This technology includes structures for restraining oscillation of electrical cables under the influence of magnetic fields.
A switchgear assembly may include distinct phase conductors for connecting a circuit breaker between a current source and a load. Magnetic fields that are generated in a short circuit event can urge a conductor to alternately repel and attract an adjacent conductor. This can induce lateral oscillations which, if not restrained, could damage the apparatus.
A cable management system is provided to maintain separation laterally between a plurality of distinct phase conductors, each of which includes one or more insulated electrical cables. The cable management system includes an electrically non-conductive brace having free ends, a length between the free ends, and predetermined conductor locations that are spaced apart from one another along the length. Apertures extend through the brace at the conductor locations. The cable management system further includes retainer straps and strap locks. Each retainer strap reaches around a corresponding conductor at one of the conductor locations on one side of the brace, and reaches further through a corresponding pair of the apertures to the opposite side of the brace. Each strap lock engages a retainer strap at one side of the brace to retain a corresponding conductor in place at the conductor location on the opposite side of the brace.
In a given example, the system further includes electrically nonconductive housings containing the strap locks. Each housing has an opening for passage a strap lock into and out of the housing. Each housing also has a clamshell configuration. The clamshell configuration has a nominal condition in which the opening is shaped as a slot. The housing is formed of an elastically pliable material enabling deflection of the claim shell configuration to enlarge the opening for passage of the strap lock.
The structures illustrated in the drawings include examples of the elements recited in the claims. The illustrated structures thus include examples of how a person of ordinary skill in the art can make and use the claimed invention. These examples are described to meet the enablement and best mode requirements of the patent statute without imposing limitations that are not recited in the claims. One or more of the elements of one embodiment may be used in combination with, or as a substitute for, one or more elements of another as needed for any particular implementation of the invention.
Magnetic fields that are generated in a short circuit event can urge each conductor 36 to alternately repel and attract the adjacent conductor 36. This can induce lateral oscillations which, if not restrained, could damage the conductors 36 as well as lugs or other cable termination devices (not shown) at lower ends of the conductors 36. The separation assembly 14 helps to prevent such damage by maintaining the A, B and C phase conductors 40, 50 and 60 at locations laterally spaced apart from one another as shown in
The separation assembly 14 includes a support brace 70. The brace 70 reaches laterally across the busway 10 fully between the A phase conductor 40 and the C phase conductor 60. Other parts of the separation assembly 14 that are shown in
The brace 70 is electrically nonconductive, and may be formed of any suitable nonconductive material such as, for example, glass polyester. As shown separately in
Like the brace 70, the retainer straps 72 are electrically nonconductive and may be formed of any suitable nonconductive material. The straps 72 in the given example are thus formed of woven nylon.
Each of the three retainer straps 72 is associated with one of three corresponding strap locks 100. The strap locks 100 in the illustrated example are ratchet mechanisms with spools 102, as shown for example in
The ratchet mechanisms 100 comprise metal parts, and are conductive accordingly. For this reason the lock housings 76 are provided to enclose the ratchet mechanisms 100, and are formed of electrically nonconductive material.
The lock housings 76 in the illustrated example are alike, with each having the configuration of the housing 76 shown in
As viewed from above in
The narrower end 138 of the housing body 130 has a slot 151 (
The body 130 further has an insertion slot 157. The insertion slot 157 reaches fully along the front side 160 of the body 130, as viewed in
As further shown in
In an example of installing the separation assembly 14 as shown in
The separation assembly 14 is thus mounted directly and exclusively on the cables 30 with no direct connection to other parts of switchgear assembly. Even if the conductors 40, 50 and 60 apply forces causing oscillation or vibration of the separation assembly 14, such as lengthwise movement of the brace 70 at the free ends 86 and 88, the separation assembly 14 will not transmit those forces to other structures that support the busway 10 in the switchgear assembly.
With further reference to
This written description sets for the best mode of carrying out the invention, and describes the invention so as to enable a person of ordinary skill in the art to make and use the invention, by presenting examples of the elements recited in the claims. The detailed descriptions of those elements do not impose limitations that are not recited in the claims, either literally or under the doctrine of equivalents.