The present invention relates generally to finger print scanners, and more particularly to an apparatus for capturing a high quality image of a moist finger.
Typically, fingerprint capturing devices (readers) do not produce a good quality image when the finger being imaged is wet or has moisture on it. This is due to fingerprint image artifacts that lead to a degradation of the captured image. Typically the artifacts due to a moist finger result in bridging in the image between adjacent ridges R of a moist finger.
The angle of incidence that provides an angle of refraction of 90-degrees is known as the critical angle. Light will undergo total internal reflection for any angle of incidence greater than the critical angle. The components of the fingerprint imaging system are typically arranged in such a way that the angle of observation is greater than the critical angle for the interface between the prism and the air between the finger and the prism. The illumination source is also positioned in such a way that the generated light rays include a range of incidence angles including the angle of observation. From Snell law, the angle of incidence is equal to the angle of reflectance Φr, the range of angles of reflectance also includes the angle of observation.
Typically, the value of the critical angle at the interface between two materials depends on the index of refraction of those materials, n1 and n2. The index of refraction for air is approximately 1. The critical angle for the platen/air interface, based on the actual index of refraction of the platen material, forms a lower bound on the angle of observation and a limit on the angles of incidence. As a result, the orientation of the illumination source is also limited by the critical angle. Typically, the angle of observation is selected to be a bit larger than the critical angle.
Therefore, there is a need for an improved apparatus for capturing a high quality image of a moist finger.
An apparatus for capturing the image of a wet/moist fingerprint. The apparatus includes: a prism having an imaging plane on which a finger having valleys and ridges is place, a bottom plane parallel to the imaging plane and a reflective plane intercepting the imaging plane and intercepting the bottom plane at an angle α; a light source for generating a light with an incident angle of approximately 0° with respect to a surface normal of the imaging plane; and a lens for capturing light reflected from the reflective plane. The apparatus further includes an image sensor for generating an image of the valleys and ridges of the finger, wherein the reflective plane is arranged in such a way to meet the equation of α>45+( arc sin (n1/n2))/2, where n1 is a refraction index of medium filled between the valleys of the finger and the imaging plane, and n2 is refraction index of the prism.
In some embodiments, α is approximately in the rage of 73° to 80°. In one embodiment, n1 is approximately equal to 1.33 for water, and n2 is approximately equal to 1.76 for the prism. In some embodiments, the value of α can be changed by tilting the reflective plane via a knob, screw, spring, or other similar adjustment means
The present invention is directed to an apparatus for capturing the image of a fingerprint. The invention is capable of producing high quality images in the presence of wet/moist fingers. The invention produces better contrast images of wet/moist fingers and is substantially compact in size.
Typically the surface topography of any finger can be approximated by a series of ridges R 7 and valleys V 6. The ridges touch the prism 3 and the valleys serve to form the boundaries of regions of air and/or moisture with the upper surface 2. The light 5 is totally internally reflected at those locations where air contacts the platen surface (valley regions) when the angles of incidence and observation are properly chosen. As shown in
In locations where the ridges 7 contact the prism, total internal reflection does not occur. Instead, what is termed “frustrated total internal reflection” occurs. This is because the index of refraction of the finger is larger than that of air, so that the angle of incidence no longer corresponds to the critical angle for the relevant interface 2. As shown on the left side of
In short, as shown in
However, on the ridges, the incident lights are scattered and there is a small fraction of lights that are focused by the lens onto the detector. This causes the images of the ridges not to be substantially black, that is, the contrasts of images produced by such apparatus are diminished or restricted.
Assuming that the refraction index of medium filled in the valley 6 is n1 (for example, n1 is 1.0 for air, and around 1.33 for water), and the refraction index of the prism 3 is n2, the incident light 8 is scattered in the valleys 6, and refraction occurs when the scattered light meet the interface of the medium filled in the valley and the prism. The refraction angle is determined by the Snell law:
n2 sin Φ1=n2 sin Φ2 (1)
where, Φ1 is the incident angle and Φ2 is the refraction angle. As explained above, the refraction angle is no larger than the critical angle Φ0:
Φ0=arc sin (n1/n2), when Φ1=90°. (2)
Therefore, the lens of the device of the present invention is aligned to collect only the light scattered from the ridges with a scattering angle Φs lager than the critical angle Φ0. For example, a critical angle of Φ0=49° is obtained using equation (2) by substituting n1=1.33 for water, and n2=1.76 for a type of flint glass at wavelength λ=850 nm.
This results in a total internal reflection, because the critical angle and the arrangement of the lens and the light source are considered with respect to water (moisture).
The reflected lights then meet the reflective plane 10 of the prism 3 and are reflected into a lens 14 through the backend 13 of the prism. In one embodiment, the angle between bottom plane 11 and the reflective plane 10 of the prism 2 is α=45°+Φs/2=73°. Once leaving the lens 14, the light is folded again by a folding mirror 15 to reduce the height of the device. Finally, the light is reflected onto an image sensor 16 and bright images of ridges are detected. In one embodiment, α is approximately in the rage of 73° to 80°.
In some embodiments, prism 3 including the imaging plane 2, the reflective plane 10, and the bottom plane 11 are molded in a single prism component. In some embodiments, prism 3 can be made into different shapes to fold the light path for a more compact device.
It will be recognized by those skilled in the art that various modifications may be made to the illustrated and other embodiments of the invention described above, without departing from the broad inventive scope thereof. It will be understood therefore that the invention is not limited to the particular embodiments or arrangements disclosed, but is rather intended to cover any changes, adaptations or modifications which are within the scope of the invention, as defined by the appended claims.
This Patent Application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/915,363, filed on May 1, 2007 and entitled “Apparatus For Capturing A High Quality Image Of A Moisten Finger,” the entire content of which is hereby expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4137565 | Mager et al. | Jan 1979 | A |
4315310 | Bayliss et al. | Feb 1982 | A |
4569080 | Schiller | Feb 1986 | A |
4784484 | Jensen | Nov 1988 | A |
4833724 | Goel | May 1989 | A |
4924085 | Kato et al. | May 1990 | A |
5233404 | Lougheed et al. | Aug 1993 | A |
5245672 | Wilson et al. | Sep 1993 | A |
5307345 | Lozowick et al. | Apr 1994 | A |
5416573 | Sartor, Jr. | May 1995 | A |
5426684 | Gaborski et al. | Jun 1995 | A |
5448649 | Chen | Sep 1995 | A |
5517419 | Lanckton et al. | May 1996 | A |
5528355 | Maase et al. | Jun 1996 | A |
5579278 | McLaury | Nov 1996 | A |
5596454 | Hebert | Jan 1997 | A |
5613014 | Eshera et al. | Mar 1997 | A |
5619586 | Sibbald | Apr 1997 | A |
5621516 | Shinzaki et al. | Apr 1997 | A |
5633947 | Sibbald | May 1997 | A |
5751836 | Wildes et al. | May 1998 | A |
5754697 | Fu et al. | May 1998 | A |
5778175 | Paul et al. | Jul 1998 | A |
5799098 | Ort | Aug 1998 | A |
5809180 | Kimura et al. | Sep 1998 | A |
5828769 | Burns | Oct 1998 | A |
5828773 | Setlak | Oct 1998 | A |
5887079 | Endo et al. | Mar 1999 | A |
5900993 | Betensky | May 1999 | A |
5937090 | Kim | Aug 1999 | A |
5949905 | Nichani et al. | Sep 1999 | A |
5996061 | Lopez-Aguado | Nov 1999 | A |
6317810 | Lopez-Aguado | Nov 1999 | B1 |
6002815 | Immega et al. | Dec 1999 | A |
6011860 | Fujieda | Jan 2000 | A |
6038226 | Ellersick et al. | Mar 2000 | A |
6043900 | Feng et al. | Mar 2000 | A |
6138212 | Chiacchia | Oct 2000 | A |
6175407 | Sartor | Jan 2001 | B1 |
6219447 | Lee | Apr 2001 | B1 |
6249360 | Pollard et al. | Jun 2001 | B1 |
6259108 | Antonelli et al. | Jul 2001 | B1 |
6324020 | Teng et al. | Nov 2001 | B1 |
6355937 | Antonelli et al. | Mar 2002 | B2 |
6360307 | Raftery et al. | Mar 2002 | B1 |
6384832 | Muramatsu et al. | May 2002 | B1 |
6473194 | Sakai | Oct 2002 | B1 |
6483932 | Martinez et al. | Nov 2002 | B1 |
6505905 | Krouss | Jan 2003 | B1 |
6618076 | Sikthankar et al. | Sep 2003 | B1 |
6654142 | Min | Nov 2003 | B1 |
6697538 | Angenent et al. | Feb 2004 | B1 |
6870538 | Macinnis | Mar 2005 | B2 |
6879709 | Tian et al. | Apr 2005 | B2 |
6912638 | Hellman | Jun 2005 | B2 |
6928195 | Scott | Aug 2005 | B2 |
6934409 | O'Hara | Aug 2005 | B2 |
6956608 | Shapiro et al. | Oct 2005 | B1 |
6980286 | Feng | Dec 2005 | B1 |
6993165 | McClurg et al. | Jan 2006 | B2 |
7020951 | Lin et al. | Apr 2006 | B2 |
7081951 | Carver et al. | Jul 2006 | B2 |
7088872 | Hsieh et al. | Aug 2006 | B1 |
7095880 | Martinez et al. | Aug 2006 | B2 |
7194393 | Wei et al. | Mar 2007 | B2 |
7203344 | McClurg et al. | Apr 2007 | B2 |
7267799 | Borich et al. | Sep 2007 | B1 |
7277562 | Zyzdryn | Oct 2007 | B2 |
7315632 | Spycher et al. | Jan 2008 | B2 |
7418123 | Giger | Aug 2008 | B2 |
7564495 | Lee | Jul 2009 | B2 |
7580567 | Hsieh et al. | Aug 2009 | B2 |
7587064 | Owechko et al. | Sep 2009 | B2 |
7616788 | Hsieh et al. | Nov 2009 | B2 |
7639858 | Ross et al. | Dec 2009 | B2 |
7796266 | Cohen et al. | Sep 2010 | B2 |
7840062 | Boroczky | Nov 2010 | B2 |
7876934 | Georgescu et al. | Jan 2011 | B2 |
7912528 | Krishnan | Mar 2011 | B2 |
20010014066 | Koudo | Aug 2001 | A1 |
20010038707 | Ohara | Nov 2001 | A1 |
20020073211 | Lin et al. | Jun 2002 | A1 |
20030013951 | Stefanescu et al. | Jan 2003 | A1 |
20030025749 | Krouss | Feb 2003 | A1 |
20030189571 | Macinnis et al. | Oct 2003 | A1 |
20040046761 | Hellman et al. | Mar 2004 | A1 |
20040088490 | Ghosh | May 2004 | A1 |
20040102931 | Ellis et al. | May 2004 | A1 |
20040114829 | LeFeuvre et al. | Jun 2004 | A1 |
20040172238 | Choo | Sep 2004 | A1 |
20050020903 | Krishnan et al. | Jan 2005 | A1 |
20060224539 | Zhang et al. | Oct 2006 | A1 |
20060245631 | Levenson et al. | Nov 2006 | A1 |
20070140550 | Li et al. | Jun 2007 | A1 |
20070183663 | Wang et al. | Aug 2007 | A1 |
20070189582 | Hamza et al. | Aug 2007 | A1 |
20070296863 | Hwang et al. | Dec 2007 | A1 |
20080080768 | Li et al. | Apr 2008 | A1 |
20080123931 | He et al. | May 2008 | A1 |
20080159614 | He et al. | Jul 2008 | A1 |
20080170770 | Suri | Jul 2008 | A1 |
20080170778 | Luo | Jul 2008 | A1 |
20080292194 | Schmidt et al. | Nov 2008 | A1 |
20090060335 | Rodriguez Serrano et al. | Mar 2009 | A1 |
20090116737 | Kiraly et al. | May 2009 | A1 |
20090148010 | Boroczky | Jun 2009 | A1 |
20090154814 | Natan | Jun 2009 | A1 |
20090161928 | Khamene et al. | Jun 2009 | A1 |
20090171240 | Aguilar et al. | Jul 2009 | A1 |
20090185746 | Mian et al. | Jul 2009 | A1 |
20090220148 | Levy et al. | Sep 2009 | A1 |
20090268988 | Hsieh et al. | Oct 2009 | A1 |
20090299999 | Loui | Dec 2009 | A1 |
20100014718 | Savvides et al. | Jan 2010 | A1 |
20100027852 | Hsieh et al. | Feb 2010 | A1 |
20100049674 | Zohar | Feb 2010 | A1 |
20100178204 | Yin et al. | Jul 2010 | A1 |
20100304358 | Nie et al. | Dec 2010 | A1 |
20120120233 | Li | May 2012 | A1 |
Number | Date | Country |
---|---|---|
0 098 607 | Jul 1983 | EP |
9613742 | Oct 1995 | WO |
WO 0118741 | Mar 2001 | WO |
2008024778 | Feb 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080273771 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60915363 | May 2007 | US |