The present invention relates to a windmill structure and more particularly to a windmill and/or watermill on a vertical axis, containing hinged panels with a controlled “flipping action,” that captures kinetic energy from a wide range of wind and water current speeds.
Since ancient times, men have captures the power of the wind for a variety of purposes. The history of wind power shows a general evolution from the use of simple, light devices driven by aerodynamic drag forces; to heavy, material-intensive drag devices; to the increased use of light, material-efficient aerodynamic lift devices in the modern era. The oldest known windmills were crude, simple devices used in the 7th century by the Persians. Europeans made extensive use of the windmill beginning in the 12th century, providing mechanical energy for pumping water, sawing lumber, and grinding grain. In the United States, the windmill was used to pump water on homesteads across the American frontier. In the late 20th century, windmills were developed to convert wind energy into electric power.
Many countries began exploring alternative sources of energy during the oil shortages of the 1970s. As improvements in wind energy technology have evolved, the modern wind energy industry has emerged. Concern about global warming also spurred interest in wind energy as an alternative to burning fossil fuels, which release greenhouse gases into the atmosphere. Increasingly, modern wind turbines produce electric power as efficiently as other power generation technologies.
As one would expect, the art in the area of windmills is abundant. However, many modern windmills face a whole array of structural problems, thereby preventing widespread use of this significant alternative source of energy. For example, one of the major obstacles for developing wind energy is finding suitable terrain and wind conditions. The windmills constructed for the purpose of operating in general velocity of winds are generally not strong enough to withstand high speed winds. On the other hand, windmills manufactured solidly enough to withstand strong winds generally are incapable of efficient operation in average velocity winds. Thereby, there exists a need for a windmill that is capable of operating in diverse intensity of wind speeds.
One of the devices that attempts to address this problem is disclosed in U.S. Pat. No. 7,118,341, issued to Hartman, entitled “Self Adjusting Sail Vertical Shaft Windmill.” Hartman discloses a windmill comprising a vertical shaft with mounted sails wherein said sails can self adjust to interact with the wind in such a way as to power the windmill, as well as relieve themselves from winds that are too severe, while maintaining continuous operation. This objective is achieved through the use of springs attached to the sails wherein the sails that are broadside to the wind are relieved by stretching the springs and thus reducing the profile of the broadside sails to the wind. However, the Hartman windmill involves a complex combination of mechanical components, thereby likely necessitating high production costs. Additionally, the particular design of the windmill makes it impracticable, if not impossible, to be used for extracting energy from water currents, as the multiple mechanical components comprising the windmill are more prone to damage in a more dense medium such as water.
Another drawback of previously known windmills is that they have to be aligned with the windstream to enable operation, thus considerably limiting the utility of such windmills. A windmill device disclosed in U.S. Pat. No. 6,688,842 to Boatner, entitled “Vertical Axis Wind Engine,” attempts to cure this problem by providing the device having “free flying” airfoils that self position according to the local dynamic conditions to which they are subjected. Boatner describes a windmill which includes a support structure, a rotor mounted rotatably on the support structure for rotation about a vertical axis, and at least one airfoil mounted on the rotor for pivotal movement about the pivotal axis. The rotor includes components for limiting pivotal movement of the airfoil to first and second limits. The airfoil is free to pivot about the pivotal axis intermediate to first and second limits of pivotal movement thereby enabling the airfoil to align the angle-of-attack axis according to the wind. However, the Boatner windmill lacks any mechanical, pneumatic or hydraulic means for assistance in control of the rotational movement of the airfoils under high speed wind conditions by mechanically pulling the airfoils into a position of least wind resistance, thereby enabling the windmill to operate in a diverse intensity of wind speeds. Furthermore, the design of the airfoils wherein the pivotal axes of said airfoils are located one-third of the way back from the leading edge of the airfoils does not provide for optimal efficiency of the windmill as it does not take advantage of the possible momentum that can be added to the rotation of the windmill/watermill by a flipping action of the airfoils/panels achieved through positioning of the pivotal axes of the airfoils/panels on the leading edge of said airfoils/panels thus allowing the wind or water current to flip the airfoils/panels open.
Still another windmill system is disclosed in U.S. Pat. No. 6,926,491, issued to Migler, entitled “Vertical Axis Wind Turbine with Controlled Gybing.” Migler discloses a device for capturing electricity comprising sails that rotate around a vertical tower. As the sails rotate, the sails moving toward the wind are automatically feathered, and the sails moving away from the direction of the wind are prevented from being feathered by sail restraints. An inner sail restraint positions each sail so that the sail gybes at an earlier time than would otherwise occur. An outer sail restraint “catches” the sail as it gybes, capturing much of the energy of the gybe, adding additional rotational force. Although the windmill disclosed in Migler provides an effective solution for capturing the energy of the wind, its structural design is not as durable as the design of the present invention, and thus is not likely to be suitable for use in water currents. Additionally, the device in Migler comprises multiple components, which in turn increases manufacturing costs and limits its application in a variety of settings.
Accordingly, it is an object of the present invention to provide a windmill/watermill mechanism with a minimal number of moving parts of relatively low production cost.
It is a further object of the present invention to provide a device capable of operating in diverse intensity wind and water speeds.
It is a further object of the present invention to provide a windmill/watermill wherein a direction of the rotation can be easily changed in the manufacturing process.
It is yet a further object of the present invention to provide a device capable of operating in both water and air for superior capture of the kinetic energy from water and air currents over any known windmills/watermills.
It is a further object of the present invention to provide a device comprising structural arms and panels attached at the end of their respective structural arms having a design that enables said windmill/watermill to be manufactured in a wide variety of sizes, thereby increasing the potential uses within both residential and commercial applications.
It is a further object of the present invention to provide a windmill/watermill capable of self-adjusting to the air or water current direction and therefore not requiring a vane or other mechanism to adjust to differentials in direction of the current.
In order to overcome the deficiencies of the prior art to achieve at least some of the objects and advantages listed, an apparatus for capturing kinetic energy is provided, comprising a vertical axis spindle; a plurality of structural arms having proximal ends attached to the vertical axis spindle; and a plurality of panels wherein the panels are rotatably attached to distal ends of their respective structural arms along a vertical pivotal axis at remotest position from said spindle for movement between a folded position horizontally alongside their respective structural arms and an open position angled to their respective structural arms, wherein the pivotal axis extends vertically along an edge of each panel.
In one embodiment, the device may be used to capture kinetic energy from wind. In another embodiment, the device may capture kinetic energy from any source of fluid energy, such as water currents.
The device may comprise structural arms with a cross support design to enable said structural arms to hold the necessary weight of the various desired panel sizes, thereby increasing potential utility and output of the present invention.
The device may also comprise a plurality of hinge assemblies for rotatable attachment of the panels to the distal ends of their respective structural arms.
The device may further comprise panels that swing out approximately 90° to 135° from the structural arms for maximum efficiency. The structural arms are may comprise a lightweight tubing material, and each panel may comprise a frame and material stretched across the frame. The frame may comprise a lightweight tubing material, and the material may be synthetic sail material.
The panels may also comprise a flat solid material or hollow braced airfoil design, and have a shape designed to reduce resistance to currents and to assist in pulling the panels back into the structural arms.
In addition, the device may further comprise a plurality of struts for dampening contact points between the panels and the hinge assemblies as the panels reach the open position angled to the respective structural arms and between the panels and their respective structural arms as the panels rotate to the folded position parallel to their structural arms. The struts may further be engaged to the panels back to the folded position horizontally alongside their respective structural arms to control rate of speed of the rotational movement of the panels. The struts may be mechanically, hydraulically or pneumatically actuated.
Yet further, the device may comprise a rotary actuator fitted within each hinge assembly and engaged to dampen contact points between said panels and said hinge assemblies as the panels reach said open position angled to said respective structural arms, and between said panels and said respective structural arms as the panels rotate to said folded position parallel to the structural arms, and to pull said panels back to said folded position horizontally alongside said respective structural arms to control rate of speed of the rotational movement of said panels.
The device may also comprise hinge assemblies fitted with high quality ball bearings to allow the panels to easily rotate to achieve the least level of resistance.
In another embodiment, the device for capturing kinetic energy from wind and water speeds is provided, comprising a vertical axis spindle; a plurality of structural arms with proximal ends attached to the vertical axis spindle; a plurality of panels rotatably attached to distal ends of their respective structural arms along a vertical pivotal axis at remotest location from the spindle for movement between an open position angled to their respective structural arms and a folded position horizontally alongside their respective structural arms, wherein the pivotal axis extends vertically along an edge of each said panel; and mechanically actuated struts arranged to dampen contact points between the panels and the hinge assemblies as the panels reach the open position angled to their respective structural arms, and between the panels and their respective structural arms as the panels rotate to the folded position parallel to the structural arms, and to pull the panels back to the folded position horizontally alongside their respective structural arms to control rate of speed of the rotational movement of the panels.
In yet another embodiment, the apparatus for generating power is provided, comprising a vertical axis spindle; a plurality of structural arms with proximal ends attached to the vertical axis spindle; a plurality of panels that are rotatably attached at their edges to distal ends of their respective structural arms along a vertical pivotal axis at remotest location to the spindle for movement between a folded position horizontally alongside their respective structural arms and an open position angled to their respective structural arms; and an energy converting system coupled to the spindle for converting first type of energy into second type of energy.
The energy converting system may comprise a transmission connected to the spindle, and a power generation system coupled to the transmission.
Other objects of the invention and its particular features and advantages will become more apparent from consideration of the following drawings and accompanying detailed description.
An important aspect of the present invention is the use of multiple large panels with a controlled “flipping action,” allowing one to easily move the panels using either wind or water, herein referred to as “wind” currents, at various speeds. A three-panel system (shown in
From an overhead view, each panel 4 acts as a sail through the 180° to 360° positions, (see panel 4c in
The apparatus 1 is designed to withstand high wind or water current speeds. Under such conditions, the centrifugal momentum of the spinning apparatus 1 causes the panels 4 to stay open after they reach their 90° ± stops. This causes greater resistance against the wind/water current (see
In
As
In
As
In
Several possible arrangements exist for transferring the power harnessed by the apparatus 1 through its vertical axis spindle 2 and securing the entire apparatus 1 to an object. One such method, as described in
The various mechanical, hydraulic or pneumatic mechanisms may be applied to the apparatus 1 to act as dampeners as well as controllers of the flipping/swing rate. In addition to pulling the panels 4 back to their parallel position with their structural arms 3 in higher winds or water current speeds, such mechanisms dampen the contact points between the 90° to 135° stop and the structural arms. More specifically, they are designed to do three things: (1) Dampen the contact points between the swinging panel 4 as it makes contact with its 90° to 135° stop and its structural arm 3 once it swings back to its parallel position next to the structural arm 3; (2) control the rate of speed of the flipping action of the panels 4 under higher wind/water current speed conditions; and (3) assist in closing the panels 4 under such conditions as the centrifugal force of the spin overpowers the wind/water current by pulling the panels 4 back to a parallel position with their structural arms 3.
Although the invention has been described with reference to a particular arrangement of parts, features and the like, these are not intended to exhaust all possible arrangements or features, and indeed many other modifications and variations will be ascertainable to those of skill in the art.
This application claims priority benefits under 35 U.S.C. §119(e) of the U.S. Provisional application No. 60/949,708, filed on Jul. 13, 2007.
Number | Date | Country | |
---|---|---|---|
60949708 | Jul 2007 | US |