The invention described herein may be manufactured, used, and licensed by or for the United States Government.
The present invention relates generally to a device for deagglomerating and disseminating powders and particulate matter in order to produce aerosols.
There are many different types of lab experiments in which powders and aerosols form a part of a test experiment. In these types of tests, it is oftentimes desirable to disseminate or aerosolize small quantities of powdered materials at a steady concentration and which can be varied by the operator. It is also desirable to produce maximal breakup or deagglomeration of the powder material into its smallest natural sized particles when the aerosol is produced and tests are conducted.
Unfortunately, many if not most types of powders tend to agglomerate into masses that, while small, are still many times larger than the individual powder particles. Consequently, in those situations it is necessary to break up the masses of powder particles thereby reducing the overall size of the powder particles to their native sizes. In addition, it is difficult to produce a steady concentration of aerosol particles using low volume powders over time.
While there have been previously known methods for breaking up agglomerated particle matter, these previously known methods are not only time consuming, but also often fail to completely separate the powder into its separate individual powder particles. This, in turn, may adversely affect the results of testing utilizing the powder that is not entirely separated into its separate particles.
The present invention provides an apparatus for deagglomerating and disseminating powders and particulate matter and producing a steady concentration of aerosolized particles over time using low volumes of powders, which overcomes the above-mentioned disadvantages of the previously known devices.
In brief, the present invention comprises a base having a turntable rotatably mounted to the base. This turntable in turn includes a plurality of circumferentially spaced wells relative to the axis of rotation of the turntable which may be filled with the powder to be processed. The turntable itself is rotatably driven by a motor and, preferably, the speed of rotation of the turntable may be varied as desired by the operator.
The wells on the turntable are then filled with the powder to be deagglomerated and disseminated. An elongated first conduit has one open end disposed to the turntable and aligned with the wells. Air flow drawn through the conduit then inducts powder contained in the wells into the air flow through the conduit. The other end of the conduit is mounted to a nozzle disposed within a powder aerosol collection housing.
The nozzle comprises a tubular and cylindrical housing having a tube disposed therein which is connected at one end to the conduit. The nozzle housing is larger in diameter than the tube and is disposed around the tube thus forming a cylindrical chamber around the tube. This cylindrical chamber, however, is open at one end forming an outlet for the nozzle which surrounds and is spaced outwardly from an open end of the tube. Consequently, upon connection of a pressurized gas source to the nozzle's cylindrical chamber, the gas flow through the nozzle outlet opening draws or inducts powder contained in the turntable wells through the conduit into the tube and out through the nozzle's outlet.
A second substantially identical nozzle is mounted to the particle collection housing so that it is also similarly fluidly connected to the wells in the turntable using a second conduit. However, the second nozzle is fluidly connected to wells different from those in fluid connection with the first nozzle. Furthermore, the nozzles are arranged so that the output from each nozzle is coaxial and spaced apart from the opening in the other nozzle and facing one another.
Thus, the nozzles are arranged in the collection housing so that they produce their particle entrained fluid flow in directions opposite one another. Consequently, the gas flow with the entrained particles from one nozzle impacts upon the gas flow with the entrained particles from the other nozzle. The force of the impact not only breaks the powder components into finer particles through an air milling effect, but the velocity moments of the two high speed gas streams cancel each other. Consequently, the now deagglomerated particles may be conducted away from the collection housing at a much lower velocity to the target test system for testing or other uses.
A better understanding of the present invention will be had upon reference to the following detailed description when read in conjunction with the accompanying drawing, wherein like reference characters refer to like parts throughout the several views, and in which:
With reference now to
With reference now to
As shown in
The actual dimensions for the wells 24 and 26 are not critical. However, as shown, the turntable 16 is approximately 4 inches in diameter and the inner row of wells 24 are formed at a radius of approximately 1 inch from the center and are 0.161 inch in diameter and 0.175 inch deep. This produces a volume of about 65 cubic millimeters of powder.
The second row 26 of wells are formed at a radius of 1.5 inches on the turntable 16 and have a smaller diameter of 0.082 inch and a depth of 0.15 inch. This produces a volume of about 13 cubic millimeters of powder and these wells deliver the smallest amounts of powders to produce smaller particle concentrations.
With reference now to
With reference then to
As shown in
As shown in
As shown in
With reference now to
With reference now to
From the foregoing, it can be seen that the present invention provides a simple, yet effective mechanism for deagglomerating and disseminating particulate matter. Having described our invention, however, many modifications thereto will become apparent to those of ordinary skill in the art to which it pertains without deviation from the spirit of the invention as defined by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5884846 | Tan | Mar 1999 | A |
20020092468 | Mauchle | Jul 2002 | A1 |