Claims
- 1. A drum refiner for grinding of wet fibrous material, having an engine-driven rotor with frustoconical surfaces provided with at least grinding elements, said grinding elements having diameters with dimensions which increase in the direction away from an at least one material feed, said rotor having a horizontal rotation shaft which is received by a housing, said housing having inner walls corresponding to said frustoconical surfaces of said rotor and having grinding surfaces arranged on said walls to correspond to and have the same increasing dimensions as said grinding elements, said housing receiving the rotor, said horizontal rotation shaft of said rotor being received by bearings located within said housing, said at least one material feed being directed approximately radially to the rotor axis and disposed approximately in the center of said housing, said grinding surfaces enclosing an angle with respect to the rotor axis on both sides of the cross medium plane of the drum refiner which is open to the front faces of the rotor, the improvement comprising (1) said rotor being received by said bearing located within said housing, (2) that grinding surfaces and elements extend approximately parallel to the rotor axis on a jacket of the drum shaped rotor and corresponding opposing grinding surfaces on the housing are provided with increasing diameters in a direction away from the at least one material feed, (3) that the grinding surfaces and grinding elements are arranged parallel to the axis and inclined to the axis of the rotor as well as being arranged symmetrically to the median plane of the at least one approximately radial material feed, and (4) that the grinding surfaces and grinding elements arranged parallel to the axis are followed immediately mergingly by the grinding surfaces and grinding elements which are inclined toward the axis of the rotor.
- 2. The drum refiner according to claim 1, wherein the grinding gaps are inclined toward the axis of the rotor and are adjustable for the purpose of providing variable grinding operations, said adjustable gaps being provided by at lest one stator ring that is approximately horizontally displaceable within said housing.
- 3. The drum refiner according to claim 1, wherein an annular material feed gap is provided by an annular space enclosing the outside of the rotor within the housing, said annular space being provided approximately in the cross-axial median plane of the drum refiner between the grinding surfaces and grinding elements that extend parallel to the axis, said annular feed gap accepting the material that empties from said at least one material feed.
- 4. The drum refiner according to claim 1, wherein said housing receiving said rotor is provided with two front walls on both sides of the rotor each of which wall lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within the grinding gaps immediately empty, said cavities being provided in the area of the two front walls of the housing in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said walls of the housing having grinding surfaces arranged to be parallel to the axis of the rotor, said cavities being sealed steam-tight against the shaft bearings by means of special sealing units which are inserted in the bearing housing and placed between rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the comminuted material reduced by the operation of all of the crushing and grinding surfaces.
- 5. A drum refiner for grinding of fibrous material sometimes mixed with water, said drum refiner having an engine-driven drumshaped rotor with at least two rotation surfaces provided with grinding elements having diameters with dimensions which increase in a direction away from an at least one material feed, said rotor having a horizontal rotation shaft which is received by a housing, said housing having inner walls with grinding surfaces corresponding to said grinding elements of said rotor, said at least one material feed extending approximately tangentially to the rotor and being provided approximately in the center of said housing, said grinding surfaces enclosing an angle with respect to the rotor axis on both sides of the cross medium plane of the drum refiner which is open to the front faces of the rotor, said grinding surfaces and grinding elements all having central regions which are parallel to and adjacent with said at least one material feed, said grinding surfaces and grinding elements all having outer regions which are inclined to the axis of the rotor and which immediately merge with said central regions, the improvement comprising: (1) said rotor having a horizontal rotation shaft which is received by said housing, (2) that grinding surfaces extend approximately parallel to the rotor axis and also extend between the at least one material feed and the grinding elements and are of increasing diameters on a jacket of the drumshaped rotor and corresponding opposing grinding surfaces are provided on the housing, (3) that the grinding surfaces and grinding elements are inclined to the axis of the rotor as well as all being arranged symmetrically to the medium plane of the at least one approximately tangential material feed, and (4) that the grinding surfaces and grinding elements which are parallel to the axis are immediately mergingly followed by the grinding surfaces and grinding elements which are inclined to the axis.
- 6. The drum refiner according to claim 5, wherein the grinding surfaces and grinding elements which are inclined toward the axis are adjustable for the purpose of providing variable grinding operations, said adjustable grinding surfaces and grinding elements being provided by at least one stator ring that is approximately horizontally displaceable within said housing.
- 7. The drum refiner according to claim 5, wherein an annular material feed gap is provided by an annular space enclosing the outside of the rotor within the housing, said annular space being approximately in the cross-axial median plane of the drum refiner between the grinding surfaces and grinding elements that extend parallel to the axis of the rotor, said annular material feed gap accepting the material from said approximately tangential material feed.
- 8. The drum refiner according to claim 5, wherein said housing receiving said rotor is provided with two front walls on both sides of the rotor each of which walls lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within the grinding gaps immediately empties, said cavities being provided in the area of the two front walls of the housing in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said walls of the housing having grinding surfaces some of which are arranged to be parallel to the axis of the rotor, and some of which are arranged to be inclined to the axis of the rotor, said cavities being sealed steam-tight against the shaft bearings by means of special sealing units which are inserted in the housing and placed between rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the comminuted material reduced by the operation of all of the grinding surfaces and elements.
- 9. A drum refiner for the grinding of fibrous materials comprising:
- an engine-driven drumshaped rotor having an approximately horizontally supported rotor axis and two front faces;
- an engine-driven drumshaped rotor having an approximately horizontally supported rotor axis and two front faces;
- at least one material feed;
- a rotor shell with at least two rotation surfaces with grinding elements inclined to the rotor axis, said two rotation surfaces increasing in inclination in a direction away from said at least one material feed, wherein said rotation surfaces have an opposed inclination away from the rotor axis;
- a housing receiving said rotor, said housing having inner walls opposing the two rotation surfaces of said rotor with opposing grinding surfaces provided thereon, said housing lodging at least two stator rings which are generally horizontally displaceable within the housing, said stator rings being displaceable independently of one another, said stator rings having grinding surfaces which are opposing said grinding elements of said rotor housing;
- said grinding elements of said rotor shell being equipped with ribs of essentially axial extension;
- grinding gaps being formed between said grinding elements on said rotor shell and said opposing grinding surfaces on said housing, said grinding surfaces having means to adjust the spacing between the grinding surfaces and the grinding elements so as to provide said grinding gaps, said gaps being inclined to the rotor axis;
- said at least one material feed having a cross-axial median plane which extends approximately tangentially to the rotor shell and is approximately in the center of said housing, said grinding surfaces of said housing being arranged to provide an angle which increases in both directions away from said at least one material feed;
- said grinding surfaces of said housing enclosing an angle with respect to the rotor axis on both sides of the cross median plane of the drum refiner which is open to the front faces of the rotor;
- additional grinding elements being provided on the shell of the drumshaped rotor and correspondingly opposing grinding being provided on said housing, said grinding surfaces and grinding elements including said additional surfaces and elements all having central regions which are parallel to the rotor axis and adjacent to said material feed, said grinding surfaces and grinding elements including said additional surfaces and elements all having outer regions that form an angle which continuously increases in inclination in both directions away from said feed, said grinding and additional surfaces of said inner walls being spaced apart from corresponding said grinding and additional elements of said rotor so as to form said grinding gaps;
- said grinding gaps having central and outer regions with the central region being parallel to the axis of said rotor and the outer regions increasing in angle in a direction away from said at least one material feed as said outer regions incline away from the axis;
- said grinding surfaces and elements including said additional surfaces and elements being inclined away from the axis of said rotor and arranged symmetrical to the median plane of said at least one material feed and all such surfaces and elements having associated outer regions which are inclined away from the axis of the rotor and which immediately follow and merge with associated central regions which are parallel to the axis;
- an annular material feed gap is provided by an annular space enclosing the outside of the rotor within the housing, said annular space being provided approximately in the cross-axial median plane of the drum refiner between the grinding surfaces of said at least one stator ring and the grinding elements of said rotor that extends parallel to the axis, said annular material feed gap accepting the material that empties from said at least one material feed;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which walls lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within said grinding gaps immediately empty, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said shaft bearings by means of special sealing units inserted in the bearing housings and placed between the rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by all of said grinding surfaces and elements.
- 10. A drum refiner for the grinding of fibrous material comprising:
- an engine-driven drumshaped rotor having a horizontally supported rotor axis and two front faces;
- at least one material feed directed radially to the rotor axis and having a cross-axial median plane;
- a rotor shell with two rotation surfaces inclined to the rotor axis and which increase in inclination in a direction away from said at least one material feed, said two rotation surfaces of said rotor shell being provided with grinding elements;
- a housing receiving said rotor, said housing having inner walls opposing the two rotation surfaces of said rotor shell with grinding surfaces arranged thereon;
- grinding gaps being formed between said grinding elements of said rotor shell and said grinding surfaces of said housing, said grinding surfaces having means to adjust the spacing between the grinding surfaces and the grinding elements so as to provide said grinding gaps, said grinding gaps being inclined to the rotor axis, said opposing grinding surfaces of the housing being provided on two stator rings which are generally horizontally displaceable within one housing;
- said grinding elements of said rotor shell being equipped with ribs of essentially axial extension;
- said at least one material feed being arranged approximately in the center of said housing, said grinding elements extending on the shell of said rotor and said opposing surfaces of the inner walls of the housing being on both sides of said at least one material feed, sid surfaces of said inner walls being arranged to form an angle with the axis of the rotor which is open to the front faces of the rotor, additional grinding elements being provided on the shell of the drumshaped rotor, said grinding elements being situated between said at least one material feed and said inner walls, said parallel grinding surfaces and grinding elements including said additional elements all having outer regions that form an angle with the axis of said rotor and the grinding surfaces and grinding elements including said additional elements all having inner regions which are parallel to and adjacent with said at least one material feed, said outer regions of all of said grinding surfaces and grinding elements including said additional elements forming an angle which continuously increases in inclination in both directions away from said at least one material feed, said grinding and additional surfaces of said inner walls being spaced apart from corresponding said grinding and additional elements of said rotor so as to form said grinding gaps;
- said grinding gaps having central and outer regions with the central regions being parallel to the axis and the outer regions increasing in angle in a direction away from said at least one material feed as said outer regions continuously incline away from the axis of said rotor, wherein said grinding surfaces and elements including said additional elements are arranged symmetrically to the median plane of said at least one material feed and have associated outer regions which incline away from the axis and which immediately follow and merge with associated central regions which are parallel to the axis;
- an annular material feed gap is provided by an annular space enclosing the outside of the rotor within the housing, said annular space being provided approximately in the cross-median plane of the drum refiner between the grinding surfaces of said stator rings and the grinding elements of said rotor that extend parallel to the axis of the rotor, said annular feed gap accepting the material that empties from said at least one material feed;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which walls lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within the grinding gaps immediately empty, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said shaft bearings by means of special sealing units inserted in the bearing housings and placed between the rotor and bearing on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by the operation of all of said grinding surfaces and elements.
- 11. The drum refiner according to claim 10, wherein the outer regions associated with all of said grinding surfaces and grinding elements including said additional surfaces and elements enclose an angle of approximately 5 to 45 degrees with the rotor axis.
- 12. The drum refiner according to claim 10, wherein the additional grinding surfaces on said inner walls include grinding surfaces located at the outer regions that are inclined by an angle which is increased relative to the angle of the remainder of said grinding surfaces and similarly, the additional grinding elements on said rotor include grinding elements located at the outer regions that are inclined by an angle which is increased relative to the angle of the remainder of said grinding elements.
- 13. The drum refiner according to claim 12, wherein the increased angle of said additional grinding surfaces and grinding elements at said outer regions is approximately 90 degrees inclined to said rotor axis.
- 14. The apparatus according to claim 10, wherein at least two displaceable stator rings are provided both of which cooperate with each other to provide said adjustable gaps.
- 15. The drum refiner according to claim 14, wherein the two stator rings are displaceable independently of one another.
- 16. The drum refiner according to claim 10, wherein the rotor is displaceably supported by bearings on both sides of said rotor.
- 17. The drum refiner according to claim 16 wherein the rotor is axially displaceably and floatingly supported in hydrostatic sliding bearings and each of which has a sealing unit enclosing the rotor shaft in a bearing located in a wall of said housing and which unit is positioned between said sliding bearing and the interior of the housing receiving the rotor.
- 18. The drum refiner according to claim 10, wherein the grinding elements provided on said drumshaped rotor have diameters with dimensions which increase in a direction away from the at least one material feed, said rotor being supported in sliding bearings by means of a rotation shaft fixedly connected to the rotor, said rotor being provided with a special starting engine for the starting operation and wherein the main engine of the drum refiner is designed to operate at about 3000 to 3600 rpm at full load.
- 19. A drum refiner for the grinding of wet fibrous material comprising:
- an engine-driven drumshaped rotor having an approximately horizontally supported rotor axis and two front faces;
- at least one material feed directed approximately radially to the rotor axis and having a cross-axial median plane;
- a rotor shell with two frustoconical rotation surfaces which continuously increase in inclination in a direction away from said at least one material feed, said two rotation surfaces of said rotor shell each having an opposed inclination away from the rotor axis, and said rotation surfaces being provided with grinding elements;
- a housing receiving the rotor, said housing having inner walls opposing the two rotation surfaces of said rotor which opposing grinding surfaces arranged thereon, said housing lodging at least one stator ring which is horizontally displaceable within the housing, said stator ring having grinding surfaces which are opposed said grinding elements of said rotor;
- grinding gaps being formed between said grinding elements of said rotor shell and said grinding surfaces of said housing, said grinding surfaces having means to adjust the spacing between the grinding surfaces and the grinding elements so as to provide said grinding gaps, said gaps being inclined to the rotor axis;
- said grinding elements of said rotor shell being equipped with ribs of essentially axial extension;
- said at least one material feed being disposed approximately in the center of said housing, said grinding elements on said rotor and said opposing grinding surfaces on said housing are both arranged to form an angle which increases in inclination in both directions away from said at least one material feed, said opposing grinding surfaces of said housing enclosing an angle with respect to the rotor axis on both sides of the cross-median plane of the drum refiner which is open to the front faces of said rotor;
- additional grinding elements in said rotor and said opposing grinding surfaces in said housing being provided which are adjacent to said at least one material feed, said grinding surfaces and said grinding elements including said additional surfaces and elements having outer regions which form an angle which continuously increases in inclination in both directions away from said at least one material feed, said grinding and additional surfaces of said inner walls being spaced apart from corresponding said grinding and additional elements of said rotor so as to form said grinding gaps;
- said grinding gaps having central and outer regions with the central regions being parallel to the axis of the rotor and outer regions increasing in angle in a direction away from said at least one material feed as said outer regions continuously incline away from the axis of the rotor and wherein all of said grinding surfaces and elements including said additional surfaces and elements are arranged symmetrical to the median plane of said at least one material feed and have associated outer regions which incline away from the axis and which immediately follow and merge with associated inner regions which are parallel to the axis of the rotor;
- an annular material feed gap is provided by an annular space enclosing the outside of the rotor within the housing, said annular space being provided approximately in the cross-axial median plane of the drum refiner between the grinding surfaces of said at least one stator ring and the grinding elements of said rotor that extend parallel to the axis, said annular feed gap accepting the material that empties from said at least one material feed;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which walls lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within said grinding gaps immediately empty, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said shaft bearings by means of special sealing units inserted in the bearing housings and placed between the rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by all of said grinding surfaces and elements.
- 20. The drum refiner according to claim 19, wherein the grinding surfaces and gaps enclose an angle of approximately 5 to 45 degrees with the rotor axis.
- 21. The drum refiner according to claim 19, wherein the additional grinding surfaces on said inner walls include grinding surfaces located at the outer regions that are inclined by an angle which is increased relative to the angle of the remainder of said grinding surfaces and similarly, the additional grinding elements on said rotor include grinding elements located at the outer regions that are inclined by an angle which is increased relative to the angle of the remainder of said grinding elements.
- 22. The drum refiner according to claim 21, wherein the increased angle of said additional grinding surfaces and grinding elements at said outer regions is approximately 90 degrees inclined to said rotor axis.
- 23. The drum refiner according to claim 19, wherein at least two displaceable stator rings are provided.
- 24. The drum refiner according to claim 23, wherein the stator rings are displaceable independently of one another.
- 25. The drum refiner according to claim 19, wherein the rotor is supported displaceably on both sides in its bearings.
- 26. The drum refiner according to claim 25, wherein the rotor is axially displaceably and floatingly supported in a hydrostatic sliding bearing and has a sealing unit enclosing the rotor shaft in a bearing located in a wall of said housing and which unit is positioned between said sliding bearing and the interior of the housing receiving the rotor.
- 27. The drum refiner according to claim 19, wherein the drumshaped rotor is provided on its shell with grinding elements which are approximately parallel to its axis, said grinding elements having diameters with dimensions which increase in a direction away from the material feed, said grinding elements with increasing diameter being adjacent on both sides of said at least one material feed, said rotor being supported in sliding bearings by means of a rotation shaft fixedly connected to the rotor, said rotor being provided with a special starting engine for starting operation and the main engine of said drum refiner being provided for an operation of said drum refiner at approximately 3000 to 3600 rpm at full load.
- 28. A drum refiner for the grinding of fibrous materials comprising:
- an engine-driven drumshaped rotor having an approximately horizontally supported rotor axis and two front faces;
- at least one material feed;
- a rotor shell with at least two rotation surfaces with grinding elements inclined to the rotor axis, said two rotation surfaces increasing in inclination in a direction away from said at lest one material feed, wherein said rotation surfaces have an opposed inclination away from the rotor axis;
- a housing receiving said rotor, said housing having inner walls opposing the two rotation surface of said rotor with opposing grinding surfaces provided thereon, said housing lodging at least one stator ring which is generally horizontally displaceable within the housing, said stator ring having grinding surfaces which are opposing said grinding elements of said rotor;
- said grinding elements of said rotor shell being equipped with ribs of essentially axial extension;
- grinding gaps being formed between said grinding elements on said rotor shell and said opposing grinding surfaces on said housing, said grinding surfaces having means to adjust the spacing between the grinding surfaces and the grinding elements so as to provide said grinding gaps, said gaps being inclined to the rotor axis;
- said at least one material feed having a cross-axial median plane which extends approximately tangentially to the rotor shell and is approximately in the center of said housing, said grinding surfaces of said housing being arranged to provide an angle which increases in both directions away from said at least one material feed;
- said grinding surfaces of said housing enclosing an angle with respect to the rotor axis on both sides of the cross median plane of the drum refiner which is open to the front faces of the rotor;
- additional grinding elements being provided on the shell of the drumshaped rotor and correspondingly opposing grinding elements being provided on said housing, said grinding surfaces and grinding elements including said additional surfaces and elements all having central regions which are parallel to the rotor axis and adjacent to said material feed, said grinding surfaces and grinding elements including said additional surfaces and elements all having outer regions that form an angle which continuously increase in inclination in both directions away from said feed, said grinding and additional surfaces of said inner walls being spaced apart from corresponding said grinding and additional elements of said rotor so as to form said gaps;
- said grinding gaps having central and outer regions with the central regions being parallel to the axis of said rotor and the outer regions increasing in angle in a direction away from said at least one material feed as said outer regions incline away from the axis;
- said grinding surfaces and elements including said additional surfaces and elements being inclined away from the axis of said rotor and arranged to be symmetrical to the median plane of said at least one material feed and all such surfaces and elements having associated outer regions which are inclined away from the axis of the rotor and which immediately follow and merge with associated central regions which are parallel to the axis;
- an annular material feed gap is provided by an annular space enclosing the outside of the rotor within the housing, said annular space being provided approximately in the cross-axial median plane of the drum refiner between the grinding surfaces of said at least one stator ring and the grinding elements of said rotor that extend parallel to the axis, said annular material feed gap accepting the material that empties from said at least one material feed;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which wall lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within said grinding gaps immediately empty, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said shaft bearings by means of special sealing units inserted in the bearing housings and placed between the rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by all of said grinding surfaces and elements.
- 29. The drum refiner according to claim 28, wherein the grinding surfaces and gaps enclose an angle of about 5 to 45 degrees with the rotor axis.
- 30. The drum refiner according to claim 28, wherein the additional grinding surfaces on said inner walls include grinding surfaces located at the outer regions that are inclined by an angle which is increased relative to the angle of the remainder of said grinding surfaces and, similarly, the additional grinding elements on said rotor include grinding elements located at the outer regions that are inclined by an angle which is increased relative to the angle of the remainder of said grinding elements.
- 31. The drum refiner according to claim 30, wherein said increased angle of said additional grinding surfaces and grinding elements at said outer regions is approximately 90 degrees inclined to said rotor axis.
- 32. The drum refiner according to claim 28, wherein at least two displaceable stator rings are provided.
- 33. The drum refiner according to claim 28, wherein only one said at least one stator ring is provided and said rotor is supported displaceably in its bearings on both sides.
- 34. The drum refiner according to claim 33, wherein the rotor is axially displaceably and floatingly supported in a hydrostatic sliding bearing and has a sealing unit enclosing the rotor shaft in a bearing located in a wall of said housing and which is positioned between said sliding bearing and the interior of the housing receiving the rotor.
- 35. The drum refiner according to claim 28, wherein the drumshaped rotor has a shell provided with grinding elements which are approximately parallel to the axis of the rotor and adjacent to, on both sides, said at least one material feed, said grinding elements having diameters having dimensions which increase in a direction away from the material feed, said rotor being supported in sliding bearings by means of a rotation shaft that is fixedly connected to said rotor, said rotor being provided with a special starting engine for the starting operation of said drum refiner, said drum refiner having a main engine which is provided for an operation of 3000 to 3600 rpm at full load of said drum refiner.
- 36. A drum refiner for the grinding of fibrous material comprising:
- a drumshaped rotor, driven by an engine at a rotational speed of 3000 to 3600 rpm and having a horizontally supported rotor axis and two front faces;
- at least one material feed directed radially to the rotor axis and having a cross-axial median plane;
- a rotor shell with two rotation surfaces inclined to the rotor axis and which increase in inclination in a direction away from said at least one material feed, said two rotation surfaces of said rotor shell being provided with grinding elements;
- a housing receiving said rotor, said housing having inner walls opposing the two rotation surfaces of said rotor with grinding surfaces arranged thereon;
- said grinding elements of said rotor shell being equipped with ribs of essentially axial extension;
- grinding gaps being formed between said grinding elements of said rotor shell and said grinding surfaces of said housing, said grinding surfaces having means to adjust the spacing between the grinding surfaces and the grinding elements so as to provide said grinding gaps, said opposing grinding surfaces of the housing being provided on two stator rings which are generally horizontally displaceable within the housing, said grinding gaps being inclined to the rotor axis;
- said at least one material feed being arranged approximately in the center of said housing, said grinding elements extending on the shell of said rotor and said opposing surfaces on the inner walls of the housing being on both sides of said at least one material feed, said surfaces of said inner walls being arranged to form an angle with the axis of the rotor which is open to the front faces of the rotor, additional grinding elements being provided on said shell as well as additional grinding surfaces being provided on said inner walls all of which extend approximately parallel to the rotor axis, said parallel grinding surfaces being situated between said at least one material feed and said grinding surfaces of said inner walls, said grinding surfaces and grinding elements including said additional surfaces all having outer regions which form an angle with the axis of said rotor and the grinding surfaces and grinding elements including said additional surfaces all having inner regions which are parallel to and adjacent with said at least one material feed, said outer regions forming an angle which continuously increases in inclination in both directions away from said at least one material feed, said grinding and additional surfaces of said inner walls being spaced apart from corresponding said grinding and additional elements of said rotor so as to form said grinding gap;
- said grinding gaps having central and outer regions with the central region being parallel to the axis of the rotor and the outer regions increasing in angle in a direction away from said at least one material feed as said outer regions continuously incline away from the axis of the rotor, wherein all of said grinding surfaces and elements including said additional surfaces and elements are arranged symmetrically to the median plane of said at least one material feed and have associated outer regions which incline away from the axis and which immediately follow and merge with additional central regions which are parallel to the axis;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which wall lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within said grinding gaps immediately empties, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said two bearings by means of special sealing units inserted in the bearing housings and placed between the rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by all of said grinding and crushing surfaces and elements.
- 37. The drum refiner according to claim 36, wherein said two stator rings are displaceable independently of one another.
- 38. A drum refiner for the grinding of wet fibrous material, comprising:
- a drumshaped rotor, driven by an engine at a high number of revolutions and having a horizontally supported rotor axis and two front faces;
- at least one material feed directed approximately radially to the rotor axis and having a cross-axial median plane;
- a rotor shell with two frustoconical rotation surfaces which continuously increase in inclination in a direction away from said at least one material feed, said two rotation surfaces having an opposed inclination away from the rotor axis, and said rotation surfaces being provided with grinding elements;
- a housing receiving the rotor, said housing having inner walls opposing the two rotation surfaces of said rotor with opposing grinding surfaces arranged thereon;
- said grinding elements of said rotor shell being equipped with ribs of essentially axial extension;
- grinding gaps being formed between said grinding elements of said rotor shell and said grinding surfaces of said housing, said grinding surface having means to adjust the spacing between the grinding surfaces and the grinding elements so as to provide said grinding gaps, said grinding gaps being inclined to the rotor axis;
- said at least one material feed being disposed approximately in the center of said housing, said grinding elements on said rotor and said opposing grinding surfaces on said inner walls being arranged to form an angle which increases in inclination in both directions away from said at least one material feed, said opposing grinding surfaces of said inner wall enclosing an angle with respect to the rotor axis on both sides of the cross median plane of the drum refiner which is open to the front faces of said rotor;
- additional grinding elements in said rotor and said opposing grinding surfaces in said housing being provided which are approximately parallel to the rotor axis and adjacent to said at least one material feed, said grinding surfaces and said grinding elements including said additional surfaces and elements all having outer regions which form an angle which continuously increases in inclination in both directions away from said at least one material feed, said grinding and additional surfaces of said inner walls being spaced apart from corresponding said grinding and additional elements of said rotor so as to form said grinding gaps;
- said grinding gaps having central and outer regions with the central regions being parallel to the axis of the rotor and said outer regions increasing in an angle in a direction away from said at least one material feed as said outer regions incline away from the axis of the rotor and wherein all of said grinding surfaces and elements including said additional surfaces and elements are arranged symmetrically to the median plane of said at least one material feed and have associated outer region which incline away from the axis and which immediately follow and merge with associated central regions which are parallel to the axis of the rotor;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which wall lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced with said grinding gaps immediately empty, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said shaft bearings by means of special sealing units inserted in the bearing housings and placed between the rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by all of said grinding surfaces and elements.
- 39. The drum refiner according to claim 38, wherein the grinding gaps inclined away from the axis of the rotor are adjustable for the purpose of providing variable operations, said adjustable gaps are provided by at least one stator ring which is generally horizontally displaceable within said housing.
- 40. The drum refiner according to claim 39, wherein at least two displaceable stator rings are provided.
- 41. The drum refiner according to claim 39, wherein two stator rings are displaceable independently of one another.
- 42. A drum refiner for the grinding of fibrous material comprising:
- a drumshaped rotor, driven by an engine at a high number of revolutions and having a horizontally supported rotor axis and two front faces;
- at least one material feed;
- a rotor shell with at least two rotation surfaces with grinding elements inclined to the rotor axis, said surfaces increasing in inclination in a direction away from said at least one material feed, wherein said rotation surfaces have an opposed inclination away from the rotor axis;
- a housing receiving said rotor, said housing having inner walls opposing the two rotation surfaces of said rotor with opposing grinding surfaces provided thereon;
- said grinding elements of said rotor shell being equipped with ribs of essentially axial extension;
- grinding gaps being formed between said grinding elements of said rotor shell and said grinding surfaces of said housing, said grinding surfaces having means to adjust the spacing between the grinding surfaces and the grinding elements so as to provide said grinding gaps, said gaps being inclined to the rotor axis;
- said at least one material feed having a cross-axial median plane which extends approximately tangentially to the rotor shell and is approximately in the center of said housing, said grinding surfaces of said housing being arranged to provide an angle which increases in both directions away from said at least one material feed, said grinding surfaces of said housing enclosing an angle with respect to the rotor axis on both sides of the cross median plane of the drum refiner which is open to the front faces of the rotor, additional grinding elements being provided on said rotor shell which are approximately parallel to the rotor axis, and correspondingly opposing grinding surfaces being provided on said housing, said grinding surfaces and grinding elements including said additional surfaces and elements all having central regions which are parallel to the rotor axis and adjacent to said at least one material feed, said grinding surfaces and grinding elements including said additional surfaces and elements all having outer regions that form an angle which continuously increases in inclination in both directions away from said feed, said grinding and additional surfaces of said inner walls being spaced apart from corresponding said grinding and additional elements of said rotor so as to form said grinding gaps;
- said grinding gaps having a central and outer regions with the central region being parallel to the axis of the rotor and the outer regions increasing in angle in a direction away from said at least one material feed as said outer regions incline away from said axis;
- said grinding surfaces and elements including said additional surfaces and elements being inclined away from the axis of the rotor and being arranged symmetrically to the median plane of said at least one material feed and all having associated outer regions which are inclined away from the axis of the rotor and which immediately follow and merge with associated central regions which are parallel to the axis;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which wall lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within said grinding gaps immediately empty, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said two bearings by means of special sealing units inserted in the bearing housings and placed between the rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by all of said grinding surfaces and elements.
- 43. The drum refiner according to claim 42, wherein the grinding gaps are inclined away from the axis of the rotor and are adjustable for the purpose of providing variable grinding operations, said adjustable gaps being provided by at least one stator ring which is generally horizontally displaceable within said housing.
- 44. The drum refiner according to claim 43, wherein at least two stator rings are provided.
- 45. The drum refiner according to claim 43, wherein two stator rings are displaceable independently of one another.
- 46. A drum refiner for the grinding of wet fibrous material comprising:
- a drumshaped rotor, driven by an engine at a high rotational speed of up to 3600 rpm and having a horizontally supported rotor axis, two rotation surfaces and two front faces;
- a housing receiving said rotor, said horizontal shaft of said rotor being received and supported by bearings located within said housing, said housing having two inner walls opposing each of the rotation surfaces of said rotor, said opposing surfaces being provided by a stator ring arranged on each of said inner walls;
- at least one material feed arranged approximately in the center of said housing and directed approximately radially to the rotor axis and having a cross-axial median plane;
- said rotation surfaces of said rotor being located on both sides of said at least one material feed and symmetrically disposed to the median plane of the at least one material feed, said rotation surfaces being equipped with precrushing elements with crushing surfaces that extend parallel to the axis of the rotor and which are adjacent to the at least one material feed, said precrushing elements being provided for precrushing the wet fibrous material and distributing it symmetrically in both directions away from said at least one material feed, said rotating surfaces further having grinding elements with grinding surfaces inclined to the axis of t he rotor and with diameters having dimensions which increase in a direction away from the at least one material feed, said inclined grinding surfaces of said rotor being provided for further refining the material that was precrushed by the precrushing elements and allowing such precrushed and refined material to be discharged as refined pulp along with generated steam;
- said stator rings of the inner walls of the housing being located one on each side of and symmetrically to the at least one material feed, said stator rings being equipped with precrushing surfaces with crushing surfaces that extend parallel to the axis of the rotor and arranged so as to be opposite to corresponding precrushing elements on the rotor, said precrushing surfaces of said stator rings being inclined to the axis of the rotor;
- grinding gaps being formed between said precrushing elements on the rotor and said precrushing surfaces on the stator rings, said precrushing surfaces of said stator rings having means to adjust the spacing between the precrushing elements and precrushing surfaces so as to provide said precrushing gaps, said precrushing gaps having central and outer regions with the central regions being parallel to the axis of the rotor and the outer regions immediately followed by and merging with said central regions; said outer regions being inclined to the axis;
- said stator rings of the inner walls of the housing being horizontally displaceable independently of each other, said stator rings providing said means for adjusting the precrushing grinding gaps;
- said precrushing elements of said rotor being equipped with ribs of essentially axial extension;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which wall lodging a shaft bearing for the rotor, said housing also having cavities into which the material reduced within said grinding gaps immediately empty, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said shaft bearings by means of special sealing units inserted in the bearing housings and placed between rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by all of said precrushing and grinding surfaces and elements.
- 47. The drum refiner according to claim 46, wherein there is an annular material feed gap provided by an annular space enclosing the outside of the rotor within the housing, said annular space being provided approximately in said cross-axial median plane between the precrushing surfaces of said stator rings and the precrushing elements of the rotor all of which extend parallel to the axis, said annular material feed gap accepting the material that empties from said at least one material feed.
- 48. The drum refiner according to claim 47, wherein said at least one material feed comprises a plurality of feeds which are individually arranged at approximately equal distances measured along the periphery of said housing.
- 49. The drum refiner according to claim 46, wherein said precrushing surfaces of said stator rings are equipped with ribs.
- 50. A drum refiner for the grinding of wet fibrous material comprising:
- a drumshaped rotor driven by an engine at a high rotational speed of up to 3600 rpm and having a horizontally supported rotor axis, two rotation surfaces and two front faces;
- a housing receiving said rotor, said housing having at least one bearing for supporting said rotor, said housing having two inner walls opposing each of the rotation surfaces of said rotor, said opposing surfaces of each said two inner walls being provided by a stator ring arranged on each of said inner walls;
- at least one material feed arranged approximately in the center of said housing and directed approximately tangentially to the rotor axis and having a cross-axial median plane;
- said rotation surfaces of said rotor being located on both sides of said at least one material feed and arranged symmetrically to the median plane of the feed, said rotation surfaces being equipped with precrushing elements with crushing surfaces that extend parallel to the axis of the rotor and which are adjacent to the at least one material feed, said precrushing elements being provided for precrushing the wet fibrous material and distributing it symmetrically in both directions away from said at least one material feed, said rotation surfaces further having grinding elements with grinding surfaces inclined to the axis of the rotor and with diameters having dimensions which increase in a direction away from the at least one material feed, said inclined grinding surfaces being provided for further refining the material that was precrushed by the precrushing elements and allowing such precrushed and refined material to be discharged as refined pulp along with generated steam;
- said stator rings of inner walls the housing being located one on each side of and symmetrically to the at least one material feed, said stator rings being equipped with precrushing surfaces with crushing surfaces that extend parallel to the axis of the rotor and arranged so as to be opposite to corresponding precrushing elements on the rotor, said precrushing surfaces of said stator being inclined to the axis of the rotor, said precrushing surfaces of said stator having outer regions which are inclined to the axis of the rotor;
- grinding gaps being formed between said precrushing elements on the rotor and said precrushing surfaces on the stator rings, said precrushing surfaces of said stator rings and said rotor having means to adjust the spacing between the precrushing elements and precrushing surfaces so as to provide said gaps, said precrushing gaps having central and outer regions with the central regions being parallel to the axis of the rotor and the outer regions immediately followed by and merging with said central regions, said outer regions being inclined to the axis;
- said stator rings of the inner walls of the housing being horizontally displaceable independently of each other and providing said means for adjusting said precrushing gaps;
- said precrushing elements of said rotor being equipped with ribs of essentially axial extension;
- said housing receiving said rotor being provided with two front walls on both sides of the rotor each of which wall lodging a shaft bearing for the rotor, said housing having cavities into which the material reduced within said grinding gaps immediately empty, said cavities being provided in the area of the two housing front walls in the vicinity of the shaft bearings, said cavities being provided on both sides of the rotor, said cavities being sealed steam-tight against said shaft bearings by means of special sealing units inserted in the bearing housings and placed between rotor and bearings on the side of the rotor, said cavities being provided with discharge openings for the ground material that is created by all of said precrushing and grinding surfaces and elements.
- 51. The drum refiner according to claim 50, wherein there is an annular material feed gap provided by an annular space enclosing the outside of the rotor within the housing, said annular space being provided approximately in said cross-axial median plane between the precrushing surfaces of said stator rings and the precrushing surfaces of the housing all of which extend parallel to the axis, said annular feed gap accepting that material that empties from said at least one material feed.
- 52. The drum refiner according to claim 51, wherein said at least one material feed comprises a plurality of such feeds which are individually arranged at approximately equal distances measured along the periphery of said housing.
- 53. The drum refiner according to claim 50, wherein said precrushing surfaces of said stator rings are equipped with ribs.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2924/87 |
Nov 1987 |
ATX |
|
Parent Case Info
This application is a continuation of Ser. No. 07/267,473 filed on Nov. 4, 1988, now abandoned.
Foreign Referenced Citations (2)
Number |
Date |
Country |
276356 |
Jul 1928 |
GBX |
2083375 |
Mar 1982 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
267473 |
Nov 1988 |
|