Cross-referenced is commonly assigned U.S. application Ser. No. 16/391,422, filed Apr. 23, 2019, and entitled A SYSTEM FOR PREVENTING PAPER JAMS BETWEEN SUBSYSTEM TRANSITIONS by Roberto A. Irizarry et al.; U.S. application Ser. No. 16/391,428, filed Apr. 23, 2019, and entitled MEDIA HANDLING BETWEEN MODULES ROBUST TO PAPER CURL by Carlos M. Terrero et al., both of which are included in their entirety herein by reference.
The present disclosure relates to an apparatus and method for improving process curl removal during paper path transport within an imaging system, and more particularly, to an apparatus and method for controlling media flatness under a scanner.
Current xerographic digital presses utilize cameras or in-line scanners, such as, in-line spectrophotometers in order to control image registration, image quality and other xerography failure modes. Media flatness has to be controlled in order to avoid jamming when entering a scanner module. It is also an imperative to not block the camera opening and to avoid touching the surface of sheets with conventional mechanisms, such as, nip rollers and baffles to avoid having a distorted image due to a curled sheet being too far from the ideal focal point of a scanner as shown in
Presently, solutions for maintaining sheet flatness in scanning applications include the use of baffles to keep sheets down, but this may not be feasible because they may obstruct the camera opening and moving sheets underneath an imager by a regular nip sets or vacuum transport that have to contend with sheet variations, such as, curl. Scanners rely on the addition of multiple rollers in order to control sheet flatness before and after the scanners' lens area. However, the rollers are not effective on the unsupported area or under the scanners. Directly under a scanner opening, there is no method or apparatus that holds the sheet down flat.
Therefore, there is a need for an improvement in managing sheet curl in xerographic digital presses.
Accordingly, in answer to this need, a solution is disclosed that includes constraining media down onto a curved baffle surface under an imaging system to maintain a flat sheet during imaging under a sensor. This is accomplished by creating a thin layer of high velocity air on a curved baffle under the sheet. The high velocity air layer, which will have a tendency to follow the curved baffle (Coanda effect), will divert the sheet (Bernoulli effect) towards the curved baffle. By positioning the curved baffle along the media paper path and by applying a uniform or localized air stream to it, the air will follow the surface of the curved baffle and the sheet will follow, thus removing curl from the sheet.
Various of the above-mentioned and further features and advantages will be apparent to those skilled in the art from the specific article or methods described in the example(s) below, and the claims. Thus, they will be better understood from this description of these specific embodiment(s), including the drawing figures (which are approximately to scale) wherein:
For a general understanding of the features of the disclosure, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to identify identical elements.
A side view of an imaging system 10 is shown in
In recapitulation, improved apparatus and methods are disclosed that include applying a uniform or localized air stream over the inboard to outboard length of a curved baffle to produce Coanda effect (air stream flow follows curved surface) to accurately position lighter sheets under an imaging system, such as, an in-line spectrophotometer. The position of the lead edge of the sheet will be under control as it travels over the curved baffle. Any curl or unevenness in the sheet will be removed by the Coanda Effect as the sheet travels over the curved baffle. The sheet will ride on a very thin layer of air close to the curved baffle surface, thus, maintaining the wrap angle and focal point of the sheets passing under the imaging system. Another benefit from applying a uniform or localized air stream over the inboard to outboard length of a curved baffle to produce Coanda effect is the reduction of glass/shim wear caused by rollers. With this system, rollers area unnecessary and thus there will be less wear on the scanner.
The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Number | Name | Date | Kind |
---|---|---|---|
5157506 | Hannah | Oct 1992 | A |
6612236 | Frankenberger | Sep 2003 | B2 |
7982926 | Ishikawa | Jul 2011 | B2 |
8542414 | Maki | Sep 2013 | B2 |
8794624 | Herrmann | Aug 2014 | B2 |
10981742 | Terrero | Apr 2021 | B2 |
11046544 | Irizarry | Jun 2021 | B2 |
Number | Date | Country | |
---|---|---|---|
20200339371 A1 | Oct 2020 | US |