The present invention relates to an apparatus for generating pulses of electric fields in a restricted area of a human or an animal according to the preamble to the appended independent claim.
The therapy forms which are routinely employed in modern medical care for tumor therapy are examples of treatment types where the outcome of such treatment is unsatisfactory. For example, in tumor therapy unsuccessful attempts are often made to achieve local tumor control, which is the cause of mortality of approximately 30% of cancer patients. It is, therefore, important to develop a new and improved technique for local and regional tumor treatment.
In today's medical-care, surgery, chemotherapy and radiation therapy, also known as radiation treatment, or combinations hereof are the most commonly employed methods for treating malignant tumors. Approximately every second patient suffering from infiltrating cancer is treated with radiation therapy, but only roughly half of the patients are cured. This failure is, on the one hand, the cause of the presence of wide-spread disease (distal metastasis) or relapses (the return of tumors in the treated area), and on the other hand because certain types of tumor are resistant to radiation treatment or chemotherapy.
With varying success, attempts have been made to reinforce and improve the efficiency of radiation therapy in sterilizing tumors. For example, use has been made of more sophisticated radiation therapy techniques, such as stereotactic treatment, “conformal radiotherapy”, of altered fractioning or added pharmaceuticals to increase the radiation sensitivity of the tumors.
Use is also made of heat as an adjuvant ionizing radiation, which, for certain, tumor forms, may increase the number of complete remissions by up to a factor of two.
Also in certain purely medically treated diseases in local organs, the outcome of treatment is occasionally insufficient. It is obvious that, in addition to the wishes which exist regarding improved techniques for treating, for example, tumors, there are not only wishes but also needs for a more efficient technique for treating certain other diseases. In, for example, the local treatment of local organs or tumors, it is a major advantage if, on each treatment occasion, it is possible to adapt the intensity of the treatment to suit the status of the tissue in the local region or in the organ being treated.
According to the present invention, use is made of a series of brief high voltage pulses for generating electric fields in the local region or in the organ which is to be treated. In the continuation of this description, use will also be made of the expression High Voltage Impulse Therapy, occasionally abbreviated to HVIT.
The treatment with electric fields realizes a perforation of the cell membranes which thereby allow the passage of substances (e.g. cytostatic or genetic material) added to the body. The treatment involves increased inflow of therapeutic substances, whereby the effects of chemotherapy are amplified. The outflow of specific substances out of, for example, tumor cells moreover often realizes a stimulation of the immune system. In total dielectric collapse, the result is often achieved that the cells are sterilized directly by the electric fields formed by the high voltage pulses. In clinical experiments, the method has proved to be effective in combination with cytostatics (Bleomycin) for, for example, treating melanoma and tumors in the neck, head, liver, pancreas and lungs.
In HVIT, the treatment result is determined by the number and duration of the high voltage pulses to which the tissue is subjected and how high electric field forces the impressed pulses create in the tissue, as well as the form or frequency the pulses possess. In order to achieve an effective and dependable treatment, it must be possible to control all of these physical parameters. Biological properties which affect the treatment result are, among other things, the electric conductive capacity of the tissue, its dielectric properties, the cell sizes and the structures of the cell membranes. All of these properties vary between different tissues. In order to achieve optimum treatment effect, it is therefore necessary to measure how the electric properties of the tissue change between each high voltage pulse or between the series of pulses, i.e. to establish when the cells are sufficiently perforated.
In previously employed HVIT, it was not possible to monitor when the tissue was sufficiently perforated, i.e. when the treatment was completed, which entailed that the tissue was occasionally undertreated and occasionally overtreated. This involved a degree of uncertainty in the treatment result. A typical HVIT treatment according to prior art techniques entails that an applicator was placed over the tissue which was intended for treatment. The high voltage generator was, for example, set such that the outgoing voltage corresponded to a field force in the target volume of approx. 1300 V/cm. The treatment was completed with a fixed number of pulses which it was known normally gave the desired result. The weaknesses in this procedure were, on the one hand, that the size of the electric field which the generator in reality generated in the tissue of the target volume was unknown, and, on the other hand, that it was not possible to assess when the treatment was sufficient.
The present invention relates to an apparatus which includes mechanical devices for subjecting a tissue within a restricted region or an organ in a person or an animal for one or more pulses of an electric field at a field strength, configuration, duration and frequency adjustable for the relevant treatment occasion. The expression “duration” relates to both the length of the pulses and the number of pulses, the expression “frequency” relates to both how often the pulses are repeated and the frequency with which the field alternates during an ongoing pulse.
The characterizing clause of the appended independent claim discloses a technique which entails a substantial improvement to the efficiency of surgery, chemotherapy and radiation therapy. The technique is also applicable within modern molecular medicine where substances and genetic DNA sequences which are to be introduced into tissue cells are customized.
Further expedient embodiments of the present invention are disclosed in the appended subclaims.
The present invention will now be described in greater detail hereinbelow, with reference to a number of Figures, in which:
a-d are embodiments of electrode applicators for external treatment of tissue;
a-d show embodiments of electrodes and electrode applicators designed for interstitial treatment of tissue;
a-c show embodiments of electrodes and electrode applicators designed for the treatment of, for example, tumors in bodily cavities and in organs accessible via large vessels;
a-e show examples of configurations of voltage pulses applied to the electrodes;
a shows a model of the principle structure of living tissue;
b is an electric skeleton diagram of the electric structure of living tissue; and
As a rule, the distributor 4 or an electrode applicator impresses voltage simultaneously on only two electrodes 6, while the other electrodes are permitted to assume that potential which is determined by the placing of the electrode in the treatment region. The term voltage impression also includes in this context the fact that one or more electrodes are earthed (have zero potential). The switch 4 and/or the electrode applicator 5 are disposed to permit, if so wished, the voltage impression pairwise of all electrodes which are placed in the treatment region. It will be obvious to a person skilled in the art, that, in certain embodiments, the devices are provided in order, on voltage impression, to allocate to several electrodes a substantially corresponding (the same) potential.
All units are, via signal connections 32 which, in certain embodiments, are wholly or partly wireless, connected to a registration and conversion device 10 with a screen 10a. Hereafter, the designations control and conversion unit 10 or computer 10 will be employed for the registration and conversion device. The computer 10 constitutes a control and monitoring device for the function of the apparatus.
The expression electrode applicator 5 relates to a retainer member for the electrodes 6, where the retainer member is designed to facilitate the correct application of the electrodes at or in the treatment region.
The computer is set as a rule for the high voltage pulses to contain the following data:
The pulses are applied before, during or immediately after the radiation treatment. Examples of pulse configuration employed are square pulse with a pulse length of 0.1-2 ms or exponentially fading pulse with a time constant RC approximately equal to 0.1-2 ms. In large amplitudes of the voltage, shorter pulse lengths are generally selected, and vice versa.
The high voltage generator 1 is, as a rule, disposed to emit modulated a.c. voltage of a frequency within a range of 40 Hz-2 MHz and as a rule within the range of 40 Hz-100 kHz. In those embodiments where the high voltage generator is disposed to emit a.c. voltage of high frequency, a modulator is employed instead of a capacitor battery and switch for generating short modulated high frequency pulses with a pulse length within the range of approx. 0.1-200 ms.
As will be apparent from the embodiment illustrated in
a-d show embodiments of electrode applicators 5 for external treatment of a patient with the electrodes 6 applied in a restricted region on the patient and in different configurations around the tissue region 7, for example a tumor 7, which is to be treated.
c-d show how electrodes are designed with abutment surfaces of different sizes in order for the field lines to be focused to the desired treatment region. At the beginning of the treatment, the electric high voltage pulses have, for example, a voltage which is adjusted in accordance with the distance between the electrodes. The voltage is then adjusted in accordance with the relationship:
Once the treatment has commenced, the control unit and impedance measurement unit described below regulate the output voltage of the pulse regulator to values which entail that the sought-for electric field force passes through the tissue.
Once the treatment has commenced, the control unit and the impedance measurement unit described below regulate the output voltage of the pulse generator to values which entail that the sought-for electric field force passes through the tissue.
a-d show embodiments of electrodes 15,16 and a fixture 18 for the electrodes, where the electrodes and the fixture are suitable for use for interstitial treatment of both superficial and profound tissue.
The electrodes are applied in different configurations in and about the tissue 7 or the organ 7 which is to be treated, either direct by free hand or with the aid of an electrode applicator (fixture) 18 provided with a hole. The electrode applicator is, as a rule, designed so as to be removed from the electrodes 15,16 once these have been applied on the patient. It will thereby be possible to allow the electrodes to remain in position in the patient to be used on several subsequent treatment occasions. Alternatively, the electrode applicator is removed together with the electrodes 15,16 after each treatment. Also in interstitial treatment, there are electrodes with surfaces of different sizes for controlling the extent of the electric fields.
Those parts of the electrodes 15,16 which are intended to be inserted into the patient to cover the extent of the tissue 7 which is to be treated are, for example, manufactured of stainless steel of a quality which agrees with or corresponds to that employed for injection syringes or are manufactured or coated with another tissue-friendly metal such as a noble metal, for example gold or platinum. The remaining portion of the electrodes forms an insulated portion 17 with input conductors 33 for the high voltage pulses. On the employment of flexible input conductors, the electrode is placed in a large cannula 19 which, after application of the electrode in the patient, is withdrawn, the electrodes remaining in position in the tissue.
In certain embodiments, the electrodes consist of radioactive metal (e.g. iridium-192, cobalt-60) or are surface coated with radioactive substances (e.g. iodine-125). In other embodiments, they are designed as tubes 20 of inert metal which are charged with radioactive material (e.g. 192Ir, 137Cs, 226Ra) which advantageously takes place by the employment of a so-called after loading device 22. The pulses have a voltage which, at the start of the treatment, for example are determined by the distance between the electrodes. The voltage is then set according to the relationship:
Once the treatment has commenced, the control unit and the impedance measurement unit described below regulate the output voltage of the pulse generator to values which entail that the sought-for electric field force passes through the tissue.
In those applications where treatment with electric fields is combined with radiation treatment from a radiation source which is located outside the treatment region, the electrodes in the treatment region are supplied with electric voltage pulses before, during or immediately after the radiation treatment.
a-c show electrodes 24 for treating tissue accessible via, for example, major vessels, or via bodily cavities, for example respiratory tracts, urinary tracts and stomach-intestinal trait. The electrodes are disposed on the surface of a cylinder-like electrode applicator 23 of insulating material 17. In certain embodiments, the electrodes are designed such that they are introduced into the tissue through channels 25 in the applicator 23 operated by a remote control. As will be apparent from
The field lines in
For intracavity treatment of tissue in different, irregularly shaped bodily cavities (e.g. oral cavity, respiratory tracts, oesophagus, stomach, uterus, bladder, ureter, rectum) electrode applicators 23 are applied as is apparent from
a-e show examples of pulse forms in the voltage pulses which are pairwise applied to the electrodes 6,15,16,24. In the Figures the height of the pulse represents the voltage between two electrodes. The width of the pulse represents the length of the pulse. The
The above described electrodes 6,15,16,24, the voltage generator 1, the control and converter device 10, also previously designated the computer and an impedance measurement unit 50 are included in the block diagram shown in
a shows the basic structure of living tissue, while
It will be obvious to a person skilled in the art that the above described mechanical units, in certain embodiments of the present invention, form mutually separate mechanical units which are inter-connected with each other by means of electric conductors and signal connections, while, in other embodiments, some or all of these units, with the exception of the electrode applicator and the electrodes, form a mechanical unit which is co-ordinated with the voltage generator, the impedance measurement unit or the computer.
As will have been apparent from the foregoing description, the present invention relates to an apparatus for high voltage impulse therapy (HVIT) with detection of the treatment effect. The apparatus includes an impedance measurement unit which, on treatment of tissue or organs, is employed for measuring the electrical impedance of the tissue. The impedance measurement unit is, as a rule, disposed to measure the impedance of the tissue at, at least, one frequency. Normally, the impedance measurement unit is disposed to measure the impedance of the tissue within a frequency range, e.g. within the range of 10 Hz to 10 Mhz. With the aid of a mathematical algorithm, a test magnitude is calculated whose value is a measurement of the treatment effect.
The voltage across the tissue will be in accordance with that shown in
Utissue=Ugenerator*Ztissue/(Ztissue+Zgenerator)
The impedance of the tissue varies extremely, depending upon the cell structure and build up of the tissue, the nature of the surrounding tissue and the quantity of bodily liquids which are found in and around the treated region. Since the output impedance of the generator is not slight in relation to the impedance of the tissue, the output voltage will vary greatly depending upon where and how the applicator is placed. It has proved, in practical experiments, that even if an applicator is placed at the same point, marked with a colour on the body, the impedance will vary greatly from time to time, depending upon minor differences in placing and contact impedance, as well as differences in fluid quantity and the nature of the tissue.
In order to be able to predict the actual pulse voltage from the pulse generator, the impedance of the tissue must be known at any time. Only if the output voltage from the generator is adjusted on the basis of the generator's output impedance and the impedance of the relevant tissue will it be possible to achieve a predictable and constant effect. According to the present invention, the apparatus includes means for measuring the impedance of the treated tissue and means for employing this information for controlling the output voltage of the pulse generator such that the desired field force is always achieved in the tissue.
In the control unit, which, for example, is a PC, the desired field force is set whereafter the control unit measures the impedance in the tissue and calculates the requisite pulse voltage from the generator. When a pulse is subsequently applied, the field force will always be constant, since the control unit always measures and adjusts the voltage from the generator before the pulse is generated.
With the system in
The impedance in tissue substantially consists of three components, the resistance in the extra cellular fluid, the resistance in the intra cellular fluid and the capacitance which is formed between the D.C. insulating effect of the cell membrane. In the model, we have combined the impedance effect of the cell core with the resistance in the intra-cellular fluid. At low frequencies, only current will flow through the extra cellular liquid and the impedance is determined substantially by Rev. At medium-high frequencies, the capacitance of the cell membrane Ccm together with the resistance of the intracellular liquid, Riv, will begin to effect the impedance. At high frequencies, substantially the components Rev and Riv will effect the impedance of the tissue. Thus, the result will be a frequency dependence in the impedance of the tissue which is largely dependent on the thickness of the cell membrane and the formation of the cells. At low frequencies, the impedance is approximately Rev and at high frequencies Rev//Riv. The symbol // is employed to indicate that Rev is connected in parallel with Riv.
Ztissue=Rev//(Riv+Ccm)
Since the treatment with electric fields is intended to render the cell membrane permeable or to wholly destroy it, a clear indication will be obtained by measuring the change in Ccm as to whether the treatment is completed or not. When all cell membranes in the tissue are destroyed, no change of Ccm will take place any longer and the tissue is ready-treated.
Table 1 below illustrates a compilation of impedance measurements taken during the treatment of rats with tumors.
It will be apparent from Table 1 that the impedance reduces at low and medium-high frequencies after treatment with pulses. The reduction principally takes place after the introductory 16 pulses and the change rapidly fades thereafter. Thus, the rat is substantially ready-treated already after the first 16 pulses and further treatment after 32 or 48 pulses gives no major change in Ccm. The measurement data in Table 1 indicates that the treatment is completed after 32 pulses. In order to confirm this assessment, the measured measurement values have been taken and treated as described below.
Table 2 shows the impedance change in percent at different frequencies after the electric fields generated by 16 voltage pulses have passed through the tissue. In the Table, the change of the impedance is given in percent which occurred each time when a series of electric fields generated by the voltage pulses has passed through the tissue.
The heading of the Table discloses the accumulated number of pulses of electric fields which have passed through the tissue. On each treatment occasion, a series of 16 pulses is passed through the tissue. That disclosed in this paragraph for the table heading in Table 2 also applies to the table headings for Tables 3 and 4 used below.
It will be apparent from Table 2, in the same manner as Table 1, that the treatment may be discontinued after 32 pulses, since the impedance change fades dramatically. Table 3 below shows the mean value of the impedance change after different numbers of pulses. The mean value is formed from all measurement frequencies between 10 Hz and 200 kHz. In Table 3, it is clearly seen that the largest impedance change takes place after the first 16 pulses and only a slight change takes place on further treatment.
In Table 4, in mean value formation, frequencies below 100 Hz and frequencies over 10 kHz have been deleted. By deleting the lowest frequencies from the mean value, this prevents incorrect impedance values because of disturbance from the motorsystem of the body from influencing the result. The highest frequencies are deleted since the impedance change at these high frequencies is less when Ccm is changed and therefore does not contribute to an improved picture of the treatment result.
By allowing the control unit in
From the foregoing description, it will be apparent that, in a very simple application of the present invention, the impedance of the tissue is determined at only one frequency. In such instance, a medium-high frequency, e.g. 15 kHz is selected. The inner impedance of the pulse generator is entered in the computer as a fixed value, whereby the impedance of the tissue is determined by a mathematical operation corresponding to that described above. In applications of the present invention, use is however made as a rule of many frequencies in order to eliminate the risks of any possible disruptions which may affect the measurement results.
The system illustrated in
On practical application of the present invention in the embodiment where a radiation transmitter is employed, the radiation transmitter and the electrodes, in certain applications together with the electrode applicator and impedance measurement unit, together form a cohesive mechanical unit. This is of a design which makes it possible, in a restricted region of a human or an animal, to apply both the radiation transmitter and the electrodes in positions where the ionizing radiation is directed at the tissue which is being treated and where the electrodes are in positions in which electric fields between them pass through the tissue. In other embodiments, such means constitute separate parts which, together and where applicable temporarily, or for a lengthy period of time, form a system of devices of a composition corresponding to that described above for the apparatus 40.
The above detailed description has referred to but a limited number of embodiments of the present invention, but a person skilled in the art will readily perceive that the present invention encompasses a large number of embodiments without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
9801139-8 | Mar 1998 | SE | national |
This is a continuation of copending application Ser. No. 09/601,751 filed on Aug. 7, 2000 which is a 371 of PCT/SE99/00511 filed Mar. 30, 1999 claims the benefit thereof and incorporates the same by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 09601751 | Aug 2000 | US |
Child | 11204258 | Aug 2005 | US |