Apparatus for controlling slip deployment in a downhole device

Information

  • Patent Application
  • 20080073086
  • Publication Number
    20080073086
  • Date Filed
    September 22, 2006
    17 years ago
  • Date Published
    March 27, 2008
    16 years ago
Abstract
An apparatus for use in a well. The apparatus comprises a mandrel containing a radial shoulder, a sub member concentrically disposed about the mandrel, and an upper slip, concentrically disposed about the mandrel, for engaging the well. The apparatus further comprises an upper cone abutting an underside of the upper slip, and wherein the upper cone is disposed about the mandrel, and an elastomer operatively associated with the upper cone, and wherein the elastomer is disposed about the mandrel. The apparatus further includes a lower slip, concentrically disposed about the mandrel, for engaging with the internal portion of the well, and lower cone abutting an underside of the lower slip, and wherein the lower cone is disposed about the mandrel, and wherein the lower cone is operatively associated with the elastomer. The apparatus further contains a first alignment member selectively connecting the sub with the upper slip, and wherein the first alignment pin is selected to shear at a first predetermined force.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A, 1B, and 1C depict the most preferred embodiment of the present invention in the run-in mode.



FIGS. 2A and 2B depict the embodiment seen in FIGS. 1A, 1B, and 1C with the upper slips in the controlled open mode.



FIGS. 3A and 3B depict the sequential embodiment of the apparatus seen in FIGS. 2A and 2B with the lower slips partially controlled open.



FIG. 4 is the sequential embodiment of the apparatus seen in FIGS. 3A and 3B with the upper slips controlled open and upper alignment pins sheared.



FIG. 5 is the sequential embodiment of the apparatus seen in FIGS. 4A and 4B with the lower slips in the partially controlled open mode with the sealing element compressed.



FIG. 6 is the sequential embodiment of the apparatus seen in FIG. 5 with the lower slips in the controlled full open element mode with the sealing element compressed, the stroke limiter sheared, and lower alignment pin sheared.



FIG. 7 is a cross-sectional view of the apparatus taken along line 7-7 in FIG. 1B.



FIG. 8 is a cross-sectional view of the apparatus taken along line 8-8 in FIG. 2A.



FIG. 9 is a cross-sectional view of the apparatus taken along line 9-9 in FIG. 4.



FIG. 10 is a cross-sectional view of the apparatus taken along line 10-10 in FIG. 5.



FIG. 11 is a perspective view of the upper slip device of the present disclosure.



FIG. 12 is a schematic illustration of the apparatus of the present disclosure positioned within a well on wireline.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIGS. 1A, 1B, and 1C, the most preferred embodiment of the present invention in the run-in mode will now be described. More specifically, the apparatus 2 is shown disposed within a well 4, and wherein the well 4 may be referred to as a casing string 4. The well 4 has an inner diameter portion 6. As those of ordinary skill in the art will recognize, the apparatus 2 is operatively associated with a setting tool means 8 for setting the apparatus 2. Setting tool means may be hydraulically activated, mechanically activated, explosively activated, or electrically activated. In the most preferred embodiment, the setting tool means 8 used with the apparatus 2 will be electrically activated. Setting tool means of this type are commercially available from Owen Oil Tools Inc. under the name Wireline Pressure Setting Tool.


The setting tool means 8 is operatively attached with a power mandrel 10 that is threadedly attached to the inner mandrel 12 of the apparatus 2. The apparatus 2 also includes the sub 14. The sub 14 is concentrically disposed about the mandrel 12, and the sub 14 contains a radial face 18 that will have a hole disposed therein for placement of an alignment pin 20. As shown in FIG. 1B, radial face 18 has a curved surface to aid the rocking movement when the slips are deployed. FIG. 1B also depicts the upper slip device, seen generally at 22. The upper slip device 22 is generally a cylindrical member that is concentrically disposed about the mandrel 12. The upper slip device 22 has a series of longitudinal grooves or cuts disposed on its outer surface so that when the upper slip device 22 fractures, the slip 22 will fracture into separate and equivalent segments. The upper slip device 22 will have an inner diameter portion 24 which extends to the radial face 26, and wherein the radial face 26 will have a hole for placement of the alignment pin 20. The upper slip device 22 has an outer cylindrical surface 28 that extends to the tapered surface 30, and wherein the tapered surface 30 contains a plurality of radial teeth for engagement with the inner diameter portion 6. The angle of the taper will range from 10 to 45 degrees, and in the most preferred embodiment, the taper will be 20 degrees.


The apparatus 2 will also include the upper cone means 32 that contains an inner diameter portion 34 that extends to the radial end surface 36. The upper cone means 32 has an outer diameter surface 38 that extends to a first angled surface 40 and a second angled surface 42 for cooperation with the angled surface 44 of the upper slip device 22. FIG. 1A also depicts the elastomeric member 46, sometimes referred to as the elastomer means 46, which in operation will be expanded in order to engage and seal with the inner diameter portion 6, as is well understood by those of ordinary skill in the art. The elastomeric member 46 is commercially available from MP Industries Inc. under the name HSN.



FIG. 1B shows a series of cups that cooperate and engage with one end of the elastomeric member 46. More specifically, FIG. 1B depicts the metal cup 48, wherein the radial end 50 abuts the radial end surface 36. The opened end of the cup 48 abuts the metal cup 52, as well as metal cup 54, and wherein cups 48, 52, 54 are flexible in order to give partial way when the elastomeric member 46 is expanded i.e. the cups 48, 52, 54 open-up when the elastomeric member 46 expands and prevents elastomer extrusion into the annular space, and wherein the cups 48, 52, 54 act to control and guide the expansion of the elastomeric member 46. It should be noted that other materials besides metals could be used.



FIG. 1C depicts a second set of cups that cooperate and engage with the elastomeric member 46. More specifically, a metal cup 56 has an opened end that receives the metal cup 58 and wherein the metal cup 58 receives the metal cup 60. The cups 56, 58 and 60 are flexible, and are similar to the cups 48, 52, 54. The open end of cup 60 receives and cooperates with the end of elastomeric member 46. The cups 56, 58, 60 open-up when the elastomeric member 46 expands, and wherein the cups 56, 58, 60 act to control and guide the expansion of the member 46, and prevents elastomer extrusion into the annular area.


The lower cone means is seen generally at 62, and wherein the lower cone means is concentrically disposed about the mandrel 12. The lower cone means 62 has an inner diameter portion 64 that extends to the first outer angled surface 66, which in turn extends to the second outer angled surface 68, which in turn stretches to the third outer surface 70. The third outer surface 70 has extending therefrom the lower cone leg member 72, and wherein the lower cone leg member 72 is generally a cylindrical member having a longitudinal slot 74. FIG. 1C also shows the sub member 76 which is concentrically disposed about the mandrel 12, with the sub member 76 having a radial face 78 that abuts the cup 56, and wherein the sub member 76 also contains the lip 80, and wherein the lip is generally tubular in shape. The lip 80 contains internal threads that will engage with external threads on the lower cone leg member 72, as seen at 81.


As shown in FIG. 1C, the inner mandrel 12 has a raised portion 82 (wherein the raised portion 82 is an area of greater wall thickness) that has a hole 84 therein, and wherein a shear pin 86 is placed through the slot 74 and into the hole 84. In this way, the stroke limiter means generally comprises the lower cone leg member 72 concentrically disposed about the mandrel 12, the sub member 76, and the shear pin 86 selectively attaching the lower cone leg member 72 to the mandrel 12. The shear pin 86 is disposed within hole 84 of the raised portion 82.


The lower slip device 88 is similar in construction to the upper slip device 22. The lower slip device 88 has a series of longitudinal grooves or cuts disposed on its outer surface so that when the lower slip device 88 fractures, the slip will fracture into separate and equivalent segments. The lower slip device 88 will have an inner diameter portion 90 which extends to the radial face 92, and wherein the radial face 92 will have a hole for placement of the alignment pin 94. As shown in FIG. 1C, radial face 92 has a curved surface to aid the rocking movement when the slips are deployed. The lower slip device 88 has an outer cylindrical surface 96 that extends to the tapered surface 98, and wherein the tapered surface 98 contains a plurality of radial teeth for engagement with the inner diameter portion 6. The angle of the taper will range from 10 to 45 degrees, and in the most preferred embodiment, the taper will be 20 degrees.



FIG. 1C further depicts the lower member 102 that is threadedly attached to the mandrel 12 via internal thread means 104, and therefore, is an extension of the mandrel 12. The lower member 102 is generally a cylindrical member that has a radial face 106, and wherein the radial face 106 contains a hole for cooperation with the alignment pin 94. The lower member 102 has a first outer diameter surface 108 that extends to the second outer diameter surface 110 that contains outer thread means 112 for engagement with a bottom hole assembly (not shown).


Referring now to FIGS. 2A and 2B, the embodiment of the present apparatus 2 seen in FIGS. 1A and 1B will be described with the upper slip device 22 in the controlled open mode. It should be noted that like numbers appearing in the various figures refer to like components. In this embodiment, the setting tool means 8 has caused the lateral movement of the power mandrel 10 (not seen in this view), which in turn causes the inner mandrel 12 to move in the longitudinal direction shown by arrow “A”. This movement will also cause the lower member 102 to move in a like manner. This movement will cause the upper cone means 32 to move upward, as shown in FIG. 2A, so that the upper slip device 22 will begin expanding due to the upper cone means 32 wedging effect. This expansion will cause the upper slip device 22 to crack along the pre-cut lateral grooves, as noted earlier. The continued outward expansion will allow the angled surface 44 to engage against the inner diameter portion 6.


As shown in FIG. 2A the alignment pin 20 is beginning to bend, but has not sheared, which allows equal radial expansion of the upper slip device 22. As will be discussed in greater detail later in the disclosure, a plurality of alignment pins will be placed about radial face 18. The radial face 18 has the curved surface to aid in the rocker motion which provides a smoother, steady, and gradual force to be applied to the alignment pin 20. FIG. 2B depicts the alignment pin 94 that has not, at this point in the process, undergone any stress forces and is still in the pinned position. Hence, the lower cone means 62 has not moved, which in turn means that the lower slip device 88 has also not moved. Alignment pins control phasing of the tapered slips so when opening, they go out evenly.



FIGS. 3A and 3B depict the sequential embodiment of the apparatus seen in FIGS. 2A and 2B with the lower slips 88 partially controlled open. The lower slips 88 are opening due to the lower cone means 62 wedging underneath the slips 88, as the mandrel 12 moves upward. Also, the shear pin 86 disposed within longitudinal slot 74 has moved relative to the lower cone means 62 (shear pin 86 is attached to mandrel 12). At this point, the tapered surface 98 does not touch the inner diameter portion 6.


Referring now to FIGS. 4A and 4B, the sequential embodiment of the apparatus seen in FIGS. 3A and 3B with the upper slips 22 controlled open and alignment pins sheared into segments 21a, 21b is shown. Note that the tapered surface 30 engages the inner diameter portion 6.


Referring now to FIG. 5, a sequential embodiment of the apparatus 2 seen in FIGS. 4A and 4B is shown, and wherein the lower slip device 88 is shown in the partially controlled open mode with the sealing element 46 compressed. Therefore, in this sequence illustration, the tapered surface 30 of the upper slip device 22 is shown engaged with the inner diameter portion 6. The setting tool means 8, as previously noted, continues the force on the mandrel 12 so that the mandrel 12 continues its movement in the direction shown by arrow “A”. The lower cone means 62 will begin to wedge on the underside of the lower slip device 88 which will partially deploy the lower slip device 88 as seen in FIG. 5. Note that in FIG. 5, the radial teeth of the lower slip device 88 have not engaged the internal diameter portion 6. The mandrel 12 is connected to the lower cone leg member 72 via pin 86 so that the continued force on the mandrel 12 will cause the movement of the sub member 76, which in turn compresses the elastomeric member 46 against the inner diameter portion 6. However, the lower cone means 62 is prevented from fully wedging the lower slip device 88 outward. As per the teachings of this disclosure, limiting the lower slips 88 to partially open reduces drag, allowing the element to be fully compressed. In this way, the elastomeric member 46 can become fully compressed which ensures an adequate seal with the inner diameter portion 6. It should also be noted that cups 48, 52 and 54 have also been expanded, as well as cups 56, 58 and 60.



FIG. 6 is the sequential embodiment of the apparatus 2 seen in FIG. 5, wherein the lower slip device 88 is in the controlled full open element mode, and the elastomeric member 46 is compressed and the stroke limiter sheared (i.e. pin 86 has sheared). More specifically, the continued upward force on the mandrel 12 will cause the shear pin 86 to shear into segments 87a, 87b at a predetermined shear force thereby further lifting the lower member 102 which in turn drives the lower slip device 88 outward due to the back side of the lower slip device 88 wedging against the lower cone means 62.


The shear pin 94 is shown sheared into segments 95a and 95b. The curved radial surfaces 92, 106 aids in allowing the rocking motion which provides a smoother, steady, and gradual force to be applied to the alignment pin 94. Also note the position of the raised portion 82 in FIG. 5 as compared to FIG. 6, which depicts the distance that the mandrel 12 was allowed to travel due to the shearing of the pin 86. In other words, by the shearing of the pin 86, the mandrel 12 was allowed to travel a distance sufficient to fully deploy the lower slip device 88.


Referring now to FIG. 7, a cross-sectional view of the apparatus 2 taken along line 7-7 in FIG. 1B will now be described. In this view, the inner mandrel 12 is concentrically disposed within the sub 14, and wherein the apparatus is concentrically disposed within the well 4 as previously described. The alignment pin 20 is shown, and as noted earlier, the alignment pin 20 aligns and connects the sub 14 to the upper slip device 22 (not seen in this view). FIG. 7 shows that several alignment pins are included, namely alignment pins 122, 124, 126, 128, 130, and wherein the plurality of equally spaced alignment pins ensures fracturing of the slip into equally spaced segments.



FIG. 8 is a cross-sectional view of the apparatus 2 taken along line 8-8 in FIG. 2A. This view depicts the upper slip device 22 in the controlled open mode. As noted earlier, upper slip device 22 will fracture along the longitudinal cut lines, and wherein the upper slip device 22 will fracture into relatively equal segments, namely segments 132, 134, 136, 138, 140, 142 due to placement of the alignment pins. The radial teeth of the slip device is shown, for instance the radial teeth 144.


Referring now to FIG. 9, a cross-sectional view of the apparatus 2 taken along line 9-9 in FIG. 4A will now be described. In this view, the radial teeth of the upper slip device 22 are engaged with the inner diameter portion 6, and therefore, the teeth can not be seen from this view. Also, the alignment pins are sheared. Therefore, in FIG. 9, the shear pin part 21b is shown along with the shear pin part 21a. The tapered slips are fully opened and phased evenly.



FIG. 10 is a cross-sectional view of the apparatus 2 taken along line 10-10 in FIG. 5. More specifically, the mandrel 12 is concentrically disposed within the lower member 102. The alignment pins 94, 146, 148, 150, 152, 154 are in place and have not been sheared yet, and wherein the plurality of equally spaced alignment pins ensures fracturing of the slip into equally spaced segments. In other words, the alignment pins control phasing of the tapered slips so when opening, they go out evenly. The lower slip device 88 is similar to the upper slip device 22 in that it is comprised of a generally cylindrical member with radial teeth on the outer portion. As shown in FIG. 10, the upper slip device 22 will fracture into essentially equal segments during the setting process, namely slip segments 156, 158, 160, 162, 164, 166.


Referring now to FIG. 11, a perspective view of the upper slip device 22 will now be described. FIG. 11 depicts the longitudinal slots S1 and S2 that are provided to aid in providing equally fractured segments upon deployment, as previously noted. The radial teeth 144 are also shown. FIG. 12 is a schematic illustration of the apparatus 2 of the present disclosure positioned within the well 4 on wireline 170, and wherein the wireline 170 is supended from the derrick 172 of a rig. As previously noted, the setting tool means 8 can be activated in order to set the apparatus 2 within the well 2 in accordance with the teachings of the present disclosure.


Because many varying and different embodiments may be made within the scope of the inventive concept herein taught, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirement of the law, it is to be understood that the details herein are to interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A downhole tool for use in a well comprising: a mandrel, wherein said mandrel contains a radial shoulder;a first sub member concentrically disposed about said mandrel;an upper slip device concentrically disposed about said mandrel, said upper slip device having a series of grooves formed thereon;an upper cone means abutting an underside of said upper slip device, said upper cone means disposed about said mandrel;an elastomeric member operatively associated with said upper cone means, and wherein said elastomeric member is disposed about said mandrel;a lower slip device concentrically disposed about said mandrel, said lower slip device having a series of grooves formed thereon;a lower cone means abutting an underside of said lower slip device, said lower cone means disposed about said mandrel, and wherein lower cone means is operatively associated with said elastomeric member;a first plurality of alignment pins selectively connecting said first sub member with said upper slip device, wherein said first plurality of alignment pins are selected to shear at a first predetermined force.
  • 2. The downhole tool of claim 1 further comprising: a stroke limiter means, selectively attached to said mandrel, for allowing a predetermined amount of force to be transferred to said elastomeric member.
  • 3. The downhole tool of claim 1 wherein said upper slip device has a first tapered angle on a first end.
  • 4. The downhole tool of claim 3 wherein said lower slip device has a second tapered angle on a second end.
  • 5. The downhole tool of claim 2 wherein said stroke limiter means comprises: a lower cone leg member, extending from said lower cone means, said lower cone leg member being concentrically disposed about said mandrel, wherein said lower cone leg member contains a longitudinal slot;a second sub member having a lip and wherein a first end of said lower cone leg member is engaged with said lip;a shear pin selectively attaching the lower cone leg member to said mandrel, and wherein said shear pin is positioned through said longitudinal slot.
  • 6. The downhole tool of claim 5 further comprising: a second plurality of alignment pins selectively connecting said radial shoulder with said lower slip device, wherein said second plurality of alignment pins are selected to shear at a second predetermined force.
  • 7. The downhole tool of claim 6 further comprising: a setting tool means for imparting a force in a first direction that is transmitted to said mandrel so that said upper cone means travels in the first direction, which in turn causes said radial shoulder to travel in a first direction which in turn expands said upper slip device.
  • 8. The downhole tool of claim 6 wherein the first and second tapered angle is between 10 degrees and 45 degrees.
  • 9. A downhole tool for use in a well comprising: a mandrel containing a radial shoulder;a first sub member concentrically disposed about said mandrel;an upper slip means, concentrically disposed about said mandrel, for engaging with an internal portion of said well;an upper cone means abutting an underside of said upper slip means, said upper cone means disposed about said mandrel;an elastomeric member operatively associated with said upper cone means, and wherein said elastomeric member is disposed about said mandrel;a lower slip means, concentrically disposed about said mandrel, for engaging the with the internal portion of said well;a lower cone means abutting an underside of said lower slip means, said lower cone means disposed about said mandrel, and wherein lower cone means is operatively associated with said elastomeric member;a first alignment member selectively connecting said first sub member with said upper slip means, wherein said first alignment member is selected to shear at a first predetermined force.
  • 10. The downhole tool of claim 9 further comprising: a stroke limiter means, selectively attached to said mandrel, for allowing a predetermined amount of force to be transferred to said elastomeric member.
  • 11. The downhole tool of claim 10 wherein said upper slip means comprises a plurality of radial teeth and a series of longitudinal grooves formed thereon.
  • 12. The downhole tool of claim 11 wherein said lower slip means comprises a plurality of radial teeth and a series of longitudinal grooves formed thereon.
  • 13. The downhole tool of claim 12 wherein said stroke limiter means comprises: a lower cone leg member, and wherein said lower cone leg member is concentrically disposed about said mandrel, wherein said lower cone leg member contains a longitudinal slot;a second sub member having a lip and wherein a first end of said lower cone leg member is engaged with said lip;a shear pin selectively attaching the lower cone leg member to said mandrel, and wherein said shear pin is positioned through said longitudinal slot.
  • 14. The downhole tool of claim 13 wherein said upper slip means has a first tapered angle on a first end.
  • 15. The downhole tool of claim 14 wherein said lower slip means has a second tapered angle on a second end.
  • 16. The downhole tool of claim 15 further comprising: a second alignment member selectively connecting said radial shoulder with said lower slip means, wherein said second alignment member is selected to shear at a second predetermined force.
  • 17. The downhole tool of claim 16 further comprising: a setting tool means for imparting a force in a first direction that is transmitted to said mandrel so that said upper cone means travels in the first direction, which in turn causes said radial shoulder to travel in a first direction which in turn expands said upper slip means.
  • 18. The downhole tool of claim 16 wherein the first and second tapered angle is between 10 degrees and 45 degrees.
  • 19. The downhole tool of claim 18 wherein said first and second alignment member is a pin having a predetermined shear value.
  • 20. A method of setting a packer in a well comprising: providing the packer on a work string in the well, wherein said packer comprises: a mandrel having a radial shoulder; an upper slip, concentrically disposed about said mandrel, for engaging with an internal portion of said well; an upper cone abutting an underside of said upper slip, said upper cone disposed about said mandrel; an elastomeric member operatively associated with said upper cone, and wherein said elastomeric member is disposed about said mandrel; a lower slip, concentrically disposed about said mandrel, for engaging with the internal portion of said well; a lower cone abutting an underside of said lower slip, said lower cone disposed about said mandrel, and wherein lower cone is operatively associated with said elastomeric member; a first alignment member selectively connecting a sub member with said upper slip, wherein said first alignment member is selected to shear at a first predetermined force; and a stroke limiter means, selectively attached to said mandrel, for allowing a predetermined amount of force to be applied to said elastomeric member;moving the mandrel in a first direction;engaging the upper cone against said underside of the upper slip;fracturing the upper slip along a series of longitudinal grooves within said upper slip;opening said upper slip in a controlled mode;opening said lower slip in a controlled mode;shearing said upper alignment pin;anchoring said upper slip agaisnt the internal portion of the well;compressing said elastomeric member so that said elastomeric member engages the internal portion of said well;shearing the shear pin in said stroke limiter means;anchoring said lower slip against the internal portion of the well.
  • 21. The method of claim 20 wherein the upper and lower slips contain tapered angles so that in deployment, a set of teeth of said upper and lower slips engage the internal portion of the well only upon full engagement with the upper and lower cone.
  • 22. The method of claim 21 wherein said first and second alignment members are a plurality of pins having predetermined shear values.