The present invention generally relates to a method and related apparatus for customizing a vehicle seat. More particularly, the apparatus includes a kiosk capable of implementing the method to determine a custom seat configuration for a vehicle seat.
Motor vehicle seats, particularly driver seats and front passenger seats may include a number of moveable parts for cooperatively supporting various portions of an occupant. Relative movement of the seat parts may provide for numerous modes of customizing the seating surface that the seat parts define to suit a particular user. Further, many seats include mechanisms for automated or motorized movement of the seat parts as well as memory to store a particular seat configuration for automated movement of the seat parts into that particular configurations.
It may, accordingly, be advantageous to provide an apparatus and method to identify a comfortable seat configuration for a particular potential occupant of such a customizable vehicle seat such that the seat configuration can be implemented in a vehicle seat associated with the potential occupant.
According to one aspect of the present invention, an apparatus for customizing a vehicle seat includes a seat having a cushion and a back coupled thereto and a plurality of force sensors in respective locations along the cushion and the back. The apparatus further includes electronic circuitry coupled with the plurality of sensors and programmed to associate forces sensed by ones of the plurality of force sensors with the respective locations thereof and to output the sensed forces and associated areas.
According to another aspect of the present invention, a method for customizing a vehicle seat includes obtaining data related to a weight distribution of an occupant over a test seat in a test configuration and including a cushion, a back, and a plurality of force sensors distributed along the cushion and the back, the data being obtained using the sensors. The method further includes determining a custom configuration for a vehicle seat based on the weight distribution data of the occupant.
According to another aspect of the present invention, a kiosk for determining a custom vehicle seat configuration includes a test seat having a plurality of force sensors distributed adjacent a seating surface thereof and electronic circuitry coupled with the plurality of sensors. The kiosk further includes a control coupled with the electronic circuitry and operable to instruct the electronic circuitry to obtain force measurements from the sensors and a display coupled with the electronic circuitry. The electronic circuitry is operable to output information related to the force measurements on the display.
The various aspects of the present invention can provide a customized seat arrangement for a particular passenger in a vehicle seat. In an example, the customized seat arrangement can be easily implemented in a vehicle that the test subject, or occupant, intends to use.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” “interior,” “exterior,” and derivatives thereof shall relate to the invention as oriented in
Referring to
As described further below, the seat included in kiosk 10 can be in the form of a test seat 12 that is generally designed to mimic the shape and configuration of a vehicle seat (such as vehicle seat 112 in
As further shown in
As shown in
As shown in
Kiosk 10, as depicted in
As mentioned previously, the electronic circuitry within kiosk 10 can be programmed to provide any number of customized seat configurations for a vehicle seat 112 that corresponds generally to test seat 12. In one example the corresponding vehicle seat 112 can have a number of portions thereof that are configured to be moveable with respect to each and to otherwise alter the shape of seating surface 120 and/or the various firmnesses and hardnesses of individual portions thereof. In one example, a vehicle seat 112 can have moveable portions corresponding to the lumbar area 142, as well as cervical seat area 144, central cushion area 146, and thigh extension area 148. Additionally, the entirety of back 116 can be moveable with respect to cushion 114. Test seat 12 can itself include areas that correspond in shape to such areas of vehicle seat 112, such areas being optionally moveable in the same manner as in vehicle seat 112. Accordingly, a custom seat arrangement derived by kiosk 10 using the force measurements from test seat 12 can correspond to a configuration for vehicle seat 112. Such a configuration can be such that the various moveable parts of vehicle seat 112 are positioned relative to each other according to a determination made in response to the forces measured by sensors 18 in test seat 12. Measurement of such forces by test seat 12 can be obtained with test seat 12 fixed in a predetermined test arrangement or by movement of test seat 12 through a predetermined test sequence, kiosk 10 being configured to monitor the various positions and configurations of such moveable or configurable portions thereof. Further, a derived custom seat arrangement can be confirmed by appropriate movement of test seat 12 into such an arrangement.
Although the vehicle seat 112 shown in
In an example, if a pressure point 40 is detected toward the aft section of cushion 14, but detected pressures toward the forward portion of cushion 14 at or near the baseline pressure, the electronic circuitry of kiosk 10 can determine that cushion 114 of vehicle seat 112 can be adjusted in an angle such that the rearward portion thereof is lowered relative to the front portion thereof to more evenly distribute the weight of the occupant along cushion 114 so as to compensate for variations of the weight distribution over test seat 12, at least in the initial configuration thereof, thereby reducing the sensed force or forces in one or more identified problem areas. Similarly, if uneven pressure is detected along back 16, such as between lumbar area 42 and cervical area 44, the corresponding portions of vehicle seat 112 can be directed to move in a manner so as to balance out such forces. In further examples, vehicle seat 112 corresponding to test seat 12 may include one or more inflatable bladders within, for example lumbar area 142 and cushion 114. Accordingly, a custom seat configuration derived from kiosk 10 can adjust the absolute and relative inflation levels among the various bladders to achieve a desired pressure profile.
In one embodiment, test seat 12 can be such that the various portions thereof, which correspond to moveable, or configurable, portions of vehicle seat 112 are also moveable through a predetermined range of motion and/or inflation in test seat 12. This can include movement of various portions, such as cushion 14, and back 16 relative to each other, for example, as well as having one or more inflatable bladders (not shown) positioned within test seat 12 and in fluid communication with a pump or other inflation device or unit (not shown) within kiosk 10. In such an embodiment, kiosk 10 can cause test seat 12 to run a test sequence, wherein solutions are tested by positioning test seat 12 within a determined custom configuration, while obtaining data from sensors 18 regarding the weight distribution of occupant 32 in such configurations, as well as data related to the positions or inflation levels of the various moveable and/or configurable portions of test seat 12. Using data, received thusly, a custom configuration can be determined, or further refinement can be performed. Additionally or alternatively, vehicle seat 112 can have portions thereof wherein the seat cushioning foam or underlying suspension elements included in the construction of vehicle seat 112 can be removed and substituted with either softer or firmer replacement cushions or suspension element (such as with softer or firmer springs or the like). In such an example, the electronic circuitry within kiosk 10 can determine areas of vehicle seat 112 where such different cushioning or suspension elements may be desired and can direct an operator of kiosk 10 to facilitate such replacement, which can be done, for example, by a dealer, or a factory during assembly during a custom-ordered vehicle.
Various steps in a method for obtaining a custom vehicle seat arrangement using kiosk 10, as described above, are discussed herein with reference to
Subsequently, in step 66 the method can include the creation of a custom seat solution, which can include the development of a bladder inflation profile (step 68), or the positioning of the various moveable parts of the vehicle seat 112, as discussed above, (step 70). As also discussed above, such a seat configuration can optionally include the selection of various replacement foam inserts with different hardnesses, which may correspond to various areas of the vehicle seat 112.
As discussed above, test seat 12 may be configured to test the solution developed in step 66, in which case the method can continue, in step 74, to a testing sequence in step 78 (
After a test sequence, or in a method where a test sequence is not used, the method can proceed to step 76, wherein kiosk 10 can associate the derived custom seat solution with the occupant 32 for which it is derived, such as by entering the name of occupant 32 using control unit 22a or 22b and/or entering a customer's vehicle order number or the vehicle identification number of the occupant's vehicle. Subsequently, kiosk 10 can push the custom solution to a vehicle 110 associated with occupant 32, where it is stored in memory within the vehicle 110 to be implemented in vehicle seat 112 (step 94). Additionally or alternatively kiosk 10 can output information regarding particular custom cushions for vehicle seat 112 which can be ordered, for example by a dealer, or specifically installed with a new vehicle ordered by occupant 32 (step 96). Other output options for kiosk 10 are available, as discussed above, and include the use of a USB drive or a memory card for importing into vehicle 110 of occupant 32, or generating a particular code corresponding to a custom seat solution that can be implemented by vehicle 110, or the like. Subsequently, the method can end in step 98.
In another embodiment, a vehicle seat, such as vehicle seat 112 in
It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
Number | Name | Date | Kind |
---|---|---|---|
2958369 | Pitts et al. | Nov 1960 | A |
3403938 | Cramer et al. | Oct 1968 | A |
3929374 | Hogan et al. | Dec 1975 | A |
4324431 | Murphy et al. | Apr 1982 | A |
4334709 | Akiyama et al. | Jun 1982 | A |
4353595 | Kaneko et al. | Oct 1982 | A |
4541669 | Goldner | Sep 1985 | A |
4629248 | Mawbey | Dec 1986 | A |
4720141 | Sakamoto et al. | Jan 1988 | A |
4890235 | Reger | Dec 1989 | A |
4915447 | Shovar | Apr 1990 | A |
5060174 | Gross | Oct 1991 | A |
5171062 | Courtois | Dec 1992 | A |
5174526 | Kanigowski | Dec 1992 | A |
5518294 | Ligon, Sr. et al. | May 1996 | A |
5560681 | Dixon et al. | Oct 1996 | A |
5642302 | Dumont | Jun 1997 | A |
5647635 | Aumond et al. | Jul 1997 | A |
5755493 | Kodaverdian | May 1998 | A |
5769489 | Dellanno | Jun 1998 | A |
5826938 | Yanase et al. | Oct 1998 | A |
5836648 | Karschin et al. | Nov 1998 | A |
5902014 | Dinkel et al. | May 1999 | A |
5913568 | Brightbill et al. | Jun 1999 | A |
5930152 | Dumont | Jul 1999 | A |
5951039 | Severinski et al. | Sep 1999 | A |
5975629 | Lorbiecki | Nov 1999 | A |
6024406 | Charras et al. | Feb 2000 | A |
6062642 | Sinnhuber et al. | May 2000 | A |
6145925 | Eksin et al. | Nov 2000 | A |
6155593 | Kimura et al. | Dec 2000 | A |
6179379 | Andersson | Jan 2001 | B1 |
6189966 | Faust et al. | Feb 2001 | B1 |
6196627 | Faust et al. | Mar 2001 | B1 |
6206466 | Komatsu | Mar 2001 | B1 |
6217062 | Breyvogel et al. | Apr 2001 | B1 |
6220661 | Peterson | Apr 2001 | B1 |
6224150 | Eksin et al. | May 2001 | B1 |
6296308 | Cosentino et al. | Oct 2001 | B1 |
6312050 | Eklind | Nov 2001 | B1 |
6320510 | Menkedick | Nov 2001 | B2 |
6345839 | Kuboki | Feb 2002 | B1 |
6364414 | Specht | Apr 2002 | B1 |
6375269 | Maeda et al. | Apr 2002 | B1 |
6394546 | Knoblock et al. | May 2002 | B1 |
6403897 | Bluth | Jun 2002 | B1 |
6428124 | Bluth | Aug 2002 | B1 |
6454353 | Knaus | Sep 2002 | B1 |
6523892 | Kage et al. | Feb 2003 | B1 |
6550856 | Ganser et al. | Apr 2003 | B1 |
6565150 | Fischer et al. | May 2003 | B2 |
6619605 | Lambert | Sep 2003 | B2 |
6649848 | Kriger | Nov 2003 | B2 |
6682140 | Minuth et al. | Jan 2004 | B2 |
6695406 | Plant | Feb 2004 | B2 |
6698832 | Boudinot | Mar 2004 | B2 |
6736452 | Aoki et al. | May 2004 | B2 |
6758522 | Ligon, Sr. et al. | Jul 2004 | B2 |
6808230 | Buss et al. | Oct 2004 | B2 |
6820930 | Dellanno | Nov 2004 | B2 |
6824212 | Malsch et al. | Nov 2004 | B2 |
6848742 | Aoki et al. | Feb 2005 | B1 |
6860559 | Schuster, Sr. et al. | Mar 2005 | B2 |
6860564 | Reed et al. | Mar 2005 | B2 |
6866339 | Itoh | Mar 2005 | B2 |
6869140 | White et al. | Mar 2005 | B2 |
6890029 | Svantesson | May 2005 | B2 |
6938953 | Håland et al. | Sep 2005 | B2 |
6955399 | Hong | Oct 2005 | B2 |
6962392 | O'Connor | Nov 2005 | B2 |
6988770 | Witchie | Jan 2006 | B2 |
6997473 | Tanase et al. | Feb 2006 | B2 |
7040699 | Curran et al. | May 2006 | B2 |
7100992 | Bargheer et al. | Sep 2006 | B2 |
7131694 | Buffa | Nov 2006 | B1 |
7159934 | Farquhar et al. | Jan 2007 | B2 |
7185950 | Pettersson et al. | Mar 2007 | B2 |
7213876 | Stoewe | May 2007 | B2 |
7229118 | Saberan et al. | Jun 2007 | B2 |
7248996 | Uenishi | Jul 2007 | B2 |
7261371 | Thunissen et al. | Aug 2007 | B2 |
7344189 | Reed et al. | Mar 2008 | B2 |
7350859 | Klukowski | Apr 2008 | B2 |
7393005 | Inazu et al. | Jul 2008 | B2 |
7425034 | Bajic et al. | Sep 2008 | B2 |
7441838 | Patwardhan | Oct 2008 | B2 |
7465272 | Kriger | Dec 2008 | B2 |
7467823 | Hartwich | Dec 2008 | B2 |
7478869 | Lazanja et al. | Jan 2009 | B2 |
7481489 | Demick | Jan 2009 | B2 |
7506924 | Bargheer et al. | Mar 2009 | B2 |
7506938 | Brennan et al. | Mar 2009 | B2 |
7530633 | Yokota et al. | May 2009 | B2 |
7543888 | Kuno | Jun 2009 | B2 |
7578552 | Bajic et al. | Aug 2009 | B2 |
7597398 | Lindsay | Oct 2009 | B2 |
7609168 | Boverie | Oct 2009 | B2 |
7614693 | Ito | Nov 2009 | B2 |
7641281 | Grimm | Jan 2010 | B2 |
7669925 | Beck et al. | Mar 2010 | B2 |
7669928 | Snyder | Mar 2010 | B2 |
7712833 | Ueda | May 2010 | B2 |
7717459 | Bostrom et al. | May 2010 | B2 |
7726733 | Balser et al. | Jun 2010 | B2 |
7735932 | Lazanja et al. | Jun 2010 | B2 |
7752720 | Smith | Jul 2010 | B2 |
7753451 | Maebert et al. | Jul 2010 | B2 |
7775602 | Lazanja et al. | Aug 2010 | B2 |
7784863 | Fallen | Aug 2010 | B2 |
7802843 | Andersson et al. | Sep 2010 | B2 |
7819470 | Humer et al. | Oct 2010 | B2 |
7823971 | Humer et al. | Nov 2010 | B2 |
7845729 | Yamada et al. | Dec 2010 | B2 |
7857381 | Humer et al. | Dec 2010 | B2 |
7871126 | Becker et al. | Jan 2011 | B2 |
7891701 | Tracht et al. | Feb 2011 | B2 |
7909360 | Marriott et al. | Mar 2011 | B2 |
7931294 | Okada et al. | Apr 2011 | B2 |
7931330 | Itou et al. | Apr 2011 | B2 |
7946649 | Galbreath et al. | May 2011 | B2 |
7963553 | Huynh et al. | Jun 2011 | B2 |
7963595 | Ito et al. | Jun 2011 | B2 |
7963600 | Alexander et al. | Jun 2011 | B2 |
7971931 | Lazanja et al. | Jul 2011 | B2 |
7971937 | Ishii et al. | Jul 2011 | B2 |
8011726 | Omori et al. | Sep 2011 | B2 |
8016355 | Ito et al. | Sep 2011 | B2 |
8029055 | Hartlaub | Oct 2011 | B2 |
8038222 | Lein et al. | Oct 2011 | B2 |
8075053 | Tracht et al. | Dec 2011 | B2 |
8109569 | Mitchell | Feb 2012 | B2 |
8123246 | Gilbert et al. | Feb 2012 | B2 |
8128167 | Zhong et al. | Mar 2012 | B2 |
8162391 | Lazanja et al. | Apr 2012 | B2 |
8162397 | Booth et al. | Apr 2012 | B2 |
8167370 | Arakawa et al. | May 2012 | B2 |
8210568 | Ryden et al. | Jul 2012 | B2 |
8210605 | Hough et al. | Jul 2012 | B2 |
8210611 | Aldrich et al. | Jul 2012 | B2 |
8226165 | Mizoi | Jul 2012 | B2 |
8342607 | Hofmann et al. | Jan 2013 | B2 |
8616654 | Zenk | Dec 2013 | B2 |
8698014 | Walstad | Apr 2014 | B1 |
9103747 | Galbreath | Aug 2015 | B2 |
20020167486 | Tan | Nov 2002 | A1 |
20040195870 | Bohlender et al. | Oct 2004 | A1 |
20050200166 | Noh | Sep 2005 | A1 |
20060043777 | Friedman et al. | Mar 2006 | A1 |
20070120401 | Minuth et al. | May 2007 | A1 |
20070146131 | Boverie | Jun 2007 | A1 |
20070296600 | Dixon | Dec 2007 | A1 |
20080036252 | Breed | Feb 2008 | A1 |
20080174159 | Kojima et al. | Jul 2008 | A1 |
20090066122 | Minuth et al. | Mar 2009 | A1 |
20090165263 | Smith | Jul 2009 | A1 |
20090322124 | Barkow et al. | Dec 2009 | A1 |
20100038937 | Andersson et al. | Feb 2010 | A1 |
20100140986 | Sawada | Jun 2010 | A1 |
20100171346 | Laframboise et al. | Jul 2010 | A1 |
20100187881 | Fujita et al. | Jul 2010 | A1 |
20100201167 | Wieclawski | Aug 2010 | A1 |
20100231013 | Schlenker | Sep 2010 | A1 |
20100270840 | Tanaka et al. | Oct 2010 | A1 |
20100301650 | Hong | Dec 2010 | A1 |
20100320816 | Michalak | Dec 2010 | A1 |
20110018498 | Soar | Jan 2011 | A1 |
20110074185 | Nakaya et al. | Mar 2011 | A1 |
20110095513 | Tracht et al. | Apr 2011 | A1 |
20110095578 | Festag | Apr 2011 | A1 |
20110109127 | Park et al. | May 2011 | A1 |
20110109128 | Axakov et al. | May 2011 | A1 |
20110121624 | Brncick et al. | May 2011 | A1 |
20110133525 | Oota | Jun 2011 | A1 |
20110163574 | Tame et al. | Jul 2011 | A1 |
20110163583 | Zhong et al. | Jul 2011 | A1 |
20110186560 | Kennedy et al. | Aug 2011 | A1 |
20110187174 | Tscherbner | Aug 2011 | A1 |
20110254335 | Pradier et al. | Oct 2011 | A1 |
20110260506 | Kuno | Oct 2011 | A1 |
20110272548 | Rudkowski et al. | Nov 2011 | A1 |
20110272978 | Nitsuma | Nov 2011 | A1 |
20110278885 | Procter et al. | Nov 2011 | A1 |
20110278886 | Nitsuma | Nov 2011 | A1 |
20110298261 | Holt et al. | Dec 2011 | A1 |
20120032486 | Baker et al. | Feb 2012 | A1 |
20120037754 | Kladde | Feb 2012 | A1 |
20120063081 | Grunwald | Mar 2012 | A1 |
20120080914 | Wang | Apr 2012 | A1 |
20120086249 | Hotary | Apr 2012 | A1 |
20120091695 | Richez et al. | Apr 2012 | A1 |
20120091766 | Yamaki et al. | Apr 2012 | A1 |
20120091779 | Chang et al. | Apr 2012 | A1 |
20120096960 | Galbreath | Apr 2012 | A1 |
20120109468 | Baumann et al. | May 2012 | A1 |
20120119551 | Brncick et al. | May 2012 | A1 |
20120125959 | Kucera | May 2012 | A1 |
20120127643 | Mitchell | May 2012 | A1 |
20120129440 | Kitaguchi et al. | May 2012 | A1 |
20120162891 | Tranchina et al. | Jun 2012 | A1 |
20120175924 | Festag et al. | Jul 2012 | A1 |
20120187729 | Fukawatase et al. | Jul 2012 | A1 |
20120248833 | Hontz et al. | Oct 2012 | A1 |
20120261974 | Yoshizawa et al. | Oct 2012 | A1 |
20130076092 | Kulkarni et al. | Mar 2013 | A1 |
20130332104 | Russell | Dec 2013 | A1 |
20140032043 | Line et al. | Jan 2014 | A1 |
20150008710 | Young | Jan 2015 | A1 |
20150351692 | Pereny | Dec 2015 | A1 |
20150352990 | Zouzal | Dec 2015 | A1 |
20150366350 | Di Censo | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
0754590 | Jan 1997 | EP |
0926969 | Jan 2002 | EP |
1266794 | Mar 2004 | EP |
1123834 | Oct 2004 | EP |
1050429 | Oct 2005 | EP |
1084901 | Jun 2006 | EP |
1674333 | Aug 2007 | EP |
1950085 | Dec 2008 | EP |
1329356 | Nov 2009 | EP |
201178557 | Apr 2011 | JP |
WO9511818 | May 1995 | WO |
WO9958022 | Nov 1999 | WO |
WO2006131189 | Dec 2006 | WO |
WO2007028015 | Aug 2007 | WO |
2008019981 | Feb 2008 | WO |
WO2008073285 | Jun 2008 | WO |
WO2011021952 | Feb 2011 | WO |
2011068684 | Jun 2011 | WO |
WO2012008904 | Jan 2012 | WO |
Entry |
---|
M. Grujicic et al., “Seat-cushion and soft-tissue material modeling and a finite element investigation of the seating comfort for passenger-vehicle occupants,” Materials and Design 30 (2009) 4273-4285. |
“Thigh Support for Tall Drivers,” http://cars.about.com/od/infiniti/ig/2009-Infiniti-G37-Coupe-pics/2008-G37-cpe-thigh-support.htm (1 page). |
Mladenov, “Opel Insignia Receives Seal of Approval for Ergonomic Seats,” Published Aug. 27, 2008, http://www.automobilesreview.com/auto-news/opel-insignia-receives-seal-of-approval-for-ergonomic-seats/4169/ (2 pages). |
Brose India Automotive Systems, “Adaptive Sensor Controlled Headrest,” http://www.indiamart.com/broseindiaautomotivesystems/products.html, Oct. 9, 2012 (12 pages). |
eCOUSTICS.COM, “Cineak Motorized Articulating Headrest Preview,” http://www.ecoustics.com/ah/reviews/furniture/accessories/cineak-motorized-headrest, Oct. 9, 2012 (3 pages). |
“Performance' Car Seat Eliminates Steel,” Published in Plastics News—Indian Edition Plastics & Polymer News, (http://www.plasticsinfomart.com/performance-car-seat-eliminates-steel/), Jan. 2012, 3 pages. |
“Frankfurt 2009 Trend —Light and Layered.” by Hannah Macmurray, Published in GreenCarDesign, (http://www.greencardesign.com/site/trends/00138-frankfurt-2009-trend-light-and-layered), Sep. 2009, 9 pages. |
“Imola Pro-fit”, Cobra, (http://cobra.subesports.com/products/cat/seats/brand/Cobra/prodID/656), Date unknown, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20160123793 A1 | May 2016 | US |