Information
-
Patent Grant
-
6487865
-
Patent Number
6,487,865
-
Date Filed
Friday, May 17, 200222 years ago
-
Date Issued
Tuesday, December 3, 200222 years ago
-
Inventors
-
-
Examiners
- Esquivel; Denise L.
- Jones; Melvin
Agents
-
CPC
-
US Classifications
Field of Search
US
- 062 31
- 062 32
- 062 33
- 062 36
- 062 361
- 062 362
- 062 37
- 062 2592
-
International Classifications
-
Abstract
In an apparatus for conducting thermal energy, a thermoelectric unit in thermal communication with a thermal conductor is electrically operable so as to operate in a heat-absorbing mode, where the thermoelectric unit absorbs heat from the thermal conductor to reduce temperature of the thermal conductor, and a heat-radiating mode, where the thermoelectric unit radiates heat to the thermal conductor. A processor is operable so as to enable a power control circuit to control supply of electric power to the thermoelectric unit according to temperature of the thermal conductor and the thermoelectric unit sensed by a temperature sensor when the thermoelectric unit is operated in a selected one of the heat-absorbing mode and the heat-radiating mode.
Description
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority of Taiwan patent Application No. 091103346, filed on Feb. 25, 2002.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the art of thermal energy conduction, more particularly to an apparatus for conducting thermal energy.
2. Description of the Related Art
In a co-pending U.S. patent application Ser. No. 09/951,174, entitled “FLUID CONDUIT WITH ENHANCE THERMAL CONDUCTING ABILITY”, filed by the applicant of this application, there is disclosed an apparatus for conducting thermal energy.
The object of the present invention is to provide an apparatus for conducting thermal energy that permits heat-absorbing and heat-radiating control in a highly efficient manner.
SUMMARY OF THE INVENTION
According to the present invention, an apparatus for conducting thermal energy comprises:
a thermal conductor including a hollow heat-conducting member that has inner and outer walls confining an enclosed chamber therebetween, and a superconductor that fills the chamber;
a thermoelectric unit disposed on and in thermal communication with the outer wall of the heat-conducting member, the thermoelectric unit being electrically operable so as to operate in a heat-absorbing mode, where the thermoelectric unit absorbs heat from the thermal conductor so as to reduce temperature in the heat-conducting member, and a heat-radiating mode, where the thermoelectric unit radiates heat to the thermal conductor;
a temperature sensor connected to the thermal conductor and the thermoelectric unit for sensing temperature thereof;
a power control circuit connected to the thermoelectric unit for controlling supply of electric power thereto; and
a processor connected to the temperature sensor and the power control circuit, the processor being operable so as to enable the power control circuit to control supply of the electric power to the thermoelectric unit according to the temperature sensed by the temperature sensor when the thermoelectric unit is operated in a selected one of the heat-absorbing mode and the heat-radiating mode.
BRIEF DESCRIPTION OF THE DRAWINGS
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:
FIG. 1
is a schematic circuit diagram illustrating the preferred embodiment of an apparatus for conducting thermal energy according to this invention;
FIG. 2
is schematic partly sectional view showing the preferred embodiment when applied to a delivery van;
FIG. 3
is a schematic view showing a control panel of the preferred embodiment;
FIG. 4
is a schematic sectional view showing the preferred embodiment when applied to a portable refrigerator;
FIG. 5
is a schematic sectional view showing the preferred embodiment when applied to an air conditioning system; and
FIG. 6
is a schematic sectional view showing the preferred embodiment when applied to a heat-generating electronic component.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Before the present invention is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
FIG. 1
, the preferred embodiment of an apparatus for conducting thermal energy according to the present invention is shown to include a thermal conductor
1
, a pair of thermoelectric units
2
, a temperature sensor
31
, a power control unit
35
, a display unit
34
, and a control unit
33
. In this embodiment, the apparatus is applied to a delivery van
6
, as shown in FIG.
2
.
The thermal conductor
1
includes a hollow heat-conducting member that is made of aluminum, copper or a metal alloy with excellent heat conducting characteristics, and that has inner and outer walls
11
,
12
confining an enclosed chamber
13
therebetween, and a superconductor
14
that fills the chamber
13
in a known manner (see FIG.
2
).
Each thermoelectric unit
2
is disposed on and is in thermal communication with the outer wall
12
of the heat-conducting member. Each thermoelectric unit
2
is electrically operable so as to operate in a heat-absorbing mode, where the thermoelectric unit
2
absorbs heat from the thermal conductor
1
, and a heat-radiating mode, where the thermoelectric unit
2
radiates heat to the thermal conductor
1
. In this embodiment, the thermoelectric unit
2
includes an electrically operable thermal energy source, a heat sink
22
and a fan
23
. Preferably, the thermal energy source is a thermoelectric cooling unit
21
that is in contact with the outer wall
12
of the thermal conductor
1
. The thermoelectric cooling unit
21
has a heat-absorbing side (not shown), and a heat-radiating side (not shown) opposite to the heat-absorbing side. The heat sink
22
is disposed on the heat-radiating side. The fan
23
is disposed to induce air currents toward the heat sink
22
.
The temperature sensor
31
is connected to the thermal conductor
1
and the heat sink
22
of the thermoelectric unit
2
for sensing temperature thereof.
The power control circuit
35
is connected to the thermoelectric cooling unit
21
and the fan
23
of the thermoelectric units
2
for controlling supply of electric power thereto.
The processor
32
is connected to the temperature sensor
31
and the power control circuit
35
. The processor
32
is operable so as to enable the power control circuit
35
to control supply of the electric power to the thermoelectric cooling unit
21
and the fan
23
of the thermoelectric units
2
according to the temperature sensed by the temperature sensor
31
when the thermoelectric units
2
are operated in a selected one of the heat-absorbing mode and the heat-radiating mode.
The display unit
34
, in the form of two seven-segment displays, is connected to the processor
32
for displaying temperature information of the thermal conductor
1
.
The control unit
33
is connected to the processor
32
, and is manually operable so as to provide control signals for enabling the processor
32
to control the power control circuit
35
in order to operate the thermoelectric units
2
in the selected one of the heat-absorbing mode and the heat-radiating mode. In this embodiment, the control unit
33
includes a power switch
351
, a pair of temperature control keys
333
, and a pair of operating mode control keys
331
,
332
mounted on a control panel
3
(see FIG.
3
). In this embodiment, the temperature control keys
333
can be adjusted in a temperature range of 0° C.˜15° C. when the thermoelectric units
2
are operated in the heat-absorbing mode and in a temperature range of 40° C.˜70° C. when the thermoelectric units
2
are operated in the heat-radiating mode.
Each thermoelectric unit
2
further includes a heat generator
24
connected to the power control circuit
35
and in heat conducting contact with the outer wall
12
of the heat-conducting member. The heat generator
24
is controlled by the power control circuit
35
so as to generate heat when the thermoelectric unit
2
is operated in the heat-radiating mode.
In operation, after the operating mode control key
331
is pressed and the desired temperature of the thermal conductor
1
is set by operating the temperature control keys
333
, the thermoelectric units
2
are operated in the heat-absorbing mode (indicated by an indicator
353
, such as an LED emitting green light as shown in FIG.
3
), and the processor
32
enables the power control circuit
35
to allow supply of the electric power to the thermoelectric units
2
without activating the heat generator
24
until the temperature sensed by the temperature sensor
31
reaches the desired temperature. Accordingly, when the thermoelectric units
2
are operated in the heat-radiating mode (indicated by an indicator
354
, such as an LED emitting red light as shown in FIG.
3
), the processor
32
enables the power control circuit
35
to allow supply of the electric power to the thermoelectric cooling units
21
and the heat generators
24
without activating the fans
23
, wherein the electric power supplied to the thermoelectric cooling units
21
is the inverse of that in the heat-absorbing mode, until the temperature sensed by temperature sensor
31
reaches the desired temperature.
Moreover, referring to
FIG. 4
, the apparatus for conducting thermal energy of this invention can be applied to a portable refrigerator
7
. In the portable refrigerator
7
, the thermal conductor
71
is surrounded by an insulator housing
70
. Two thermoelectric units
2
are provided on a bottom side of the thermal conductor
71
. Referring to
FIG. 5
, the apparatus for conducting thermal energy of this invention can be further applied to an air conditioning system
8
. In the air conditioning system
8
, the heat-conducting member has an air inlet
82
, an air outlet
84
, and an air conduit
83
communicating the air inlet
82
and the air outlet
84
. A fan
85
is disposed in the air outlet
84
. Two thermoelectric units
2
are disposed on a bottom side of the heat-conducting member. As shown in
FIG. 6
, the apparatus for conducting thermal energy of this invention can be further applied to serve as a heat dissipating device for dissipating heat generated by a central processing unit
100
mounted on a circuit board
9
. In the heat dissipating device, a pair of thermoelectric units
2
are disposed on opposite lateral sides of the thermal conductor.
While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Claims
- 1. An apparatus for conducting thermal energy, comprising:a thermal conductor including a hollow heat-conducting member that has inner and outer walls confining an enclosed chamber therebetween, and a superconductor that fills said chamber; a thermoelectric unit disposed on and in thermal communication with said outer wall of said heat-conducting member, said thermoelectric unit being electrically operable so as to operate in a heat-absorbing mode, where said thermoelectric unit absorbs heat from said thermal conductor so as to reduce temperature in said heat-conducting member, and a heat-radiating mode, where said thermoelectric unit radiates heat to said thermal conductor; a temperature sensor connected to said thermal conductor and said thermoelectric unit for sensing temperature thereof; a power control circuit connected to said thermoelectric unit for controlling supply of electric power thereto; and a processor connected to said temperature sensor and said power control circuit, said processor being operable so as to enable said power control circuit to control supply of the electric power to said thermoelectric unit according to the temperature sensed by said temperature sensor when said thermoelectric unit is operated in a selected one of the heat-absorbing mode and the heat-radiating mode.
- 2. The apparatus as claimed in claim 1, wherein said thermoelectric unit includesan electrically operable thermal energy source in contact with said outer wall of said heat-conducting member and connected to said power control circuit, said thermal energy source having a heat-absorbing side, and a heat-radiating side opposite to said heat-absorbing side, a heat sink disposed on said heat-radiating side, and a fan connected to said power control circuit and disposed to induce air currents toward said heat sink.
- 3. The apparatus as claimed in claim 2, wherein said thermal energy source is a thermoelectric cooling unit.
- 4. The apparatus as claimed in claim 1, further comprising a control unit connected to said processor, said control unit being manually operable so as to provide control signals for enabling said processor to control said power control circuit in order to operate said thermoelectric unit in the selected one of the heat-absorbing mode and the heat-radiating mode.
- 5. The apparatus as claimed in claim 1, further comprising a display unit connected to said processor for displaying temperature information of said thermal conductor.
- 6. The apparatus as claimed in claim 2, wherein said thermoelectric unit further includes a heat generator connected to said power control circuit and in heat conducting contact with said outer wall of said heat-conducting member, said heat generator being controlled by said power control circuit so as to generate heat when said thermoelectric unit is operated in the heat-radiating mode.
Priority Claims (1)
Number |
Date |
Country |
Kind |
091103346 A |
Feb 2002 |
TW |
|
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
5927078 |
Watanabe et al. |
Jul 1999 |
A |
6038865 |
Watanabe et al. |
Mar 2000 |
A |
Foreign Referenced Citations (1)
Number |
Date |
Country |
0478204 |
Sep 1991 |
EP |