1. Technical Field
The present invention relates to a technology for realizing the sound image movement accompanying the Doppler effect.
2. Related Art
A technique is known in which music sound signals on the left and right signal lines are delayed in time and adjusted in amplitude to cause a time delay and an amplitude difference between the left and right signal lines, thereby auditorily providing a sense of direction and distance perspective to music sounds to create a sense of sound image panning.
Meanwhile, if a sound source and a listener listening to a music sound generated from the sound source are moving relative to each other (for example, a sound source is moving at a predetermined velocity while the listener is standing still), the Doppler effect occurs in accordance with the relative movement. However, if a sound image movement is expressed solely by the time difference and the amplitude difference between the left and right signal lines as described above, the Doppler effect cannot be represented realistically, thereby causing a problem of poor sound quality.
In order to solve this problem, a technique was proposed as disclosed in Japanese Publication of Unexamined Patent Application No. Hei 06-327100, for example. In the disclosed technique, the frequency of a sound signal outputted from a frequency-variable sound source is varied in accordance with a manner by which a sound image moves, and the sound signal generated from the frequency-variable sound source and separated into the left and right channels is outputted as delayed in accordance with that movement, thereby rendering the Doppler effect.
The synchronous reproduction of moving picture and music sound as with video games requires to make synchronization between the sound source movement represented in the moving picture and the sound image movement. For the technique disclosed in Japanese Publication of Unexamined Patent Application No. Hei 06-327100, in order to realize the sound image movement accompanying the Doppler effect, a condition and manner by which the sound source moves must be grasped by reproducing the above-mentioned moving picture on a frame by frame basis, and the frequency of the sound signal outputted from the above-mentioned frequency-variable sound source must be varied in accordance with the moving condition, thus requiring cumbersome tasks. Another problem is that, because the sound source moving condition must be visually checked, it is difficult to realize the sound image movement that correctly synchronizes with the sound source moving condition represented in the moving pictures.
It is therefore an object of the present invention to provide a technique for correctly and easily realizing a sound image movement accompanying the Doppler effect in accordance with a relative movement between sound source and listener.
In carrying out the invention and according to one aspect thereof, there is provided an apparatus for creating a sound image of an input sound signal in association with a moving point and a fixed point along a time axis, the sound image being associated with one of the moving point and the fixed point and the input sound signal being associated with the other of the moving point and the fixed point. The inventive apparatus comprises a setting section that sets input factors including a trajectory line which may be curved or straight and which represents a trajectory of the moving point, a nominal velocity of the moving point, a movement start time at which the moving point starts moving, a movement end time at which the moving point ends moving, and a closest approach time at which a distance between the moving point on the trajectory line and the fixed point is minimized, a position computation section that computes a closest approach position which is a position of the moving point on the trajectory line at the closest approach time, a movement start position which is a position of the moving point on the trajectory line at the movement start time, and a movement end position which is a position of the moving point on the trajectory line at the movement end time, on the basis of the input factors set by the setting section, a distance computation section that computes intermediate positions of the moving point along the trajectory line from the movement start position to the movement end position between the movement start time and the movement end time, and further computes a variable distance between each of the intermediate positions of the moving point and the fixed point, a velocity computation section that computes a variable velocity of the moving point relative to the fixed point along the time axis on the basis of the variable distance computed by the distance computation section, and a signal processing section that attenuates or delays the input sound signal in accordance with the variable distance computed by the distance computation section and that varies a pitch of the input sound signal on the basis of the variable velocity computed by the velocity computation section, thereby creating the sound image of the input sound signal along the time axis.
Preferably, the signal processing section computes a variation of the pitch of the input sound signal which is generated from one of the moving point and the fixed point and which is received by the other of the moving point and the fixed point, the apparatus further comprising a display section that displays the variation of the pitch of the input sound signal along the time axis.
Preferably, the setting section further sets an attenuation coefficient as one of the input factors, and the signal processing section determines an attenuation amount of the input sound signal in accordance with the variable distance, and further adjusts the attenuation amount in accordance with the attenuation coefficient.
In carrying out the invention and according to another aspect thereof, there is provided a program executable by a computer to perform a method of creating a sound image of an input sound signal in association with a moving point and a fixed point along a time axis, the sound image being associated with one of the moving point and the fixed point and the input sound signal being associated with the other of the moving point and the fixed point. The method comprises the steps of setting input factors including a trajectory line which may be curved or straight and which represents a trajectory of the moving point, a nominal velocity of the moving point, a movement start time at which the moving point starts moving, a movement end time at which the moving point ends moving, and a closest approach time at which a distance between the moving point on the trajectory line and the fixed point is minimized, computing a closest approach position which is a position of the moving point on the trajectory line at the closest approach time, a movement start position which is a position of the moving point on the trajectory line at the movement start time, and a movement end position which is a position of the moving point on the trajectory line at the movement end time, on the basis of the input factors, computing intermediate positions of the moving point along the trajectory line from the movement start position to the movement end position between the movement start time and the movement end time, and further computing a variable distance between each of the intermediate positions of the moving point and the fixed point, computing a variable velocity of the moving point relative to the fixed point along the time axis on the basis of the variable distance, and processing the input sound signal such as to attenuate or delay the input sound signal in accordance with the variable distance and to vary a pitch of the input sound signal on the basis of the variable velocity, thereby creating the sound image of the input sound signal along the time axis.
According to the sound image movement processing apparatus and program, by setting the curves or lines representative of a trajectory of a moving point, and its velocity, movement start time, movement end time, and closest approach time, the apparatus computes the closest approach position, movement start position, movement end position accordingly. Next, a variable distance between the moving point and the fixed point at intermediate times between the movement start time and the movement end time is computed. Further on the basis of the computed variable distance, a variable velocity of the moving point relative to the fixed point at times is computed. A sound signal inputted into the sound processing apparatus is attenuated or delayed in accordance with the variable distance and outputted with its pitch varied on the basis of the obtained variable velocity.
As described and according to the invention, a sound image movement accompanying the Doppler effect in accordance with a relative movement between sound source and listener can be correctly and easily realized.
FIGS. 7(a), 7(b) and 7(c) are graphs for describing a trajectory setting procedure practiced as a further variation.
The following describes the best mode for carrying out the invention with reference to drawings.
Referring to
The time code reception block 100 is connected with a moving picture reproduction apparatus, not shown, from which the time codes allocated to the frames of a moving picture being reproduced by this moving picture reproduction apparatus are sequentially supplied therefrom to the time code reception block 100. The time code reception block 100 is adapted to pass the time codes received from this moving picture reproduction apparatus to the user interface block 110 and the synchronous reproduction control block 130. The details thereof will be described later. In the present embodiment, the time code is used as an intermediary for providing synchronization between the reproduction of moving picture by the above-mentioned moving picture reproduction apparatus and the sound image movement accompanying the Doppler effect that is executed by the sound image movement processing apparatus 10.
The user interface block 110 has a display block 110a and an operator block 110b as shown in
An area 210 of the GUI screen shown in
An indicator 220 on the GUI screen shown in
An area 230 shown in
As described above, visually checking the GUI screen shown in
On the basis of the parameters received from the user interface block 110, the position computation block 120 computes a position at which the distance between the above-mentioned moving point and the above-mentioned fixed point is closest on the above-mentioned trajectory (hereafter referred to as a closest approach position), and at the same time, computes a movement start position at which the above-mentioned moving point is found at the above-mentioned movement start time and a movement end position at which the above-mentioned moving point is found at the above-mentioned movement end time, passing the obtained coordinates of these movement start position and movement end position to the synchronous reproduction control block 130. To be more specific, the position computation block 120 identifies, as the above-mentioned movement end position, a position obtained by moving the above-mentioned moving point from the above-mentioned closest approach position along the above-mentioned trajectory at the above-mentioned velocity in a predetermined direction (for example, the direction in which coordinate x always increases) by an amount of time corresponding to a difference between the above-mentioned movement end time and the above-mentioned closest approach time. In addition, the position computation block 120 identifies, as the above-mentioned movement start position, a position obtained by moving the above-mentioned moving point from the above-mentioned closest approach position along the above-mentioned trajectory at the above-mentioned velocity in the direction reverse to the above-mentioned predetermined direction by an amount of time corresponding to a difference between the above-mentioned movement start time and the above-mentioned closest approach time. It should be noted that, if there are two or more closest approach positions, the position computation block 120 is assumed to identify one that provides the smallest distance with the movement start position as the closest approach position.
The synchronous reproduction control block 130 includes a distance computation block 130a and a velocity computation block 130b as shown in
On the basis of the time code and the computed distance (namely, the distance between the moving point and the fixed point at the time represented by that time code) received from the distance computation block 130a, the velocity computation block 130b computes a velocity of the above-mentioned moving point relative to the above-mentioned fixed point in the time represented by that time code and passes the computed velocity to the signal processing block 140. For example, let the above-mentioned distance at time t1 be L1 and a distance at time t1+Δt after unit time Δt be L2, then the velocity computation block 130b computes velocity Vs of the above-mentioned moving point relative to the above-mentioned fixed point at time t1 from equation (1) below and passes the computed velocity to the signal processing block 140. It should be noted that, in the present embodiment, above-mentioned Δt denotes a time interval between time codes.
Vs=(L2−L1)/Δt (1)
The signal processing block 140 attenuates or delays the inputted sound signal for each channel in accordance with the distance received from the distance computation block 130a and varies the frequency fo (hereafter also referred to as a pitch) of each sound signal to frequency f to be computed from equation (2) below, outputting obtained frequency f. It should be noted that, in equation (2), V denotes sonic velocity and Vs denotes the velocity received from the speed computation block 130b.
f=fo×V/(V−Vs) (2)
Equation (2) above is a general expression of the Doppler effect. Namely, a sound signal outputted from the signal processing block 140 contains a frequency variation (hereafter also referred to as a pitch variation) due to the Doppler effect.
The above-mentioned embodiment according to the invention may be varied as follows.
Variation 1:
With reference to the above-mentioned embodiment, if the listener who is standstill at a predetermined fixed point listens to a tone outputted from a moving point, the sound image movement accompanying the Doppler effect is realized in accordance with the relative movement of that moving point to the listener. It is also practicable to realize the sound image movement accompanying the Doppler effect with the above-mentioned moving point being the listener who listens to a tone outputted from the sound source that is standstill at the above-mentioned fixed point. To be more specific, this variation is achieved by converting frequency fo of a sound signal inputted in the signal processing block 140 into frequency f computed from equation (3) below and outputting the tone having this frequency f.
f=fo×(V+Vs)/V (3)
Variation 2:
With reference to the above-mentioned embodiment, the realization of the sound image movement accompanying Doppler effect has been described. It is also practicable to display a graph (refer to
Variation 3:
With reference to the above-mentioned embodiment, the setting of parameters such as moving point trajectory, moving velocity, movement start time, movement end time, and closest approach time is left to the user. It is also practicable to let the user set coefficients for adjusting the degrees of sound effects (for example, the attenuation in reverse proportion to the square of distance and the use of lowpass filter) in accordance with the distance between sound source and listener, in addition to the above-mentioned parameters. This variation is realized as follows. First, a GUI screen shown in
Variation 4:
With reference to the above-mentioned embodiment, the coordinates of the reflection point and the curvature of a parabola indicative of the trajectory of the moving point are used as the parameters for uniquely identifying this parabola. In addition to these parameters, an angle between the axis of the parabola and y axis may be set. Setting this angle enhances the degree of freedom in setting the above-mentioned trajectory. To be more specific, the above-mentioned trajectory of moving point can be set by the following procedure. In the initial state with a parabola (y=ax2) shown in
x′=x cos(θ)−ax2 sin(θ) (4)
y′=x sin(θ)+ax2 cos(θ) (5)
Next, the reflection points (0, 0) of the parabola shown in
X=x cos(θ)−ax2 sin(θ)+xo (6)
Y=x sin(θ)+ax2 cos(θ)+yo (7)
In the above-mentioned embodiment, the curves or lines representative of the trajectory of sound source and the fixed point representative of the position of listener are set on the same plane. It is also practicable to set the curves or lines and the fixed point in a three-dimensional manner so that a plane containing the former does not contain the latter.
Variation 5:
In the above-mentioned embodiment, the sound image movement processing apparatus 10 is made up of the hardware modules each carrying out a unique function (the time code reception block 100, the user interface block 110, the position computation block 120, the synchronous reproduction control block 130, and the signal processing block 140). It is also practicable to make the control block based on the CPU (Central Processing Unit) execute programs for implementing the above-mentioned hardware modules, these programs being installed in a computer that is imparted with the same functions as those of the sound image movement processing apparatus 10. This variation allows the imparting of the same functions as those of the sound image movement processing apparatus according to the invention to general-purpose computers.
Number | Date | Country | Kind |
---|---|---|---|
2004-107458 | Mar 2004 | JP | national |