, the paddles (402) are pushed in the upward direction by the fruit preventing uneven bin fill. Having a plurality of paddles (403) or sensors gives a more complete picture of the bin fill level.
Each section (404) accepts an elephant ear (410). Referring to
If the elephant ears (410) are too short, fruit enters the bin too quickly and distributes unevenly. If the elephant ears (410) are too long, the fruit never discharges into the bin. Optimally, the rectangular portion (430) of the elephant ear (410) is 31″×17″.
Optimally, portions of the elephant ears (410) which need to be flexible are constructed by sandwiching bubble rap between eight ounce rip stop nylon. Although other material was tested (corduroy, velveteen, canvas), it was found that eight ounce rip stop nylon does not mar the fruit, is durable and flexible. Portions of the elephant ears (410) which do not need to be flexible are made by sandwiching poron between eight ounce rip stop nylon.
In the preferred embodiment, approximately ⅓ of the top (412) of the rectangular portion (430), the attachment arm (411), and bumper is made of the poron composition. The rest of the rectangular portion is made from bubble composition.
Each elephant ear (410) comprises at least 3 flaps (440). The flaps (440) reduce the velocity of the fruit as they enter the elephant ears (410) and prevent multiple fruit from colliding into each other as they enter the elephant ears (410).
Referring to
In one preferred embodiment the Apparatus is stationary as shown in
Number | Name | Date | Kind |
---|---|---|---|
1647356 | Hendry | Nov 1927 | A |
1886295 | Morris | Nov 1932 | A |
3000162 | Carlsen et al. | Sep 1961 | A |
3254755 | O'Brien | Jun 1966 | A |
4194343 | Myers et al. | Mar 1980 | A |
4446670 | Compagnoni | May 1984 | A |
4570419 | Tinsley | Feb 1986 | A |
4765453 | Bucher | Aug 1988 | A |
4860882 | Maeda et al. | Aug 1989 | A |
5440826 | Whatley | Aug 1995 | A |
5440862 | Sanchez-de-Leon-Rodriguez-Roda | Aug 1995 | A |
5502940 | Fifield | Apr 1996 | A |
5502949 | Main et al. | Apr 1996 | A |
5598771 | Main et al. | Feb 1997 | A |
5794415 | Huff et al. | Aug 1998 | A |
6726002 | van Wijngaarden et al. | Apr 2004 | B2 |
6811021 | Corley | Nov 2004 | B1 |
7980382 | De Greef | Jul 2011 | B2 |
20050098408 | Shackelford et al. | May 2005 | A1 |
20080066429 | De Greef | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
858949 | Aug 1998 | EP |
1270422 | Jan 2003 | EP |
1847460 | Oct 2007 | EP |
2696151 | Apr 1994 | FR |
63247219 | Oct 1988 | JP |
WO 0012415 | Mar 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20120005986 A1 | Jan 2012 | US |