1. Field of the Invention
The invention relates to an apparatus for continuously producing a compound pipe, in a conveying direction consisting of a smooth internal pipe and an external pipe that is welded together with the internal pipe and provided with hollow elevations, comprising a pipe socket, and a central longitudinal axis,
2. Background Art
An apparatus of this type is known from U.S. Pat. No. 7,238,317. The greater the nominal widths of the pipes, the more grow the hollow elevations and thus the increase in size of the pipe socket relative to the internal diameter of the compound pipe. This is due to the fact that the standard compound pipe is very often used as a spigot of the pipe, meaning that a compound pipe is inserted into the socket by its hollow elevations. The transition portions between the compound pipe that leads during in-line production and the pipe socket on the one hand, and the pipe socket and the lagging compound pipe on the other, possess considerable radial extension. In particular the transition portion between a compound pipe and socket, which remains after separation of the extruded continuous run of pipe, must possess pronounced radial extension i.e., must be directed steeply outwardly in relation to the central longitudinal axis, so that, upon insertion of the spigot into the socket as far as to the transition portion, there will be no dead space, nor considerable dead space, where dirt might deposit. The greater the nominal widths and/or the higher the production rate, the greater the risk that the internal tube does not adhere by its full face to the external tube in the vicinity of the transition portion and at the beginning and end of the socket. Full-face adherence, and thus welding, of the internal tube to the external tube in the vicinity of the transition portion is achieved by venting the transition portion, in an area between the internal tube and external tube, into an adjacent hollow elevation so that the external tube, in the area of the transition portion, is provided with at least one overflow passage which passes through the adjacent corrugation trough and extends in the direction of the central longitudinal axis. Although the idea behind this solution is excellent, it turned out that if production conditions are unfavorable, the overflow passage does not always have a sufficiently large free cross-section for the desired venting action to be achieved.
It is the object of the invention to embody an apparatus of the generic type which allows a reliable control of the pressure air, in particular when forming the pipe socket.
According to the invention, this object is attained in an apparatus as mentioned before in such a way that relative to the conveying direction, a vent duct exits between the outer die and the inner die, the vent duct being continuously connected to atmosphere.
In particular, an additional gas duct may be supplied with both overpressure relative to atmospheric pressure as well as partial vacuum. Hereby it is achieved that during the manufacture of the compound pipe, which is usually provided with hollow elevations, there is a slight over-pressure between the calibrating mandrel and the internal tube in a manner which is known per se, with the result that a stable welded joint is attained between the internal tube and the corrugation troughs of the external tube, and that friction between internal tube and calibrating mandrel is eliminated. On the other hand, a slight partial vacuum is applied to the inside of the internal tube when the overflow passages are formed, which has a positive influence on the formation of the overflow passages because in this area, the internal tube comes to bear against the calibrating mandrel along a short portion of the production line so as to be cooled there. The direct contact with the calibrating mandrel causes this area of the internal tube to be reinforced to a greater extent than the other areas thereof, which prevents the plastic melt of the internal tube from partially clogging one or more overflow passages, in other words from reducing the free flow cross-section thereof. This does not affect the welded joint between the internal tube and the corrugation trough of the corrugation in this area.
Further features, advantages and details of the invention will become apparent from the ensuing description of an embodiment by means of the drawing.
The installation shown in
Downstream of the extruders 1, 2 as seen in the conveying direction 4, provision is made for a molding machine 6, a so-called corrugator, which is followed by an aftercooler 7. A crosshead 8, which projects into the molding machine 6, is mounted on the extruder 1 which is in alignment with the molding machine 6 and the aftercooler 7. The other extruder 2, by the side of the extruder 1, is connected to the crosshead 8 by way of an injection channel 9 which projects laterally into the crosshead 8. As diagrammatically outlined in
The design of the molding machine 6 is known and common practice. It is described for example in U.S. Pat. No. 5,320,797, to which reference is made explicitly. It substantially comprises a machine bed 11 with half shells 12, 12′ disposed thereon, which are joined to each other to form two so-called chains 13, 13′. These chains 13, 13′ are guided along deflection rollers (not shown) at the upstream inlet 14 and the downstream outlet 15 relative to the conveying direction 4. When circulating in the conveying direction 4, they are guided in such a way that two half shells 12, 12′ are in each case combined to form a pair, with adjacent pairs of shells being in close contact in the conveying direction 4. A drive motor 17 serves for actuation of the half shells 12, 12′ which are combined on a molding path 16 so as to form pairs of shells.
The crosshead 8 comprises two melt channels which are concentric with a common central longitudinal axis 18, namely an inner melt channel 19 and an outer melt channel 20 which, relative to the conveying direction 4, terminate in a downstream inner die 21 and outer die 22. The inner melt channel 19 is connected to an injection channel 23 of the extruder 1 which is in alignment with the molding machine 6, whereas the outer melt channel 20 is connected to the injection channel 9 of the other extruder 2. Between the inner die 21 and the outer die 22, a gas duct 24 discharges from the crosshead 8, the gas duct 24 on the one hand being connectable to a source of compressed gas by way of a valve, allowing so-called stabilizing air to be blown in.
A calibrating mandrel 25, which is also concentric with the axis 18, is mounted on the extrusion head 8 at the downstream end thereof relative to the conveying direction 4. It has cooling channels 26 for cooling water which is supplied via a cooling-water flow pipe 27 and discharged via a cooling-water return pipe 28. Furthermore, an air pipe 29 is provided which is connected to a gas gap 30 which serves as an additional gas duct and, relative to the conveying direction 4, is located directly downstream of the inner die 21 between the extrusion head 8 and the calibrating mandrel 25. The air pipe 29 is connectable to a source of compressed gas on the one hand for stabilizing air to be blown in and to a partial vacuum on the other by means of a valve. The pipes 27, 28, 29 pass through an approximately tubular supply channel 31 which is provided in the extrusion head 8 concentrically with the axis 18.
The half shells 12, 12′ have annular mold recesses 32, 32′ that are disposed in succession at regular distances, each of them being connected to partial-vacuum channels 33. Upon arrival of the half shells 12, 12′ on the molding path 16, the partial-vacuum channels 33 reach partial-vacuum supply sources 35 and 36 so that partial vacuum is admitted to the mold recesses 32.
The plastic melt, which is supplied by the extruder 2 through the injection channel 9 and to the extrusion head 8, flows through the outer melt channel 20 to the outer die 22 where it is extruded to form an external tube 37. Owing to the partial vacuum, this tube 37 adheres to the mold recesses 32, 32′, thus forming a tube that is provided with annular hollow elevations 38. Plastic melt is supplied from the extruder 1 through the injection channel 23 to the extrusion head 8, flowing through the inner melt channel 19 towards the inner die 21 where it is discharged as an internal tube 39 that approaches the calibrating mandrel 25. The calibrating mandrel 25 expands slightly outwardly from the inner die 21 in the conveying direction 4 until the internal tube 39 bears against the corrugation troughs 40 of the external tube 37 where both of them are welded together. Once cooled and solidified, the internal tube 39 and the external tube 37 constitute the compound pipe 10.
As can be seen in particular in
As far as previously described, the apparatus is substantially known from U.S. Pat. No. 6,458,311, to which reference is made explicitly.
As can be seen in
As can be seen in
Next to the gas duct 24 is provided a venting duct 54 which is either throttled correspondingly so as to be continuously connected to the atmosphere or may be opened to atmosphere by means of a corresponding valve.
A rod-shaped switch member 55, which is in a spatially fixed arrangement relative to the socket recess 42, is connected to the corresponding half shell 12 and operates a switch 56 by means of which the speed and thus the extrusion rate of the extruders 1, 2 are changed, and by means of which the supply of the gas duct 24 and the gas gap 30 is maintained. To this end, a retaining arm 57 is mounted on the molding machine 6 which extends in the conveying direction 4 above the half shells 12, 12′. This retaining arm 57 is where the switch 56 is mounted which is to be operated by the switch member 55. This switch 56 is operated as shown in
During the manufacture of the standard corrugated compound pipe 10 in the way shown on the right of
As soon as the transition area 44 has reached the vicinity of the outer die 22 in the instant shown in
When the transition area 44 has moved across the gas gap 30 according to
When the transition area 44 has slightly moved across the internal die 21, the partial vacuum p3 of the air exiting the gas gap 30 is for instance switched to an overpressure p4 of approximately 0.1 to 0.45 bar. As the clearance 58 between the internal tube 39 and the external tube 37 is vented in the vicinity of the socket recess 42, the internal tube 39 is pressed outwardly against the external tube 37.
As can be seen from
While the pipe socket 41 is formed, the overpressure p4, which is applied to the internal tube 39 via the gas gap 30, may vary. This depends on the pipe diameter, the melt elasticity of the plastic material that is used, the wall thickness of the internal tube and other parameters.
When the transition area 47 of the socket recess 42 moves across the outer die 22 according to
When the transition area 47 has reached the inner die 21 according to
A short distance later, approximately according to
The compound pipe 10 of continuous in-line production, illustrated in particular in
The above-mentioned pressure control systems are illustrated in detail in
The pressure p2 is supplied to the gas duct 24 from a common source 67 of compressed air via a valve 68.
The gas gap 30 is also supplied with the pressure p1 from the source 67 of compressed air via a valve 69. A valve 70 is provided which is arranged in parallel with the valve 69; via said valve 70, the gas gap 30 is supplied with the pressure p4, with naturally either the valve 69 or the valve 70 being open. Furthermore, a partial vacuum source 71 is connected to the gas gap 30 via a valve 72 by means of which the partial vacuum p3 is supplied to the gas gap 30 as described above. Manometers 73, 74, 75, 76 are allocated to the valves 68, 69, 70, 72.
Instead of two extruders 1, 2 and a crosshead 8, it is also conceivable to use a single extruder and a crosshead as known for example from U.S. Pat. No. 5,346,384 and U.S. Pat. No. 6,045,347, to which reference is made. Alternatively, instead of the speed of the extruder, such a design in particular allows the speed of the chains 13, 13′ comprised of half shells 12, 12′ to be changed as well so in order to increase the wall thickness, the speed of the half shells 12, 12′ along the molding path 16 is reduced.
Number | Date | Country | Kind |
---|---|---|---|
08 004 992.7 | Mar 2008 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | 12395108 | Feb 2009 | US |
Child | 13327232 | US |