Claims
- 1. A patient interface for a muscle exercise and diagnostic apparatus wherein an output shaft is coupled to an exercise controller which includes a torque signal processing unit, the interface comprising:
- the output shaft having first and second shaft sections, said first shaft section having a larger diameter than said second shaft section to handle higher torque loads, said second shaft section being coaxial with said first shaft section; first torque sensing means for sensing torque applied to said first shaft section and for providing a first torque output signal to said torque signal processing unit; second torque sensing means for sensing torque applied to said second shaft section and for providing a second torque output signal to said torque signal processing unit; a plurality of high torque tools each adapted for use by a user of said apparatus in performing an exercise motion with a high torque; a plurality of low torque tools each adapted for use by said user of said apparatus in performing an exercise motion with a low torque; first coupling means for removably coupling said high torque tools to said first shaft section; and second coupling means for removably coupling said low torque tools to said second shaft section.
- 2. Apparatus as claimed in claim 1, wherein said second shaft section extends forward from said first shaft section, and said first coupling means comprises a first mating surface configuration formed on a forward end surface of said first shaft section surrounding said second shaft section, a hollow tool mounting shaft carried on each of said high torque tools adapted to extend over said second shaft section and having a second mating surface configuration formed on a rearward end surface thereof adapted to mate with said first mating surface configuration to form a torque transfer mating relationship between said first shaft section and said hollow tool mounting shaft, and a shaft coupler adapted to mount over both said forward end of said first shaft section and said rearward end of said tool mounting shaft for coupling said first shaft section to said tool mounting shaft including means for urging said first and second mating surface configurations into tight mating engagement.
- 3. Apparatus as claimed in claim 2, wherein one of said first and second mating surface configurations comprises a pair of tapered projections formed at diametrically opposite locations on an associated end surface and the other of said first and second mating surface configurations comprises a pair of tapered slots formed at corresponding diametrically opposite locations on an associated end surface, said tapered slots being adapted to receive said tapered projections in a wedged coupling relation.
- 4. The interface as claimed in claim 1, further comprising shaft mounting means for mounting said output shaft for multiple full turns thereof during one of said exercise motion, and support means for supporting said output shaft and said shaft mounting means in a selectable stationary position; said first torque sensing means comprising first torque measuring means carried on and rotating with said first shaft section and producing said first torque output signal corresponding to the measured torque thereon; said second torque sensing means comprising second torque measuring means carried on and rotating with said second shaft section and producing said second torque output signal corresponding to the measured torque thereon; and torque signal receiving means carried on said support means and comprising first and second torque signal channels and first and second signal coupling means for coupling said first and second torque output signals into said first and second torque signal channels.
- 5. A muscle exercise and diagnostic apparatus comprising:
- an output shaft having first and second shaft sections, said first shaft section having a larger diameter than said second shaft section to handle higher torque loads, said second shaft section being coaxial with said first shaft section;
- first torque sensing means for sensing torque applied to said first shaft section;
- second torque sensing means for sensing torque applied to said second shaft section;
- a plurality of high torque tools each adapted for use by a user of said apparatus in performing an exercise motion with a high torque;
- a plurality of low torque tools each adapted for use by said user of said apparatus in performing an exercise motion with a low torque;
- first coupling means for removably coupling said high torque tools to said first shaft section;
- second coupling means for removably coupling said low torque tools to said second shaft section;
- shaft mounting means for mounting said output shaft for multiple full turns thereof during one of said exercise motion, said shaft mounting means including servo motor means coupled in driving relation to said output shaft;
- support means for supporting said output shaft and said shaft mounting means in a selectable stationary position;
- said first torque sensing means comprising first torque measuring means carried on and rotating with said first shaft section and producing a first torque output signal corresponding to the measured torque thereon;
- said second torque sensing means comprising second torque measuring means carried on and rotating with said second shaft section and producing a second torque output signal corresponding to the measured torque thereon;
- torque signal receiving means carried on said support means and comprising first and second torque signal channels and first and second signal coupling means for coupling said first and second torque output signals into said first and second torque signal channels;
- shaft position sensing means for sensing the angular position of said output shaft and producing an output shaft position signal; and
- servo control means responsive to a preselected command signal for controlling operation of said servo motor and including servo signal measuring means for measuring a preselected servo control signal parameter associated with said servo motor and output shaft and operatively related to said command signal; and exercise control means coupled to said servo control means and receiving said output shaft position signal and said first and second torque signals for controlling said servo motor and shaft in accordance with a preselected exercise control algorithm.
- 6. Apparatus as claimed in claim 5, wherein said preselected exercise control algorithm includes torque control means for controlling said servo motor means to limit the maximum torque on an operative one of said first and second shaft sections as a prearranged function of said shaft position signal.
- 7. Apparatus as claimed in claim 5, wherein said exercise control means comprises programmable computer means including program storage means storing a plurality of exercise mode control programs operative to control said servo control means and said servo motor in accordance with a plurality of prearranged exercise control algorithms each having a set of control parameters associated therewith, and program interface means providing program facilities for selecting an exercise mode and for entering values for said control parameters associated therewith.
- 8. Apparatus as claimed in claim 7, wherein said program interface means comprises type means for selecting an exercise type from a set of prearranged exercise types, motion means for selecting an exercise motion from a set of prearranged exercise motions associated with said selected exercise type, mode means for selecting said exercise mode from a set of prearranged exercise modes associated with said selected exercise motion, and parameter means for entering said values of control parameters associated with said selected exercise mode.
- 9. Apparatus as claimed in claim 5, wherein said servo motor and said output shaft are carried in a power head housing with said output shaft projecting from a front faceplate, and said apparatus further comprises head mounting means including a mounting yoke for carrying said power head housing, means for positioning said mounting yoke at a selectable height, and means for mounting said power head housing in said mounting yoke for rotation about a mounting axis orthogonal to said output shaft including means for releasable connecting said power head housing to said mounting yoke at one of a plurality of rigidly fixed, angular orientations in at least one vertical plane.
- 10. Apparatus as claimed in claim 9, wherein said mounting yoke has first and second mounting arms; and said means for mounting said power head housing in said mounting yoke further comprises a pair of mounting shafts mounted on opposite sides of said power head housing along said mounting axis, bearing means carried on said first and second mounting arms for receiving said mounting shafts for journalling said mounting shafts for rotation relative to said mounting arms about said mounting axis; one of said mounting shafts extending outside of an associated one of said mounting arms and carrying a first detent coupler element with a first mating surface thereon in a rigidly fixed position thereon, a second detent coupler element having a second mating surface thereon and being mounted on said associated mounting arm in a position with said second mating surface facing said first mating surface, and coupler means carried on said first and second detent coupler elements for coupling said first and second detent coupler elements together in tight mating engagement with each other; one of said first and second detent coupler elements having a pair of tapered projections formed at diametrically opposite locations on the associated mating surface and the other of said first and second detent coupler elements having a plurality of pairs of tapered slots formed at preselected positions defining detent mounting angles for said mounting shafts relative to said mounting arms.
- 11. Apparatus as claimed in claim 10, wherein said first coupling means comprises a first mating surface configuration formed on a forward end surface of said first shaft section surrounding said second shaft section, a hollow tool mounting shaft carried on each of said high torque tools adapted to extend over said second shaft section and having a second mating surface configuration formed on a rearward end surface thereof adapted to mate with said first mating surface configuration to form a torque transfer mating relationship between said first shaft section and said hollow tool mounting shaft, and a shaft coupler adapted to mount over both said forward end of said first shaft section and said rearward end of said hollow tool mounting shaft for coupling said first shaft section to said hollow tool mounting shaft including means for urging said first and second mating surface configuration into tight mating engagement.
- 12. Apparatus as claimed in claim 11, wherein one of said first and second mating surface configurations comprises a pair of tapered projections formed at diametrically opposite locations on an associated end surface and the other of said first and second mating surface configurations comprises a pair of tapered slots formed at corresponding diametrically opposite locations on an associated end surface, said tapered slots being adapted to receive said tapered projections in a wedged coupling relation.
- 13. Apparatus as claimed in claim 12, wherein each of said high torque tools and each of said low torque tools is assigned a unique tool number, said exercise control means includes storage means for registering each of said assigned tool numbers as being associated with one of said high and low torque tools, means for inputting said tool number, means for checking the output of each of said first and second torque sensing means to determine the active shaft section as the one of said first and second shaft sections at which one of said torque tools is actually mounted on, and means for indicating a wrong tool number when said input tool number does not correspond properly with said active shaft section.
- 14. Apparatus as claimed in claim 9, wherein said front faceplate of said power head housing has a plurality of registration apertures formed in a circular array therein, and a set of said high torque tools each having a mounting baseplate thereon with registration pins extending therefrom and adapted to be received in said registration apertures to position said mounting baseplate in a selectable fixed position relative to said front faceplate when said first coupling means couples said one of said high torque tools to said first shaft section, each of said high torque tools in said set further comprising at least one tool handle rotatably mounted to said base plate for applying torque to said first shaft section and for rotating with said first shaft section.
- 15. Apparatus as claimed in claim 14, wherein each of said high torque tools in said set includes a mechanical stop mounted in a prearranged location on said baseplate for limiting the rotation of said tool handle and a torque limiting coupler means mounting said tool handle to a hollow tool mounting shaft carried on each of said high torque tools adapted to extend over said second shaft section and adapted to provide slippage between said tool handle and said hollow tool mounting shaft when the torque on said coupler means exceeds a prearranged maximum torque value, thereby preventing the application of destructive forces to said mechanical stop on said baseplate.
- 16. Apparatus as claimed in claim 14, wherein one of said high torque tools is a linear motion tool apparatus comprising an elongated carriage track mounted to said baseplate and defining a linear motion track for a variety of linear motion tools, a carriage mounted for traversing said carriage track and adapted to mount one of said variety of linear motion tools thereto, and transmission means coupled to said hollow tool mounting shaft and said carriage for translating linear motion of said carriage into rotation of said hollow tool mounting shaft, said registration pins on said mounting baseplate cooperating with said registration apertures on said front faceplate to permit said linear motion track to be mounted in one of a plurality of different orientations on said power head housing including horizontal and vertical orientations.
- 17. Apparatus as claimed in claim 9, wherein said preselected exercise control algorithm includes torque control means for controlling said servo motor means to limit the maximum torque on an operative one of said first and second shaft sections as a prearranged function of said shaft position signal.
- 18. Apparatus as claimed in claim 9, wherein said exercise control means comprises programmable computer means including program storage means storing a plurality of exercise mode control programs operative to control said servo control means and said servo motor in accordance with a plurality of prearranged exercise control algorithms each having a set of control parameters associated therewith, and program interface means providing program facilities for selecting an exercise mode and for entering values for said control parameters associated therewith.
- 19. Apparatus as claimed in claim 18, wherein said program interface means comprises type means for selecting an exercise type from a set of prearranged exercise types, motion means for selecting an exercise motion from a set of prearranged exercise motions associated with said selected exercise type, mode means for selecting said exercise mode from a set of prearranged exercise modes associated with said selected exercise motion, parameter means for entering said values of control parameters associated with said selected exercise mode, and range of motion means for entering range of motion limit positions for the associated one of said plurality of torque tools mounted on said output shaft.
- 20. In muscle exercise and diagnostic apparatus said apparatus comprises:
- an output shaft; a servo motor coupled in driving relation to said output shaft for producing multiple full turns thereof; support means for mounting said output shaft and said servo motor in a selectable stationary position; a plurality of tools; coupling means including coupling arrangements on said output shaft and each of said tools for removably coupling one of said tools to said output shaft; torque measuring means carried on and rotating with said output shaft and producing a torque output signal corresponding to measured torque applied thereto by said servo motor and said tool; torque signal receiving means carried on said support means including a torque signal channel and signal coupling means for coupling said torque output signal into said torque signal channel; shaft position sensing means for sensing the angular position of said output shaft and producing an output shaft position signal; servo control means responsive to a preselected command signal for controlling operation of said servo motor and including servo signal measuring means for measuring a preselected servo control signal parameter associated with said servo motor and output shaft and operatively related to said command signal; and exercise control means coupled to said servo control means and receiving said output shaft position signal and said torque output signal for controlling said servo motor and output shaft in accordance with a preselected exercise control algorithm.
- 21. Apparatus as claimed in claim 20, wherein said preselected exercise control algorithm includes torque control means for controlling said servo motor means to limit the maximum torque on said output shaft as prearranged function of said shaft position signal.
- 22. Apparatus as claimed in claim 20, wherein said exercise control means comprises programmable computer means including program storage means storing a plurality of exercise mode control programs operative to control said servo control means and said servo motor in accordance with a plurality of prearranged exercise control algorithms each having a set of control parameters associated therewith, and program interface means providing program facilities for selecting an exercise mode and for entering values for said control parameters associated therewith.
- 23. Apparatus as claimed in claim 22, wherein said program interface means comprises type means for selecting an exercise type from a set of prearranged exercise types, motion means for selecting an exercise motion from a set of prearranged exercise motions associated with said selected exercise type, mode means for selecting said exercise mode from a set of prearranged exercise modes associated with said selected exercise motion, and parameter means for entering said values of control parameters associated with said selected exercise mode.
- 24. Apparatus as claimed in claim 20, wherein said servo motor and said output shaft are carried in a power head housing with said output shaft projecting from a front faceplate, and said apparatus further comprises head mounting means including a mounting yoke for carrying said power head housing, means for positioning said mounting yoke at a selectable height, and means for mounting said power head housing in said mounting yoke for rotation about a mounting axis orthogonal to said output shaft including means for releasably connecting said power head housing to said mounting yoke at one of a plurality of rigidly fixed, angular orientations in at least one vertical plane.
- 25. Apparatus as claimed in claim 24, wherein said mounting yoke has first and second mounting arms; and said means for mounting said power head housing in said mounting yoke further comprises a pair of mounting shafts mounted on opposite sides of said power head housing along said mounting axis, bearing means carried on said first and second mounting arms for receiving said mounting shafts for journalling said mounting shafts for rotation relative to said mounting arms about said mounting axis; one of said mounting shafts extending outside of an associated one of said mounting arms and carrying a first detent coupler element with a first mating surface thereon in a rigidly fixed position, a second detent coupler element having a second mating surface thereon and being mounted on said associated mounting arm in a position with said second mating surface facing said first mating surface, and coupler means carried on said first and second detent coupler elements for coupling said first and second detent coupler elements together in tight mating engagement with each other; one of said first and second detent coupler elements having a pair of tapered projections formed at diametrically opposite locations on the associated mating surface and the other of said first and second detent coupler elements having a plurality of pairs of tapered slots formed at preselected positions defining detent mounting angles for said mounting shafts relative to said mounting arms.
- 26. Apparatus as claimed in claim 24, wherein said front faceplate of said power head housing has a plurality of registration apertures formed in a circular array therein, and a set of said tools each have a mounting baseplate thereon with registration pins extending therefrom and adapted to be received in said registration apertures to position said mounting baseplate in a selectable fixed position relative to said front faceplate when said coupling means couples said tool to said output shaft, each of said tools in said set further comprising at least one tool handle rotatably mounted to said base plate for applying torque to said first shaft section and for rotating with said first shaft section.
- 27. Apparatus as claimed in claim 26, wherein each of said tools in said set includes a mechanical stop mounted in a prearranged location on said baseplate for limiting the rotation of said tool handle and a torque limiting coupler means mounting said tool handle to a hollow tool mounting shaft carried on each of said plurality of tools and adapted to provide slippage between said tool handle and said hollow tool mounting shaft when the torque on said coupler means exceeds a prearranged maximum torque value, thereby preventing the application of destructive forces to said mechanical stop on said baseplate.
- 28. Apparatus as claimed in claim 26, wherein one of said tools is a linear motion tool apparatus comprising an elongated carriage track mounted to said baseplate and defining a linear motion track for a variety of linear motion tools, a carriage mounted for traversing said carriage track and adapted to mount one of said variety of linear motion tools thereto, and transmission means coupled to a hollow tool mounting shaft carried on each of said plurality of tools and said carriage for translating linear motion of said carriage into rotation of said hollow tool mounting shaft, said registration pins on said mounting baseplate cooperating with said registration apertures on said front faceplate to permit said linear motion track to be mounted in one of a plurality of different orientations on said power head housing including horizontal and vertical orientations.
- 29. Apparatus as claimed in claim 24, wherein said preselected exercise control algorithm includes torque control means for controlling said servo motor means to limit the maximum torque on said output shaft as a prearranged function of said shaft position signal.
- 30. Apparatus as claimed in claim 24, wherein said exercise control means comprises programmable computer means including program storage means storing a plurality of exercise mode control programs operative to control said servo control means and said servo motor in accordance with a plurality of prearranged exercise control algorithms each having a set of control parameters associated therewith, and program interface means providing program facilities for selecting an exercise mode and for entering values for said control parameters associated therewith.
- 31. Apparatus as claimed in claim 30, wherein said program interface means comprises type means for selecting an exercise type from a set of prearranged exercise types, motion means for selecting an exercise motion from a set of prearranged exercise motions associated with said selected exercise type, mode means for selecting said exercise mode from a set of prearranged exercise modes associated with said selected exercise motion, and parameter means for entering said values of control parameters associated with said selected exercise mode.
- 32. In muscle exercise and diagnostic apparatus, said apparatus comprises an output shaft; a servo motor coupled in driving relation to said output shaft; support means for mounting said output shaft and said servo motor in a selectable stationary position; a plurality of work simulation tools; and coupling means including coupling arrangements on said output shaft and each of said tools for removably coupling one of said tools to said output shaft; torque measuring means carried on said output shaft and producing a torque output signal corresponding to measured torque applied thereto by said servo motor and said tool; shaft position sensing means for sensing the angular position of said output shaft and producing an output shaft position signal; servo control means responsive to a preselected command signal for controlling operation of said servo motor and including servo signal measuring means for measuring a preselected servo control signal parameter associated with said servo motor and output shaft and operatively related to said command signal; and exercise control means coupled to said servo control means and receiving said output shaft position signal and said torque signal for controlling said servo motor and output shaft in accordance with a preselected exercise control algorithm; said exercise control means comprising programmable computer means including program storage means storing a plurality of exercise mode control programs operative to control said servo control means and said servo motor in accordance with a plurality of prearranged exercise control algorithms each having a set of control parameters associated therewith, and program interface means including type means for selecting an exercise type from a set of prearranged exercise types, motion means for selecting an exercise motion from a set of prearranged exercise motions associated with said selected exercise type, mode means for selecting said exercise mode from a set of prearranged exercise modes associated with said selected exercise motion, and parameter means for entering the values of control parameters associated with said selected exercise mode.
- 33. Apparatus as claimed in claim 32, wherein said preselected exercise control algorithm includes torque control means for controlling said servo motor means to limit the maximum torque on said output shaft as a prearranged function of said shaft position signal.
- 34. A muscle exercise and diagnostic apparatus comprising:
- a power head including output shaft means defining an output axis of said power head, a servo motor coupled to said output shaft means for alternatively applying braking and driving power to said output shaft means, torque measuring means for measuring torque applied to said output shaft means; and servo signal measuring means for measuring a preselected operational parameter associated with said output shaft means;
- a plurality of work task simulating tools;
- tool mounting means for removably mounting a selected one of said work task simulating tools on said output shaft means;
- control means coupled to said servo motor, said torque measuring means and said servo signal measuring means for controlling the operation of said servo motor in accordance with a selected one of a plurality of servo control functions to simulate at least one operational characteristic of said selected one of said tools;
- head mounting means including a mounting yoke for carrying said power head, means for positioning said mounting yoke at a selectable height, and means for mounting said power head in said mounting yoke for rotation about a mounting axis orthogonal to said output axis including means for releasably connecting said power head to said mounting yoke at one of a plurality of rigid, fixed, angular orientations in at least one vertical plane; and
- wherein said mounting yoke has first and second mounting arms; and said means for mounting said power head in said mounting yoke further comprises a pair of mounting shafts mounted on opposite sides of said power head along said mounting axis, bearing means carried on said first and second mounting arms for receiving said mounting shafts for journalling said mounting shafts for rotation relative to said mounting arms about said mounting axis; one of said mounting shafts extending outside an associated one of said mounting arms and carrying a first detent coupler element with a first mating surface thereon in a rigidly fixed position, a second detent coupler element having a second mating surface thereon and being mounted on said associated mounting arm in a position with said second mating surface facing said first mating surface, and coupler means carried on said first and second detent coupler elements for coupling said first and second detent coupler elements together in tight mating engagement with each other; one of said first and second detent coupler elements having a pair of tapered projections formed at diametrically opposite locations on the associated mating surface and the other of said first and second detent coupler elements having a plurality of pairs of tapered slots formed at preselected positions defining detent mounting angles for said mounting shafts relative to said mounting arms.
- 35. A muscle exercise and diagnostic apparatus comprising:
- a power head including output shaft means defining an output axis of said power head, a servo motor coupled to said output shaft means for alternatively applying braking and driving power to said output shaft means, torque measuring means for measuring torque applied to said output shaft means; and servo signal measuring means for measuring a preselected operational parameter associated with said output shaft means;
- a plurality of work task simulating tools;
- tool mounting means for removably mounting a selected one of said work task simulating tools on said output shaft means;
- control means coupled to said servo motor, said torque measuring means and said servo signal measuring means for controlling the operation of said servo motor in accordance with a selected one of a plurality of servo control functions to simulate at least one operational characteristic of said selected one of said tools;
- wherein said plurality of work task simulating tools having a first subset of said work task simulating tools comprise high torque tools and a second subset of said work task simulating tools comprise low torque tools;
- said output shaft means comprises a first larger diameter shaft section; a second smaller diameter shaft section extending forward from and coaxial with said first shaft section;
- said tool mounting means comprises first coupling means for removably coupling said high torque tools to said first shaft section and second coupling means for removably coupling said low torque tools to said second shaft section; and
- said torque measuring means comprises first torque sensing means mounted in a torque sensing relationship with said first shaft section; and second torque sensing means mounted in a torque sensing relationship with said second shaft section.
- 36. Apparatus as claimed in claim 35, wherein said power head includes a power head housing with a front faceplate thereon having a plurality of registration apertures formed in a circular array therein, and said plurality of high torque tools each having a mounting baseplate thereon with registration pins extending therefrom and adapted to be received in said registration apertures to position said mounting baseplate in a selectable fixed position relative to said front faceplate when said first coupling means couples one of said high torque tools to said first shaft section, each of said high torque tools further comprising at least one tool handle rotatably mounted to said base plate for applying torque to said first shaft section and for rotating with said first shaft section.
- 37. Apparatus as claimed in claim 36, wherein each of said plurality of high torque tools includes a mechanical stop mounted in a prearranged location on said baseplate for limiting the rotation of said tool handle and a torque limiting coupler means mounting said tool handle to a hollow tool mounting shaft carried on each of said high torque tools adapted to extend over said second shaft portion and adapted to provide slippage between said tool handle and said hollow tool mounting shaft when the torque on said coupler means exceeds a prearranged maximum torque value, thereby preventing the application of destructive forces to said mechanical stop on said baseplate.
- 38. Apparatus as claimed in claim 37, wherein one of said high torque tools is a linear motion tool apparatus comprising an elongated carriage track mounted to said baseplate and defining a linear motion track for a variety of linear motion tools, a carriage mounted for traversing said carriage track and adapted to mount one of said variety of linear motion tools thereto, and transmission means coupled to said hollow tool mounting shaft and said carriage for translating linear motion of said carriage into rotation of said hollow tool mounting shaft, said registration pins on said mounting baseplate cooperating with said registration apertures on said front faceplate to permit said linear motion track to be mounted in one of a plurality of different orientations on said power head housing including horizontal and vertical orientations.
- 39. A muscle exercise and diagnostic apparatus comprising:
- a power head including output shaft means defining an output axis of said power head, a servo motor coupled to said output shaft means for alternatively applying braking and driving power to said output shaft means, torque measuring means for measuring torque applied to said output shaft means; and servo signal measuring means for measuring a preselected operational parameter associated with said output shaft means;
- a plurality of work task simulating tools;
- tool mounting means for removably mounting a selected one of said work task simulating tools on said output shaft means;
- control means coupled to said servo motor, said torque measuring means and said servo signal measuring means for controlling the operation of said servo motor in accordance with a selected one of a plurality of control functions to simulate at least one operational characteristic of said selected one of said tools; and
- wherein said control means comprises programmable computer means including program storage means storing a plurality of exercise mode control programs operative to control said servo motor in accordance with a plurality of prearranged exercise control algorithms each having a set of control parameters associated therewith, and program interface means providing program facilities for selecting an exercise mode and for entering values for said control parameters associated therewith, said program interface means comprising type means for selecting an exercise type from a set of prearranged exercise types, motion means for selecting an exercise motion from a set of prearranged exercise motions associated with said selected exercise type, mode means for selecting said exercise mode from a set of prearranged exercise modes associated with said selected exercise motion, parameter means for entering said values of control parameters associated with said selected exercise mode, and range of motion means for entering range of motion limit positions for the associated one of said work task simulating tools mounted on said output shaft.
- 40. A muscle exercise and diagnostic apparatus comprising: an output shaft; a servo motor coupled in driving relation to said output shaft for producing multiple rotations thereof; support means for mounting said output shaft and said servo motor in a selectable stationary position; said output shaft having first and second shaft sections, said first shaft section having a larger diameter than said second shaft section to handle higher torque loads, said second shaft section being coaxial with said first shaft section; first torque sensing means for sensing torque applied to said first shaft section; second torque sensing means for sensing torque to said second shaft section; a plurality of high torque tools; a plurality of low torque tools, first coupling means for removably coupling said high torque tools to said first shaft section; second coupling means for removably coupling said low torque tools to said second shaft section; torque signal receiving means carried on said support means and coupled to said first torque sensing means and said second torque sensing means for producing an output torque signal; shaft position sensing means for sensing the angular position of said output shaft and producing an output shaft position signal; servo control means responsive to a preselected command signal for controlling operation of said servo motor and including servo signal measuring means for measuring a preselected servo control signal parameter associated with said servo motor and said output shaft and operatively related to said command signal; and exercise control means coupled to said servo control means and receiving said output shaft position signal and said output torque signal for controlling said servo motor and said output shaft in accordance with a preselected exercise control algorithm.
Parent Case Info
This is a continuation of U.S. patent application Ser. No. 07/306,737, filed Feb. 3, 1989, abandoned, and of U.S. patent application Ser. No. 07/559,652, filed Jul. 30, 1990, abandoned, both titled Apparatus for Controlled Exercise and Diagnosis of Human Performance.
US Referenced Citations (14)
Foreign Referenced Citations (1)
Number |
Date |
Country |
2045215 |
Feb 1971 |
FRX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
306737 |
Feb 1989 |
|