Apparatus for coating a web

Information

  • Patent Grant
  • 6558466
  • Patent Number
    6,558,466
  • Date Filed
    Wednesday, December 15, 1999
    24 years ago
  • Date Issued
    Tuesday, May 6, 2003
    21 years ago
Abstract
An apparatus for coating a web of indeterminate length has a coating element comprising a liquid deflector member for diverting liquid away from a coating surface. The liquid deflector member is arranged beneath a blade member that removes excess coating liquid from the coating surface. Excess coating liquid follows a path away from the coating surface and down the liquid deflector member thereby avoiding contamination of the coating surface.
Description




FIELD OF THE INVENTION




The invention relates generally to the field of roller/gravure coating. More particularly, the invention concerns a coating apparatus that meters a film of liquid coating solution from a coating surface or roller and then diverts it away, thereby preventing contamination of the coating surface.




BACKGROUND OF THE INVENTION




In conventional roller/gravure coating processes (as described, for example, in U.S. Pat. No. 4,373,443, Feb. 15, 1983, by Matalia et al., entitled, “Method Of High Viscosity Inking In Rotary Newspaper Presses” where a gravure cylinder provides ink in newspaper presses), a liquid coating composition is directed to the surface of a coating applicator roll


1


by one of several suitable means including rotating (denoted by arrow) the applicator roll


1


through a reservoir


2


of liquid


3


, as illustrated in FIG.


1


. The surface of the coating applicator roll


1


may have a smooth finish or it may be engraved with cells/grooves


5


of prescribed volume. Often, the layer of liquid


3


picked up by the applicator roll


1


from the reservoir


2


is subsequently metered to a thinner film using a doctor blade


4


. In gravure coating, for example, the doctor blade


4


removes all the applied liquid except that which is present in the engraved cells


5


formed in the gravure cylinder


1


. Alternatively, the steps of wetting (filling) and doctoring may also be combined as described in U.S. Pat. No. 4,158,333, Jun. 19, 1979, by Navi, titled, “Inking Baffle For Rotary Newspaper Presses.” After the doctoring step, the liquid remaining on the surface of a smooth coating applicator roll or that remaining in the cells


5


of an engraved coating applicator roll is transferred to a moving web


6


by impressing the moving web


6


between the applicator roll


1


and a soft backer or impression roll


7


. In

FIG. 1

, the web


6


is shown to be moving in the same direction as the surface of the coating applicator roll


1


at the point of contact between the two, but in roller/gravure coating practice, the web may be conveyed in the opposite direction as well. The thickness of coating transferred to the moving web


6


is generally a known fraction of the thickness of liquid film retained on the surface of a smooth coating applicator roll downstream of the doctoring step or, alternatively, it is a known fraction of the volume of the engraved cells


5


per unit surface area of an engraved coating applicator roll


1


.




Depicted in

FIGS. 2



a


and


2




b


, a shortcoming of existing roller/gravure coating processes is that when excess liquid


8


removed by the doctor blade


4


falls back on the surface of the coating applicator roll


1


, it is carried back up to the “bank” of coating liquid


9


that is accumulated between the moving coating applicator roll


1


surface and the stationary doctor blade


4


. Since the excess liquid


8


falls back on and contacts the surface of the coating applicator roll


1


in a turbulent and random manner, this renders the bank of coating liquid


9


uneven in the cross-web direction. The unevenness of the bank of coating liquid


9


in turn causes a coating defect in the form of streaks and bands


10


, as exemplified in FIG.


3


. The defect is especially prominent in particulate coating dispersions (as opposed to solutions).




An analysis of the nature of the flow of metered liquid


3


behind the doctor blade


4


reveals that at low coating applicator roll


1


surface speeds the liquid


3


simply runs back down the surface of the coating applicator roll


1


in a laminar fashion (see flow lines


11


in

FIG. 4



a


). However, as speed of the coating applicator roll


1


is raised, a point is reached when the metered liquid


3


separates from the surface of the coating applicator roll


1


and flows (see flow lines


12


in

FIG. 4



b


) generally along the underside


13


of doctor blade


4


and away from the surface of the applicator roll


1


.




Moreover, at some point further downstream of the contact point


14


between the doctor blade


4


and the coating applicator roll


1


, the deflected liquid loses its momentum and therefore separates from the underside surface


13


of the doctor blade


4


and falls or flows vertically downwards under the influence of gravity (refer to

FIG. 4



b


).




Presently the defect can be avoided in one of several ways. One way known to avoid this defect is to maintain the coating speed below the speed of transition from “runback” flow to “deflected” flow. Experimental observations indicate that the speed of transition between runback flow (

FIG. 4



a


) and deflected flow (

FIG. 4



b


) depends on operating parameters—viscosity and surface tension of liquid; tangent angle between doctor blade


4


and surface of the coating applicator roll


1


; thickness of the incoming film of liquid; radius of coating applicator roll


1


; etc. Here, runback flow is defined as the case where liquid removed by the doctor blade


4


runs back down the surface of the coating applicator roll


1


. Deflected flow is where the excess liquid


8


metered by the doctor blade


4


travels away from the surface of the coating applicator roll


1


, along the underside


13


of the doctor blade


4


, up to a point where it loses its momentum, and then further separates from the underside


13


of the doctor blade


4


surface, and drops vertically under the influence of gravity.




Unfortunately, under normal operating/manufacturing conditions, the speed of transition from runback to deflected flow is too low for it to be a practicable production speed.




Referring to

FIGS. 5



a


and


5




b


, another known way to avoid the defect is to locate the contact point or tip


14


of the doctor blade


4


at application points on the cylindrical coating applicator roll


1


surface that are far from top-dead-center


19


. Then, especially in the case of small diameter cylinders, i.e., typically diameters less than about 5 inches, the deflected excess liquid


8


in all likelihood will not flow back to the cylindrical coating applicator roll


1


surface on its way down (refer to

FIG. 5



b


). But at application points close to top-dead-center


19


, and with large diameter coating applicator rolls


1


, the excess liquid


8


will tend to flow back to the surface of the coating applicator roll (

FIG. 5



a


).




Unfortunately, the location of the contact point or tip


14


of the doctor blade


4


, relative to top-dead-center


19


cannot be changed arbitrarily. For instance, to minimize evaporation of coating liquid


3


from the surface of the coating applicator roll


1


in the region between the contact point or tip


14


of the doctor blade


4


and top-dead-center


19


, it may be necessary to narrowly fix the distance of the contact point or tip


14


of the doctor blade


4


from top-dead-center


19


. Similarly, the diameter of the coating applicator roll


1


may also have to be narrowly fixed. This is true, for instance, in the coating of discrete patches or patterns using gravure coating, wherein the ratio of gravure cylinder circumference to engraved patch/pattern length has to be maintained constant.




While there are no known prior art attempts to solve Applicants' specific problem of diverting coating liquid from the surface of a coating applicator roll having an excess quantity of liquid thereon, U.S. Pat. No. 5,755,883, May 26, 1998, by Kinose et al., titled, “Roll Coating Device For Forming A Thin Film Of Uniform Thickness” discloses a roll coater having a blade scraper for scraping coating liquid from a metal roll and a tray positioned beneath the nip for catching the scraped liquid. This device provides only for preventing fluid from contacting coating elements beneath the nip and does not protect the roll from which the liquid was deposited from receiving excess liquid.




An attempt to use a similar tray in a location between the underside


13


of the doctor blade


4


and the surface of the coating applicator roll


1


(refer to

FIG. 6

) was not successful because there is very little room available there. Indeed the deflected excess liquid


8


separates from the underside


13


of the doctor blade


4


so quickly that the lip


20


of the tray


21


would have to be within 0.32 cm (0.125 in) from the underside surface


13


of the doctor blade


4


, and the applicator roll


1


surface. Such tight gaps are not favored in manufacturing environments.




Yet another scheme to prevent the defect involves the creation of a narrow passageway


22


between the coating applicator roll


1


surface and an element


23


. The coating liquid


3


effectively “floods” the passageway


22


and in this manner defects that persist far upstream of the contact point or tip


14


of doctor blade


4


are forced to damp out before they reach the contact point or tip


14


of doctor blade


14


. In other words, the pressure in the “bank” of coating liquid


9


accumulated between the moving coating applicator roll


1


surface and the stationary doctor blade


4


stays even across the width of the web


6


, at least in the vicinity of the doctor blade tip


14


. However, the drawback of this approach was that to effectively flood the passageway


22


under all operating conditions, the element


23


had to be maintained at gaps less than 0.2 cm (0.08 in) from the coating applicator roll


1


surface. Again, such narrow gaps are not favored in the manufacturing environment.




Finally, the problem may be inherently solved by using combined feed/blading units, such as the reverse doctor pond feed (U.S. Pat. No. 4,158,333). There, the trailing blade at the exit of the reservoir keeps the excess fluid within the reservoir, and hence there is no occasion for deflection (“deflection” is illustrated in

FIG. 4



b


). However, in the present application, reverse doctor pond feed is not practicable.




Therefore, there persists a need for a roller/gravure coating process in which excess coating liquid material removed by a doctor blade is diverted away from the surface of the coating applicator roll thereby avoiding contamination of the applicator roll surface.




SUMMARY OF THE INVENTION




It is, therefore, an object of the invention to provide a roller/gravure coating apparatus having a liquid metering/diverting element for metering a film of liquid material from the surface of a coating applicator roll and then diverting excess liquid material away from the surface of the coating applicator roll.




An important feature of the invention is a liquid deflector member arranged proximate to the surface of the coating applicator roll and a metering member for diverting excess liquid away from the coating applicator roll surface.




To solve this and other objects of the invention, there is provided an apparatus for coating a web of indeterminate length, comprising a source of coating composition; an engraved cylinder at least partially in fluid contact with the source of coating composition. The engraved cylinder includes a plurality of cells for collecting coating composition therein and then transfers the coating composition to the web of indeterminate length. An impression cylinder is in rotating contact with the engraved cylinder, which thereby forms a web transfer path therebetween. The web of indeterminate length is advanced through the web transfer path so that coating composition in plurality of cells transfers to the web of indeterminate length forming an applied coat of coating composition on the web of indeterminate length. The apparatus also comprises a coating element for doctoring the applied coat of coating composition on the web of indeterminate length to a finished coat and then diverting any excess coating composition away from said engraved cylinder.




It is an advantageous effect of the invention that the liquid deflector member is versatile, cost effective to manufacture, simple to install and operate and can function with minimum variability of settings over a wide range of manufacturing operating conditions











BRIEF DESCRIPTION OF THE DRAWINGS




The above and other objects, features, and advantages of the present invention will become more apparent when taken in conjunction with the following description and drawings wherein identical reference numerals have been used, where possible, to designate identical features that are common to the figures, and wherein:





FIG. 1

is a front elevation view of a prior art roller/gravure coating process;





FIG. 2



a


is a schematic illustration of a partial cross-sectional side view of a prior art roller/gravure coating process illustrating doctored sheet of coating liquid flowing downwardly onto the surface of a coating applicator roll;





FIG. 2



b


is a scanned photographic image of a partial cross-sectional side view of a prior art roller/gravure coating process illustrating doctored sheet of coating liquid flowing downwardly onto the surface of a coating applicator roll;





FIG. 3

is a scanned image of a coating sample illustrating defects in the form of streaks and bands of a prior art roller/gravure coating process;





FIG. 4



a


is a schematic of a roller/gravure coating process illustrating flow of excess coating liquid running back down the surface of a coating applicator roll;





FIG. 4



b


is a schematic of a roller/gravure coating process illustrating deflected flow of excess coating liquid along the underside of a doctor blade member;





FIG. 4



c


is a scanned image of photographic snapshots depicting the transition of flow behind the blade from “runback” to “deflected” modes. The top and bottom pictures images in this column are the counterparts of the schematic illustrations in

FIGS. 4



a


and


4




b,


respectively;





FIG. 5



a


is a schematic of a prior art roller/gravure coating process illustrating deflected sheet of coating liquid separating from underside of doctor blade and flowing downwardly onto the surface of a coating applicator roll;





FIG. 5



b


is a schematic of a prior art roller/gravure coating process illustrating deflected sheet of coating liquid separated from the doctor blade and the surface of a coating applicator roll;





FIG. 6

is a schematic of a prior art element to catch the deflected sheet of liquid after separation from the doctor blade;





FIG. 7

is a schematic of another prior art element to flood the passageway between the surface of a coating applicator roll and said element in an attempt to maintain an even bank of coating liquid at the tip of the blade;





FIG. 8



a


is a schematic of the element of the invention illustrating orientation with respect to the surface of the coating applicator roll and metering doctor blade;





FIG. 8



b


is a scanned image of an application of the invention;





FIG. 9

is a schematic of the element of the invention illustrating an unfavorable orientation of liquid deflector member; and,





FIGS. 10



a


,


10




b


, and


11


are schematics of the element of the invention illustrating alternative embodiments.











DETAILED DESCRIPTION OF THE INVENTION




Turning now to the drawings, and in particular to

FIGS. 8



a


-


10


, there is illustrated the coating element


25


according to the principles of the invention. According to

FIGS. 8



a


and


8




b


, coating element


25


removes excess liquid (l) from the surface


27


of a coating applicator, such as a roll


24


, and then diverts the excess liquid (l) away from the surface


27


. Importantly, coating element


25


has a doctor blade member


26


and a liquid deflector member


28


structurally disposed in a support member


30


.




Referring to

FIGS. 8



a


-


11


, doctor blade member


26


, generally has an active end


32


extending from the support member


30


for engaging and removing excess liquid (l) from the surface


27


of coating applicator or roll


24


. Support member


30


is used principally to manipulate and fix the orientation of the active end


32


relative to the surface


27


of the coating applicator or roll


24


. Thus, for most efficient operation, active end


32


of doctor blade member


26


, and more particularly, underside


34


, is arranged preferably at a predetermined angle θ


t


with the surface


27


of the coating applicator or roll


24


. The inventors have determined that a preferred range of predetermined angle θ


t


is between about 50-60 degrees. Skilled artisans will appreciate that the active end


32


of the doctor blade member


26


contacts the surface


27


of the coating applicator or roll


24


at some well defined point P so that excess coating liquid (l) can be effectively removed from the surface


27


.




Referring to

FIGS. 8



a


-


11


, liquid deflector member


28


has an active face


36


(if properly oriented) that diverts excess coating liquid (l) away from the surface


27


of the coating applicator or roll


24


. Thus, excess coating liquid (l) doctored from the surface


27


of coating applicator or roll


24


flows along the underside


34


of active doctor blade member


26


and then along active face


36


of liquid deflector member


28


away from surface


27


. Active face


36


is positioned proximate to both the active end


32


of the doctor blade member


26


and the surface


27


of the coating applicator or roll


24


. The underside


34


of doctor blade member


26


extends from the contact point P to apex


38


by a predetermined clearance (d), described further below. Apex


38


is a point on the underside


34


of blade member


26


that intersects the active face


36


of the liquid deflector member


28


. Further, active face


36


of liquid deflector member


28


is arranged at a predetermined angle θ


s


to the underside


34


of the active end


32


of doctor blade member


26


. In the preferred embodiment, active face


36


of liquid deflector member


28


is generally planar (

FIG. 8



a


). Alternately, active face


36


may be generally contoured from a point near apex


38


either away (

FIG. 10



a


) from the surface


27


of coating applicator or roll


24


or towards (

FIG. 10



b


) the surface


27


of coating applicator or roll


24


. Each of these configurations has proven effective in diverting excess liquid (l) away from surface


27


.




Referring again to

FIG. 8



a


, the underside


34


of doctor blade member


26


preferably makes a generally obtuse angle with the adjoining active face


36


of the liquid deflector member


28


. Thus, excess liquid (l) will follow a generally obtuse angular path from the underside


34


of the doctor blade member


26


along the active face


36


of the liquid deflector member


28


.




Referring now to

FIG. 11

, alternatively, the underside


34


of doctor blade member


26


may form a generally arcuate path with the active face


36


of the liquid deflector member


28


along which excess liquid (l) flows.




Referring again to

FIGS. 8



a


and


8




b


, liquid deflector member


28


is adjustably fixed to support member


30


with active face


36


positioned close enough to the contact point P that it “captures” the deflected liquid (l) flowing on the underside


34


of doctor blade member


26


. The positioning is important because the deflected liquid (l) could very well lose its momentum and then divert downwardly under the influence of gravity towards surface


27


of the coating applicator or roll


24


.




Liquid deflector member


28


, preferably made of a rigid metal or plastic, may be structurally affixed to support member


30


in several ways with virtually the same results, including bolting, screwing, riveting, welding, or clamping.




Referring again to

FIGS. 8



a


and


8




b


, there are several important operating constraints on the design of the liquid deflector member


28


. According to

FIG. 8



a


, the angle θ


s


that the liquid deflector member


28


makes with the underside


34


of the doctor blade member


26


is optimum when the active face


36


of the deflector member


28


is near normal to the doctor blade member


26


. However, in this configuration, there is a high risk that a liquid deflector member


28


having a rather long length might interfere with the rotating surface


27


of coating applicator or roll


24


. Consequently, our experience indicates that a preferred angle θ


s


is one that is equal to the tangent angle θ


t


. When θ


s


is less than θ


t


, full advantage is not taken of the assist that gravity provides to the flow of deflected liquid (l) down the active face


36


of deflector member


28


away from the surface


27


of coating applicator or roll


24


. On the other hand, if θ


s


is much larger than θ


t


, there is a rather high risk that the bottom edge


40


of the liquid deflector member


30


might interfere with the surface


27


of the coating applicator or roll


24


further upstream of the doctor blade member


26


(refer to FIG.


9


).




Referring to again

FIG. 8



a


, as indicated, it is also important that the underside


34


of doctor blade member


26


have a predetermined clearance (d), i.e., distance between the apex


38


and the contact P. For a given inclination, θ


t


of blade member


26


above the horizontal plane, this optimum predetermined clearance (d) depends on the flow rate of deflected liquid (l) (per unit width of coating), q; viscosity of coating liquid, μ; density of coating liquid, ρ; and gravitational acceleration, g: clearance











(


q
2

g

)


1
/
3


·
f


,










where f is a monotonically increasing function of the Reynolds' Number (Re), given by






Re




q





ρ






μ


.











In the preferred embodiment, an effective clearance (d) is one in the range of about 0.64 cm (0.25 in) to about 1.9 cm (0.75 in).




The invention has been described with reference to a preferred embodiment. However, it will be appreciated that variations and modifications can be effected by a person of ordinary skill in the art without departing from the scope of the invention.















PARTS LIST:
























l




excess coating liquid






P




point of contact






1




coating applicator roll






2




reservoir or pan






3




liquid or coating liquid






4




doctor blade






5




.engraved cells/grooves






6




web






7




soft backer or impression roll






8




excess liquid






9




bank of coating liquid






10




streaks and bands






11




flow line






12




flow line






13




underside of doctor blade 4






14




contact point or tip of doctor blade 4






19




top-dead-center of cylindrical surface of coating applicator roll 1






20




lip of tray 21






21




tray






22




narrow passageway






23




element






24




coating applicator or roll






25




coating element






26




doctor blade member






27




surface of coating applicator






28




liquid deflector member






30




support member of coating element 25






32




active end of doctor blade member 26






34




underside of doctor blade member 26






36




active face of liquid deflector member 28






38




apex






40




bottom edge of liquid deflector member 28













Claims
  • 1. Apparatus for coating a web of indeterminate length, comprising:a source of coating composition; an engraved cylinder at least partially in fluid contact with said source of coating composition, said engraved cylinder having a plurality of cells for collecting coating composition therein and then transferring said coating composition to said web of indeterminate length; an impression cylinder in rotating contact with said engraved cylinder, said impression cylinder and said engraved cylinder forming a web transfer path therebetween; means for advancing said web of indeterminate length through said web transfer path so that coating composition in said plurality of cells transfers to said web of indeterminate length forming an applied coat of coating composition on said web of indeterminate length; and, a coating element arranged in an upper region and along a circumferential portion of the engraved cylinder proximate to a dead center point on the engraved cylinder, said coating element comprising a blade member and a liquid deflector member, wherein said blade member having one end disposed in an element support member and an active end extending from said element support member for engaging said engraved cylinder, said blade member being arranged at a predetermined angle θt with said engraved cylinder and having a point of contact therewith and wherein said liquid deflector member having one end disposed directly adjacent said one end of said blade member in said element support member and an opposite end with an active face arranged proximate to said contact point of said blade member, extending downwardly and away from said blade member such that said active face is inclined at a predetermined angle θs relative to said active end of said blade member such that said predetermined angle θs is equal to or greater than said predetermined angle θt thereby resulting in the excess coating doctored by said blade member from said engraved cylinder being captured by said deflector member.
  • 2. The apparatus recited in claim 1 wherein said active face of said liquid deflector member is generally contoured away from said engraved cylinder.
  • 3. The apparatus recited in claim 1 wherein said active face of said liquid deflector member is generally contoured towards said engraved cylinder.
  • 4. The apparatus recited in claim 1 wherein said active face of said liquid deflector member is generally planar.
  • 5. The apparatus recited in claim 1 wherein an underside of said blade member extends from said point of contact to an active face of said liquid deflector member, said underside defining a predetermined clearance.
  • 6. The apparatus recited in claim 5 wherein said predetermined clearance for a predetermined inclination θh, is predicted by the relationship: clearance ∝(q2g)1/3·f,wherein: f is a monotonically increasing function of the Reynolds' Number (Re), given by Re≡q⁢ ⁢ρ ⁢μ;q is flow rate of deflected liquid (per unit width of coating); μ is viscosity of coating liquid; ρ is density of coating liquid; and g is acceleration due to gravity.
  • 7. The apparatus recited in claim 5 wherein said predetermined clearance is in the range between about 0.64 cm (0.25 in) and 1.9 cm (0.75 in).
  • 8. The apparatus recited in claim 5 wherein a generally arcuate path is formed between said underside of said blade member and said active face of said liquid deflector member.
  • 9. The apparatus recited in claim 5 wherein a generally obtuse angular path is formed between said underside of said blade member and said active face of said liquid deflector member.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to U.S. application Ser. No. 09/461,964, filed Dec. 15, 1999, by Ramasubramaniam Hanumanthu, et al., and entitled, “Element For Deflecting Excess Liquid From A Coating Surface.”

US Referenced Citations (8)
Number Name Date Kind
2185223 Paynter Jan 1940 A
3353517 Tower Nov 1967 A
3361059 Klingler Jan 1968 A
3749054 Brezinski Jul 1973 A
4158333 Navi Jun 1979 A
4373443 Matalia et al. Feb 1983 A
4615295 Wittkopf Oct 1986 A
5755883 Kinose et al. May 1998 A
Foreign Referenced Citations (5)
Number Date Country
392 742 May 1991 AT
22 64 119 Jul 1974 DE
84 01 569 Jul 1988 DE
93 14 292 Jan 1994 DE
97 38797 Oct 1997 WO
Non-Patent Literature Citations (1)
Entry
Pocket Pal, International Paper Co. (1983) pp. 26-28.