The present invention is directed to connections between a door closer or operator and a closer arm for a door.
A door closer or operator includes a rotatable pinion shaft oriented in the vertical (Z) direction which is connected to one end of the arm that transmits the motion of the door. Current practice for connecting a door closer or operator arm is to lock all 6 degrees of freedom to the pinion shaft using a broached or milled square or hex hole in the arm with a shaft of the same shape and a locking screw for assembly. This results in several issues. The door closer or operator must be mounted (positioned) properly to minimize side loading of the bearings in the housing caused by misalignment of the arm due to the rigid connection of the arm to the door or arm knuckle. The connection causes unavoidable wear issues, loss in efficiency, decreased closing force, component fatigue/failure and prohibits the use of certain applications such as cam lift hinges. Additionally rigid attachment at the pinion and possibly at the door end of the arm creates the need for exact templating, alignment, manufacturing, and installation.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide a door closer connection between the door closer and linkage arm which allows rotational transmission of movement between the door closer pinion and the linkage arm and prevents binding between the door closer pinion and the linkage arm.
It is another object of the present invention to provide a door closer connection which reduces wear on the door closer and any linkage attached to the door closer.
A further object of the invention is to provide a door closer connection which transmits rotational movement of the attached components about the longitudinal axis Z and allows the components to move relative to each other in rotation about the X and Y axis.
It is yet another object of the present invention to provide a door closer connection which includes a polygonal barrel protrusion on one part of the connection and an aperture having the same number of sides as the barrel protrusion and engagable with the barrel protrusion.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to a door closer, comprising a door closer housing mounted to one of a door frame or a door surface and a linkage arm for pivoting the door between open and closed positions, the linkage arm having a first and second end, the first end mounted to the other of the door frame or the door surface. The door closer includes a rotatable connector between the linkage arm and the door closer housing, the linkage arm second end engaging with the rotatable connector. The connector has a rotatable body portion in the door closer housing and a head protrusion substantially secured in a female receptor to transmit rotation about a longitudinal axis of the connector. One or both of the head protrusion or female receptor has a curved profile viewed along the longitudinal axis of the connector, the female receptor being further movable with respect to the head protrusion to permit limited rotational misalignment of the linkage arm on any axis perpendicular to the connector longitudinal axis.
The connector head protrusion may have a geometrically-shaped cross section and a generally barrel-shaped profile along the longitudinal axis of the connector and the female receptor may have substantially straight walls and closely conform in diameter to a midpoint of the connector head protrusion profile to enable the connector head protrusion to be slideably secured in the female receptor. The connector head protrusion may have a geometrically-shaped cross section and a generally barrel-shaped profile along the longitudinal axis of the connector and the female receptor has substantially smoothly-tapered conforming walls with the connector head protrusion profile. The connector head protrusion may have a geometrically-shaped cross section and a generally straight profile along the longitudinal axis of the connector and the female receptor may have a substantially hourglass-shaped cross-section and have a midpoint with a diameter closely conforming to a midpoint of the connector head protrusion profile to enable the connector head protrusion to be slideably secured in the female receptor.
In another aspect, the present invention is directed to a door closer, comprising a door closer housing mounted to one of a door frame or a door surface and a linkage arm for pivoting the door between open and closed positions, the linkage arm having a first and second end, the first end mounted to the other of the door frame or the door surface. The door closer includes a rotatable connector between the linkage arm and the door closer housing, the linkage arm second end engaging with the rotatable connector, the connector having a rotatable body portion in the door closer housing and a head protrusion substantially secured in a female receptor to transmit rotation about a longitudinal axis of the connector, the connector head protrusion having a geometrically-shaped cross section and a generally barrel-shaped profile along the longitudinal axis of the connector. The female receptor may be further movable with respect to the head protrusion to permit limited rotation of the linkage arm on any axis perpendicular to the connector longitudinal axis. The connector head protrusion may be integral with the connector body portion. The connector head protrusion may be separable from the connector body portion. The rotatable connector may be engaged with the linkage arm second end at a substantially 90° angle. The connector head protrusion may be removably secured in the female receptor and disengageable by a specified force applied along the connector body portion longitudinal axis. The female receptor may have a correspondingly-shaped cross-section to that of the connector head protrusion. The female receptor may have substantially straight walls and closely conform in diameter to a midpoint of the connector head protrusion profile to enable the connector head protrusion to be slideably secured in the female receptor. The female receptor may be disposed in the linkage arm second end. The connector head protrusion may be disposed on the linkage arm second end and the female receptor may be integral with the connector rotatable body portion. The connector head protrusion may include a threaded opening for securing the rotatable connector to the linkage arm second end with a fastener. The connector head protrusion may be substantially secured in the female receptor using at least one ball and at least one spring may be interposed between the female receptor and the connector head protrusion around the periphery of the connector head protrusion. The connector head protrusion may include at least one ball and at least one spring disposed around the periphery of the connector head protrusion substantially securing the connector head protrusion in the female receptor. The door closer housing may be mounted to a door surface, the door interposed in a door frame having a track for slideably receiving the linkage arm first end, the linkage arm first end slideably received in the track. The linkage arm may be comprised of a first segment and a second segment, the first and second segments forming a plane and pivotably joined at a midpoint of the linkage arm.
In another aspect, the present invention is directed to a door closer comprising a door closer housing mounted to one of a door frame or a door surface and a linkage arm for pivoting the door between open and closed positions, the linkage arm having a first and second end, the first end mounted to the other of the door frame or the door surface. The door closer includes a rotatable connector between the linkage arm and the door closer housing, the linkage arm second end engaging with the rotatable connector, the connector having a rotatable body portion in the door closer housing and a head protrusion substantially secured in a female receptor to transmit rotation about a longitudinal axis of the connector. The connector head protrusion has a geometrically-shaped cross section and a generally straight profile along the longitudinal axis of the connector and the female receptor has a substantially hourglass-shaped cross-section, the female receptor further having a midpoint with a diameter closely conforming to a midpoint of the connector head protrusion profile to enable the connector head protrusion to be slideably secured in the female receptor. The female receptor is further movable with respect to the head protrusion to permit limited rotation of the linkage arm on any axis perpendicular to the connector longitudinal axis.
In another aspect, the present invention is directed to a method of connecting a door closer to a swing door, comprising the steps of providing a door closer housing mounted to one of a door frame or a door surface and providing a linkage arm for pivoting the door between open and closed positions. The linkage arm has a first and second end, the first end mounted to the other of the door frame or the door surface. The method includes providing a rotatable connector between the linkage arm and the door closer housing, the linkage arm second end engaging with the rotatable connector, the connector having a rotatable body portion in the door closer housing and a head protrusion and providing a female receptor for receiving the connector head protrusion, one or both of the head protrusion or female receptor having a curved profile viewed along a longitudinal axis of the connector. The method includes substantially securing the connector head protrusion in the female receptor to transmit rotation about the longitudinal axis of the connector, the female receptor being further movable with respect to the head protrusion to permit limited rotational misalignment of the linkage arm on any axis perpendicular to the connector longitudinal axis.
In another aspect, the present invention is directed to a method of using a swing door, comprising the steps of providing a door in an open or closed position interposed in a door frame and secured to the door frame by at least one hinge and providing a door closer housing mounted to one of the door frame or the door surface. The method includes providing a linkage arm for pivoting the door between open and closed positions, the linkage arm having a first and second end, the first end mounted to the other of the door frame or the door surface. The method includes providing a rotatable connector between the linkage arm and the door closer housing, the linkage arm second end engaging with the rotatable connector. The connector includes a rotatable body portion in the door closer housing and a head protrusion substantially secured in a female receptor to transmit rotation about a longitudinal axis of the connector. One or both of the head protrusion or female receptor has a curved profile viewed along the longitudinal axis of the connector. The female receptor is further movable with respect to the head protrusion to permit limited rotational misalignment of the linkage arm on any axis perpendicular to the connector longitudinal axis. The method includes urging the door into the other of the open or closed position and rotating the connector about the longitudinal axis of the connector to move the linking arm. The method includes permitting limited rotational misalignment of the linkage arm on any axis perpendicular to the connector longitudinal axis during rotation of the connector. If the door is unpowered, urging the door into the other of the open or closed position causes the connector to rotate about the longitudinal axis of the connector. If the door is powered, rotating the connector about the longitudinal axis of the connector moves the linking arm and urges the door to open.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the preferred embodiment of the present invention, reference will be made herein to
The present invention provides an improvement to the connection between a door closer or operator and the arm that transmits motion to and from a swing door as the door pivots between open and closed positions. (Unless otherwise indicated, the terms door operator herein includes door closer, and vice versa.)
Connector head 12 has a geometrically-shaped cross section when viewed in a cross section normal to the Z direction as shown in
Instead of having one linkage arm with sliding track configuration,
In the embodiment of the door closer as shown in
As an alternative to the integral formation of the head 12 with the body 14 of connector 8 in
The connector 234 as shown in
In the embodiment of connector head 12″, the barrel shape is achieved by having the diameter of the head and splines taper to a narrower width only at the top of the head from the wider mid and lower portions. The barrel-shaped splines of head 12″ permit limited rotational misalignment 81 about the Y axis (
The connector shown in
The present invention may be used with any, door closer or operator that employs a double lever or slide track arm connected to a driven or driving shaft. The present invention provides in the door closer a driven or driving shaft with a head portion with a geometrically shaped cross section, e.g., having a square, hex, or other polygonal shape, or multi tooth spline, as seen in a cross section normal to the longitudinal axis of the connector head and/or body, along with a barrel-shaped profile along the longitudinal Z axis. The mating bar link may have an aperture or hole of matching geometry and a means for maintaining the interface and capturing the link on the shaft, such as but not limited to the aforementioned washer or spring-and-ball arrangements.
While the walls of the female connector receptor or aperture have been described as being vertically straight or conforming to the barrel-shaped configuration of the head, the female receptor or aperture walls could also be hourglass-shaped, when seen in a cross section along the connector longitudinal axis, and used with a straight head or shaft of square, hex, or spline cross-section. An example of this alternative configuration is shown in
In operation of the door closer or operator on a swing door, the door is secured to the door frame by one or more hinges and is initially in an open or closed position. The door closer or operator includes the connector body and head, linkage arm(s) and female receptor or aperture in any of the embodiments described above, wherein one or both of the sides of the head and/or female receptor have a curved profile when viewed along the longitudinal axis of the connector. The door is urged into the other of the open or closed position and the connector rotates about the longitudinal axis of the connector to move the linking arm(s). While this is occurring, the aforementioned designs of the head and connector female receptor or aperture allow some limited rotation, misalignment or wobble on any axis perpendicular to the connector pinion shaft, but ensures that they be rigid rotationally about the axis of the connector pinion shaft. This would eliminate undesirable loading by torque or misalignment due to normal field installation constraints (i.e., accuracy of the measurements, accuracy of the mounting hole location, and the like) or manufacturing tolerance. Using the connection according to the present invention would increase the longevity of the bearings, ease installation, decrease friction losses and decrease the likelihood of damage. The present invention may be incorporated in arm geometry for use with any closer or operator that uses either a track and arm or double lever arm configuration.
The object of the present invention has been achieved by providing a door closer connection between the door closer and linkage arm which allows rotational transmission of movement between the door closer pinion and the linkage arm and prevents binding between the door closer pinion and the linkage arm. The door closer connection reduces wear on the door closer and any linkage attached to the door closer. The door closer connection transmits rotational movement of the attached components about the longitudinal rotation axis and allows the components to move relative to each other at angles to the plane of the X and Y axis. The door closer connection includes a polygonal barrel protrusion on one part of the connection and an aperture having the same number of sides as the barrel protrusion engagable with the barrel protrusion. In any event, the configurations of the connector head and connector female receptacle or aperture as provided by the present invention are able to transmit rotation between them about the longitudinal axis of the connector head, while permitting limited rotation of the connector female receptacle or aperture and linkage arm on and about any axis perpendicular to the connector and head longitudinal axis.
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1119572 | Butler | Dec 1914 | A |
2712739 | Dempster | Jul 1955 | A |
2942291 | Flint | Jun 1960 | A |
2960718 | Lasier | Nov 1960 | A |
3656204 | Brown | Apr 1972 | A |
3769644 | Case | Nov 1973 | A |
4102005 | Schnarr | Jul 1978 | A |
4246811 | Bondhus et al. | Jan 1981 | A |
4464141 | Brown | Aug 1984 | A |
5007880 | Walker | Apr 1991 | A |
5069569 | Lieser | Dec 1991 | A |
5440839 | Piltingsrud | Aug 1995 | A |
5497533 | Karlsen | Mar 1996 | A |
5527220 | Geczy | Jun 1996 | A |
6412224 | Feucht | Jul 2002 | B1 |
6767048 | Yokota | Jul 2004 | B2 |
7377075 | Oberheide | May 2008 | B2 |
7971316 | Copeland, II | Jul 2011 | B2 |
8341889 | Faulkner | Jan 2013 | B2 |
8366339 | Lin | Feb 2013 | B2 |
8415902 | Burris | Apr 2013 | B2 |
8490330 | Lund | Jul 2013 | B2 |
8527101 | Burris | Sep 2013 | B2 |
8845006 | Lechkun | Sep 2014 | B2 |
9234378 | Hansen | Jan 2016 | B2 |
9523231 | Ciavaglia | Dec 2016 | B2 |
20040098915 | Baldry | May 2004 | A1 |
20100071264 | Faulkner | Mar 2010 | A1 |
20110252597 | Burris et al. | Oct 2011 | A1 |
20120048669 | Hong | Mar 2012 | A1 |
20120144623 | Woo | Jun 2012 | A1 |
20130199321 | Oberle | Aug 2013 | A1 |
20140137477 | Ooe | May 2014 | A1 |
20140165329 | Wildforster | Jun 2014 | A1 |
20150143666 | Winkler | May 2015 | A1 |
20150211278 | Moyer | Jul 2015 | A1 |
20150256048 | Ohta | Sep 2015 | A1 |
20160325817 | Buttelmann | Nov 2016 | A1 |
20170183903 | Schwendemann | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
29801862 | Apr 1998 | DE |
217525 | Jun 1924 | GB |
Number | Date | Country | |
---|---|---|---|
20170130500 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
61875305 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14902163 | US | |
Child | 15415065 | US |