The present invention relates to a technology of a coupling apparatus that couples opposed ends of a pair of reinforcing bars.
This invention relates to a reinforcing bar coupling apparatus that can carry tension that is applied to reinforcing bars by mechanically coupling the opposed ends of the reinforcing bars without coupling the reinforcing bars by overlapping them while the reinforcing bars are used in reinforced concrete construction. The opposed ends of the reinforcing bars are enabled to be coupled by contacting with members securing the opposed ends of the reinforcing bars and instantly applying strong external forces by hydraulic pressure to the members.
Referring to a related art reinforcing bar coupling apparatus (see
The present invention is intended to propose a coupling apparatus that enables the perfect securing of reinforcing bars and enhancing the compressive and bending strength by applying hydraulic pressure to conical members vertical to the reinforcing bars so that the work of coupling the reinforcing bars can be done with quickness and accuracy.
Accordingly, the present invention provides an apparatus for coupling reinforcing bars by using hydraulic pressure, the apparatus including:
first and second bodies 100 and 250 into which reinforcing bars are inserted to pass through the inside of the first and second bodies, with receiving holes 105, 106, 252, and 253 provided on upper and lower surfaces of the first and second bodies;
a pair of conical members 400 and 401 that are inserted into receiving holes 105 and 106 of the first body 100 and receiving holes 252 and 253 of the second body 250 respectively, wherein the receiving holes 105 and 106 of the first body 100 correspond to the receiving holes 252 and 253 of the second body 250;
a plurality of reinforcing bar securing members 200, 201, 202, and 203 inserted into the first and second bodies 100 and 250 in such a way that the plurality of reinforcing bar securing members are spaced from outer surfaces of the inserted reinforcing bars, with reinforcing bar locking ridges 200b, 201b, 202b, and 203b provided on inner surfaces of the reinforcing bar securing members; and
a hydraulic pressure applying unit for inserting the conical members 400 and 401 into the first and second bodies 100 and 250 through the receiving holes 105, 106, 252, and 253 of the first and second bodies 100 and 200,
wherein when tension is applied to the reinforcing bars, the reinforcing bar securing members 200, 201, 202, and 203 compress the reinforcing bars and push jaw elements D1, D2, D3, and D4 of inner surfaces of the first and second bodies 100 and 200, thereby preventing movement of the reinforcing bars,
wherein edges of first surfaces of the reinforcing bar securing members 200, 201, 202, and 203 are provided with indentations 200a, 201a, 202a, and 203a corresponding to curve-sided surfaces 400a and 401a of the conical members 400 and 401, so that when the conical members 400 and 401 are inserted into the first and second bodies 100 and 250, the conical members 400 and 401 come in contact with the indentations 200a, 201a, 202a, and 203a, thereby carrying forces.
The details are additionally described in the following embodiments.
The present invention is advantageous as follows.
The coupling apparatus of the present invention presses conical members having curved surfaces in a direction perpendicular to reinforcing bars by using hydraulic pressure, thereby considerably reducing working time for coupling reinforcing bars, completely securing the reinforcing bars and increasing compressive and bending strength.
Particularly, the present invention can stably carry force from the conical members through external force dispersion medium members to reinforcing bar securing members. Accordingly, there is a structural advantage of effectively preventing the displacement and the loosening of the coupled reinforcing bars.
Exemplary embodiments of the present invention below are illustrated in detail by referring to the drawings.
The claims of the present invention should be grasped equivalent to the claims of those skilled in the art, and the claims should not be reduced by the embodiments.
The present invention will be described hereinbelow.
The first embodiment of the present invention provides an apparatus for coupling reinforcing bars 5 by using hydraulic pressure, the apparatus including:
first and second bodies 100 and 250 into which reinforcing bars 5 are inserted to pass through the inside of the first and second bodies, with receiving holes 105, 106, 252, and 253 provided on upper and lower surfaces of the first and second bodies;
a pair of conical members 400 and 401 that are inserted into receiving holes 105 and 106 of the first body 100 and receiving holes 252 and 253 of the second body 250 respectively, wherein the receiving holes 105 and 106 of the first body 100 correspond to the receiving holes 252 and 253 of the second body 250;
a plurality of reinforcing bar securing members 200, 201, 202, and 203 inserted into the first and second bodies 100 and 250 in such a way that the plurality of reinforcing bar securing members are spaced from outer surfaces of the inserted reinforcing bars, with reinforcing bar locking ridges 200b, 201b, 202b, and 203b provided on inner surfaces of the reinforcing bar securing members; and
a hydraulic pressure applying unit 700 for inserting the conical members 400 and 401 into the first and second bodies 100 and 250 through the receiving holes 105, 106, 252, and 253 of the first and second bodies 100 and 200,
wherein when tension is applied to the reinforcing bars, the reinforcing bar securing members 200, 201, 202, and 203 compress the reinforcing bars and push jaw elements D1, D2, D3, and D4 of inner surfaces of the first and second bodies 100 and 200, thereby preventing movement of the reinforcing bars,
wherein edges of first surfaces of the reinforcing bar securing members 200, 201, 202, and 203 are provided with indentations 200a, 201a, 202a, and 203a corresponding to curve-sided surfaces 400a and 401a of the conical members 400 and 401, so that when the conical members 400 and 401 are inserted into the first and second bodies 100 and 250, the conical members 400 and 401 come in contact with the indentations 200a, 201a, 202a, and 203a, thereby carrying forces.
The following is a second embodiment.
The second embodiment of the present invention provides an apparatus for coupling reinforcing bars 5 by using hydraulic pressure, the apparatus including:
first and second bodies 100 and 250 into which reinforcing bars 5 are inserted to pass through the inside of the first and second bodies 100 and 250;
conical members 400 and 401 that are inserted into receiving holes 105 and 106 of the first body 100 and receiving holes 252 and 253 of the second body 250 respectively, wherein the receiving holes 105 and 106 of the first body 100 correspond to the receiving holes 252 and 253 of the second body 250;
a plurality of reinforcing bar securing members 204, 205, 206, 207, 208, and 209 inserted into the first and second bodies 100 and 250 in such a way that the plurality of reinforcing bar securing members are spaced from outer surfaces of the inserted reinforcing bars, with reinforcing bar locking ridges 204b, 205b, 206b, 207b, 208b, and 209b provided on inner surfaces of the reinforcing bar securing members;
a hydraulic pressure applying unit 700 for inserting the conical members 400 and 401 into the first and second bodies 100 and 250 through the receiving holes 105, 106, 252, and 253 of the first and second bodies 100 and 200; and
a pair of external force dispersion medium members 600 and 601 facing each other, wherein first surfaces of the medium members are in contact with the conical members 400 and 401, and second surfaces of the medium members are in contact with butt end surfaces of the reinforcing bar securing members 204, 205, 206, 207, 208, and 209,
wherein when tension is applied to the reinforcing bars, the reinforcing bar securing members 204, 205, 206, 207, 208, and 209 compress the reinforcing bars and push jaw elements D5, D6, D7, and D8 of inner surfaces of the first and second bodies 100 and 200, thereby preventing movement of the reinforcing bars,
wherein edges of the first surfaces of the external force dispersion medium members 600 and 601 are provided with indentations 600a, 600b, 601a, and 601b corresponding to curved surfaces 400a and 401a of the conical members 400 and 401, so that when the conical members 400 and 401 are inserted into the first and second bodies 100 and 250, the conical members 400 and 401 come in contact with the indentations 600a, 600b, 601a, and 601b (by pressing and inserting the conical members into the first and second bodies), and subsequent contact forces F11, F21, F31, and F41 are carried to the external force dispersion medium members 600 and 601, and to the reinforcing bar securing members 204, 205, 206, 207, 208, and 209 that are in contact with circumferences of the second surfaces of the external force dispersion medium members 600 and 601.
First, the appearance of the present invention is illustrated in
The first body 100 is provided with a hole in the center thereof that receives a reinforcing bar. The outer surface of the first body 100 is provided with threads 102. The size and form of the receiving hole 105 formed on an upper surface of the threads 102 correspond to the size and form of the receiving hole 252 formed on an upper surface of the second body 250.
The threads 102 of the first body 100 are screwed to threads 255 of the second body 250. As the inside of the receiving holes of the first body and the second body can be grasped through
The shape of the first and second bodies 100 and 250 corresponds to that of the reinforcing bar securing members 200, 201, 202, and 203 as illustrated in
The butt end surfaces of the reinforcing bar securing members 200, 201, 202, and 203 are provided with indentations 200a, 201a, 202a, and 203a corresponding to curved surfaces 400a and 401a of the conical members 400 and 401. When the conical members 400 and 401 move from the position illustrated in
The hydraulic pressure should be used to push the conical members in a direction (C1 and C2 in
Since when an ordinary worker manually pushes conical members, it is difficult to apply a sufficient compressive force to reinforcing bar securing members. Thus it is necessary to apply the compressive force to the flat portion of the heads of the conical members by using hydraulic pressure applying units. This compressing procedure performed by the conical members and the hydraulic pressure applying units for coupling reinforcing bars is unprecedented, so it is a unique technology.
Insert rings 300 and 301 may further be provided that wrap the outer surfaces of the reinforcing bars (Not shown in
Though the insert rings for preventing the displacement of the reinforcing bars are structurally simple, the insert rings fill the spaces that are between the reinforcing bars and the reinforcing bar securing members (200, 201, 202, and 203). Accordingly, the insert rings are very effective to minimize the displacement of the reinforcing members in a direction perpendicular to the length of the reinforcing bars. The number and the shape of the insert rings may be changed or modified.
The second embodiment is illustrated with reference to the drawings below
The second embodiment is different from the first embodiment in that the second embodiment further includes a pair of external force dispersion medium members 600 and 601 wherein forces from the conical members 400 and 401 are carried through external force dispersion medium members 600 and 601 to reinforcing bar securing members 204, 205, 206, 207, 208, and 209.
The reinforcing bar locking ridges 204b, 205b, 206b, 207b, 208b, and 209b are provided in the reinforcing bar securing members.
An illustration is omitted as to what the second embodiment has in common with the first embodiment and is centered on the differences between the first embodiment and the second embodiment.
According to the first embodiment, the conical members 400 and 401 come in direct contact with the reinforcing bar securing members 200, 201, 202, and 203 as illustrated in
When forces from conical members are carried to the respective reinforcing bar securing members 204, 205, 206, 207, 208, and 209 that are spaced from each other as individual members through small contact areas as in the first embodiment, the conical members or the reinforcing bar securing members are made unstable while they are under external vibration conditions. The following embodiment is proposed considering the instability of the small contact areas.
In other words, external force dispersion medium members 600 and 601 of plate form are located between the conical members 400 and 401 and the reinforcing bar securing members 204, 205, 206, 207, 208, and 209. Accordingly, the contact forces (See F11, F21, F31, F41 in
In this case, since the butt end surfaces of the plurality of reinforcing bar securing members come in contact with the circumferences of the coin-shaped external force dispersion medium members, the forces caused by pressing and inserting the conical members are distributed to stably secure the reinforcing bars.
In this case, with the butt end surfaces of the reinforcing bar securing members coming in contact with surfaces of the circumferences of the external force dispersion medium members, this structure stably secures the reinforcing bars. Referring to
Though it is illustrated that the second embodiment has more reinforcing bar securing members than the first embodiment, changing the number of the reinforcing bar securing members does not affect the essence of the present invention.
To summarize the advantages of the present invention, the present invention is a coupling apparatus that presses conical members having curve-sided surfaces in a direction perpendicular to reinforcing bars by using hydraulic pressure, thereby considerably reducing working time for coupling reinforcing bars, completely securing the reinforcing bars and increasing compressive and bending strength. It is possible to stably carry forces from the conical members through external force dispersion medium members to reinforcing bar securing members. Accordingly, there are structural advantages of effectively preventing the displacement and the loosening of the coupled reinforcing bars.
The present invention is available in the technical field relevant to a coupling apparatus connecting the opposed ends of a pair of reinforcing bars.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0102200 | Aug 2013 | KR | national |
This is a continuation of pending International Patent Application PCT/KR2014/004198 filed on May 9, 2014, which designates the United States and claims priority of Korean Patent Application No. 10-2013-0102200 filed on Aug. 28, 2013, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1458395 | Cunningham | Jun 1923 | A |
1727896 | Mraz | Sep 1929 | A |
2659062 | Tibbetts | Nov 1953 | A |
2768433 | O'Donnell | Oct 1956 | A |
3049775 | Ondeck | Aug 1962 | A |
3253332 | Howlett | May 1966 | A |
3551999 | Gutmann | Jan 1971 | A |
3681512 | Werner | Aug 1972 | A |
3729218 | Gutmann | Apr 1973 | A |
3769678 | Marsden | Nov 1973 | A |
3850535 | Howlett | Nov 1974 | A |
4146951 | Howlett | Apr 1979 | A |
5127763 | Kunoki | Jul 1992 | A |
5193932 | Wu | Mar 1993 | A |
5909980 | Holdsworth | Jun 1999 | A |
5967691 | Lancelot, III | Oct 1999 | A |
6571452 | Wang | Jun 2003 | B1 |
6719478 | Gregel | Apr 2004 | B2 |
6966104 | Gregel | Nov 2005 | B2 |
7032286 | Wang | Apr 2006 | B2 |
7118299 | Gregel | Oct 2006 | B2 |
20030000274 | Buhler | Jan 2003 | A1 |
20030198513 | Wang | Oct 2003 | A1 |
20130093236 | Marshall | Apr 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150337533 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2014/004198 | May 2014 | US |
Child | 14817448 | US |