1. Field of the Invention
The present invention relates to apparatus for delivering humidified gases. In particular it relates to a humidifier arrangement for use in standalone humidifiers used for example in providing respiratory assistance to patients receiving mechanical ventilation or respiratory support and/or integrated humidifiers included for example in consumer CPAP delivery devices.
2. Description of the Related Art
Humidification systems are known which include a heater base and a disposable humidifier chamber which is fitted onto the heater base and within which a supply of water can be heated by the heater base. Air enters the humidifier chamber through an inlet air port in the roof of the chamber where it is humidified by the evaporation of water from the water supply before leaving the chamber through an exit port in the roof of the humidifier chamber.
Humidifier chambers of this type are also now used in compact and portable ventilation machines, for example machines intended for the home treatment of obstructive sleep apnea (CPAP machines). Where the humidifier base is adapted for use with slide-on humidifier chambers, and the connection of the chamber to the machine is accomplished with a single sliding movement, the inlet air port is provided horizontally through the side of the chamber. Air enters the humidifier chamber through the inlet air port and the humidified air leaves the humidifier chamber into a breathing conduit through an exit port in the top of the humidifier chamber.
A disadvantage of these configurations is the need to disconnect the patient breathing conduit from the top of the humidifying chamber in a separate operation before removal of the chamber for the purpose of refilling. A further disadvantage of these configurations is that separate electrical wiring connections are required to make use of a heated respiratory conduit.
It is an object of the present invention to provide an apparatus for delivering humidified gases which at least goes some way towards overcoming the above disadvantages or which will at least provide the public with a useful choice.
In a first aspect the invention consists in an apparatus for use in humidified gases delivery treatment comprising a first housing including a heater base, a pressurized gases outlet adapted to make separable fluid connection with an inlet of a water chamber, a humidified gases return adapted to make separable fluid connection with an outlet of said chamber, and being adjacent to, and aligned with said pressurized gases outlet, such that both said separable connections are made by a single motion, and said single motion also urges a base of said chamber in contact with said heater base, a second housing including a blower for generating a supply of pressurized gases, said second housing adapted to engage with said first housing and make fluid connection between said blower and said pressurized gases outlet, said apparatus further comprising a patient outlet in fluid connection with said humidified gases return for delivering gases to a patient via a breathing tube.
According to a further aspect said pressurized gases outlet and said inlet of a water chamber have between them first complementary male and female connectors, having a preferred insertion direction for completing a fluid connection by engagement of the male and female connectors, and said humidified gases return and said outlet of said water chamber have between them second complementary male and female connectors, having a preferred insertion direction for completing a fluid connection by engagement of the male and female connectors, said preferred insertion direction of said first connectors being parallel with said preferred insertion direction of said second connectors, and being parallel with the direction of at least a terminal part of said single motion.
According to a further aspect said patient outlet includes a connector for receiving a breathing tube and at least one auxiliary electrical connection plug or socket or pneumatic connection plug or port, for a simultaneous connection when connecting a breathing circuit having complementary electrical or pneumatic connectors.
According to a further aspect said gases return and said patient outlet are separable from said apparatus.
According to a further aspect said apparatus further comprises an elbow tube having a first inlet end and a second outlet end; and said first inlet end of said elbow tube comprises said gases return, and said second outlet end of said elbow tube comprises said patient outlet.
In a further aspect the invention consists in an apparatus for use in humidified gases delivery treatment comprising a blower for generating a supply of pressurized gases, a pressurized gases outlet in fluid connection with said supply of pressurized gases and adapted to make separable fluid connection with an inlet of a water chamber in order to provide gases flow to said chamber, a humidified gases return, adapted to make separable fluid connection with an outlet said chamber in order to receive humidified gases from said chamber, and being adjacent to, and aligned with said pressurized gases outlet, such that both said separable connections are made by a single motion, and a patient outlet, in fluid connection with said humidified gases return in order to receive humidified gases from said humidified gases return and provide humidified gases to said patient outlet, said patient outlet being in fluid connection with or adapted to make fluid connection with a breathing conduit for delivery of humidified gases to a patient.
According to a further aspect said apparatus includes a chamber heater said single motion also urges a base of said chamber in contact with said heater base.
According to a further aspect said pressurized gases outlet and said inlet of said water chamber have between them first complementary male and female connectors, having a preferred insertion direction for completing a fluid connection by engagement of the male and female connectors, and said humidified gases return and said outlet of said water chamber have between them second complementary male and female connectors, having a preferred insertion direction for completing a fluid connection by engagement of the male and female connectors, and said preferred insertion direction of said first connectors being parallel with said preferred insertion direction of said second connectors, and being parallel with the direction of at least a terminal part of said single motion.
According to a further aspect said inlet of said chamber and said outlet of said chamber are each a female port, and said pressurized gases outlet and said humidified gases return are each a resilient tubular projection fitting within respective female ports with said chamber engaged.
According to a further aspect said protruding tubes of said pressurized gases outlet and humidified gases return have substantially parallel axis of extension, and said heater includes a substantially planar heating plate, and said axis of extension of said tubes are substantially parallel with the plane of said heating plate.
According to a further aspect said patient outlet includes a connector for receiving a breathing hose and at least one auxiliary electrical connection plug or socket or pneumatic connection plug or port, for a simultaneous connection when connecting a breathing circuit having complementary electrical or pneumatic connectors.
According to a further aspect said gases return and said patient outlet are separable from said apparatus.
According to a further aspect said apparatus further comprises an elbow tube having a first inlet end and a second outlet end; and said first inlet end of said elbow tube comprises said gases return, and said second outlet end of said elbow tube comprises said patient outlet.
To those skilled in the art to which the invention relates, many changes in construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the invention as defined in the appended claims. The disclosures and the descriptions herein are purely illustrative and are not intended to be in any sense limiting.
Two preferred embodiments of the present invention will, now be described with reference to the drawings.
Two preferred embodiments of the present invention will now be described in detail.
Referring to
The CPAP machine includes a heater base in a chamber receiving bay 47 to heat the water chamber, and a securing means for securing the water chamber to the CPAP machine. The securing means is provided by a securing latch 19 and a slot 17 around the periphery and of the chamber receiving bay 47. The slot co-operates with a flange 18 around the base of the water chamber to secure the chamber when in use. The securing latch 19 operates to prevent removal of the chamber once it has been engaged. The securing means and connection manifold are arranged with a parallel axis of operation such that connection of the chamber inlet and outlet ports 5 & 6, to the connection manifold 8 is achieved as well as securing of the chamber into the CPAP machine in the same slide-on motion.
The latch 19, having a locking position and a release position, is biased toward the locking position which prevents removal of the chamber from the CPAP machine. The front face of the latch is shaped such that during the single slide-on motion employed to fit the water chamber to the CPAP machine the flange 18 urges the securing latch 19 into the release position and allows the water chamber to be properly fitted. Once the water chamber is properly seated on the heater base and the inlet 5 and outlet 6 is properly engaged with the connection manifold 8, the flange 18 and base of the chamber will no longer be in contact with the securing latch 19. This allows the securing latch biasing means to urge the latch into the locking position and prevent the water chamber from being removed as shown in
Preferably the connection manifold 8 includes a passage which receives airflow from the blower 60 and directs it into the water chamber 2, as well as a passage which directs airflow received via the water chamber outlet port 6, to the CPAP patient outlet port 9. The connection passage connecting the manifold inlet port 7, to the manifold patient outlet port 9 is shown in hidden detail 48 in
In use air from the CPAP machine blower 60 exits through outlet port 4, and enters the chamber 2 through inlet port 5. Air entering the chamber is humidified by the evaporation of water from the water source in the bottom of the chamber before leaving the chamber through the patient outlet port 6. Humidified air from the outlet port 6 is received into the connection manifold of the CPAP machine 8 via the inlet port 7. The connection manifold 8 directs air to the outlet port 9 which is adapted to connect with a flexible conduit connector for delivery to a patient. An advantage obtained from the breathing conduit connection 9 being located on the body of the CPAP machine and not connected to the top of the water chamber directly, is that complete connection or disconnection of the water chamber from the CPAP system can be achieved with a single slide-on or slide-off motion. This feature makes removal of the water chamber for refilling considerably simpler.
A further advantage is obtained when additional electrical or pneumatic connections are required. The use of heated conduits requires electrical wiring connectors between the conduit and humidified air source while an additional pneumatic connection may be used for pressure feedback or measurement. In the present invention the connector which includes an additional electrical and/or pneumatic connection 54 for the conduit is integral to the connection manifold of the CPAP machine 8 and therefore allows the disposable water chamber to remain as simple as possible.
Referring to
Preferably the connection manifold 23 includes a passage 49 which receives airflow from the inlet conduit through inlet port 16 and directs it into the water chamber inlet port 11 through manifold outlet port 15. Preferably the connection manifold 23 also includes a passage 50 which receives airflow from the water chamber outlet port 12, via manifold inlet port 13 and directs it to the manifold patient outlet port 14. The connection passages 49 and 50 are shown in hidden in
The humidifier includes a heater base to heat the water chamber and a securing means for securing the water chamber to the humidifier. The securing means is provided by a securing latch 22 and a slot 21 around the periphery and of the chamber receiving bay. The slot co-operates with a flange around the base of the water chamber 10 to secure the chamber when in use, while the securing latch operates to prevent removal of the chamber once it has been engaged. The securing means and connection manifold are arranged such that connection of the chamber inlet and outlet ports 11 and 12, to the connection manifold 23 is achieved at the same time as securing of the chamber into the humidifier in the same slide-on motion. The latch 22, having a locking position and a release position, is biased toward the locking position which prevents removal of the chamber from the humidifier. The front face of the latch 22 is shaped such that during the single slide-on motion employed to fit the water chamber to the humidifier the flange urges the securing latch 22 into the release position and allows the water chamber 10 to be properly fitted. Once the water chamber is properly seated on the heater base and the inlet 11 and outlet 12 is properly engaged with the connection manifold 23, the flange and base of the water chamber will no longer be in contact with the securing latch 22 This allows the securing latch biasing means to urge the latch into the locking position and prevent the water chamber from being removed.
In use the humidifier inlet port 16 receives air flow through a flexible conduit. Air leaves the connection manifold 23 through the outlet port 15 and enters the water chamber 10 through the chamber inlet port 11, where it is humidified by the evaporation of water from the water supply. Humidified air leaves the water chamber via outlet port 12, enters the humidifier connection manifold inlet port 13, finally exiting through the patient outlet port 14 into a breathing conduit for delivery to a patient. An advantage obtained by having both the inlet 16 and outlet 14 which connect to conduits, integral to the body of the humidifier and not part of the water chamber directly, is that complete connection/disconnection of the water chamber 10 from the humidifier base can be achieved with a single slide-on/off motion. This feature makes removal of the water chamber for refilling considerably simpler.
In a similar manner to the first preferred embodiment of a CPAP machine, a further advantage obtained from the configuration of the second preferred embodiment, arises when an additional electrical or pneumatic connection is required. The inlet and/or outlet connectors including an electrical and/or pneumatic connection 54 for the conduit are integral to the connection manifold of the humidifier and therefore allow the disposable water chamber to remain as simple as possible.
A number of alternative variations of the first and second preferred embodiments are envisaged and will now be described. For example, a further embodiment of the present invention is envisaged to deliver humidified gases from the water chamber to a patient via a flexible breathing conduit. This alternative embodiment is shown in
An alternative embodiment of the present invention is envisaged wherein a water chamber 10 and heater base 61 are partially or fully enclosed in a housing 62. The housing 62 includes a connection manifold 23 consisting of at least one gases inlet 15 and at least one gases outlet 13 connection port being adjacent and aligned, which in use transport gases to and/or from the water chamber 10. A second housing 63 is provided with complementary inlet and outlet connections for registration with the connection manifold 23. The second housing 63 is adapted to engage with the first housing 62 making all the necessary gases and electrical connections in the same slide-on motion and preferably includes a securing means. The second housing 63 may include an integral air blower 66, and a patient conduit outlet port in the case of a CPAP embodiment. Or in the case of an in-line humidifier embodiment, the second housing may include two conduit ports. The first conduit port in use receiving air from a source and the second conduit port delivering humidified air to a patient. The above described embodiment has the advantage that all necessary flexible conduit connections are made on the second housing. This enables the water chamber and/or enclosing housing to be removed/engaged in the same slide-off/on motion making refilling of the chamber simpler.
In the first and second preferred embodiments of the present invention, tubular protrusions are provided for making a connection between the humidifier apparatus and a water chamber in order to deliver gases to the chamber and receive humidified gases from the chamber. Preferably the tubular protrusions also include a resilient boot in order to provide an improved seal between the water chamber and the protrusions.
A further embodiment of the present invention is envisaged wherein the connections between the apparatus manifold and the water chamber are not provided side by side as described in the first and second embodiment of the present invention but rather are provided one within the other, for example the inlet and outlet may be coaxial. Such a configuration would enjoy the same advantages as the configurations described in more detail in the first and second embodiments of the present invention. It is also envisaged that such connections may also include similarly configured tubes for providing pressure measurements or pressure feedback.
While the above preferred embodiments describe male/female type connectors wherein the water chamber has two female connectors for mating with corresponding male connectors of the apparatus manifold, it is envisaged that many variations will present themselves to those skilled in the art without departing from the spirit of the present invention. For example the water chamber may be provided with two male connectors while the apparatus manifold is provided with corresponding female connectors, or the water chamber may be provided with one male and one female connector for connecting to the corresponding male and female connectors of the apparatus manifold. Further it is envisaged that connectors of an androgynous nature may be provided for making connection between the water chamber and the apparatus manifold wherein each connector may include both male type protruding portions and female type recess portions. Such connections may be particularly advantageous when the inlet and outlet is provided one within the other.
With reference to the first and second preferred embodiments of the present invention, some common features of a water chamber suitable for use with either preferred embodiment will now be described in more detail.
The chamber as shown in
The water chamber of the present invention preferably includes an inlet extension tube 30, and an outlet extension tube 31, extending inwardly into the chamber interior from the periphery of the chamber wall and preferably having a generally tapering body. The inlet extension tube 30 and the outlet extension tube 31 are preferably molded from the same clear thermoplastic material as the chamber shell 26. The inclusion of inlet/outlet extension tubes has been found to significantly reduce noise produced by the airflow around the chamber. Preferably at least one extension tube has an air bleed aperture to aid filling of the chamber with the chamber tipped up. The air bleed is preferably located in the top surface of the extension tube and preferably toward the end of the extension tube which is connected to the chamber wall. Referring to
Additionally, with reference to
The present invention may further include a downwardly extending central baffle or rib located between the inlet and outlet extension tubes to ensure against gases short circuiting the chamber by flowing directly from the exit of the inlet extension tube 34, to the entry of the outlet extension tube 35. With the baffle the gases are forced to follow a more tortuous path ensuring adequate humidification during their journey through the chamber.
In use air is received into the chamber via inlet port 27 and travels down the inlet extension tube 30. On exiting the inlet extension tube 30 air enters the chamber where it is humidified by the evaporation of water from the water supply. Humidified air flows from the chamber through the outlet extension tube 31 and exits through outlet port 28. The above described flow path is illustrated in
Although the preceding description gives details of preferred embodiments having parallel and adjacent circular inlet/outlet ports, it is envisaged that other configurations are possible without departing from the spirit of the invention. For example the inlet/outlet ports of the chamber and connection manifold may have a non-circular cross section and not be symmetrical. Further it is possible that the position of the inlet port with respect to the outlet may take one of many alternative configurations. For example the ports and there corresponding connections may also be co-axial or off-set, one inside the other.
Referring to
To this end the inlet 27 and outlet 28 ports of the water chamber may be provided with an inwardly perpendicularly extending annular flange 36 at the inner end thereof and the inlet/outlet extension tubes 38 may include similar perpendicularly outwardly extending flanges 37 from one end of the generally tapering tubular body 46. The flanges act together as sealing flanges in the fitted and assembled condition. To retain the extension tubes in the assembled condition, against both translational and rotational movement several securing mechanisms may be provided. In each case the securing mechanisms may be provided on either of the inlet/outlet (of the chamber) or the inlet/outlet extension tube. However it is preferred that they be on the extension tubes, as both components are intended for injection molding and injection molding of certain protrusions on the inner surface of the chamber inlet/outlet would be considerably more difficult than on the outer surface of the extension tubes. To secure the tubes against translational movement, and in a sealing condition between the sealing flanges, a plurality of retaining clip protrusions 39 may be provided spaced around the circumference of the tubular body of the extension tubes which cooperate with the inlet/outlet flange 36. Particularly for ease of manufacture, and ensuring a simple two part injection mold, a notch 42 is allowed in the flange 37 of the extension tubes 38 adjacent the protrusion 39.
To retain the extension tubes against rotational movement when snap fitted into location, one or more locating protrusions 40 may be provided circumferentially distributed on the outer surface of the tubular body adjacent and contiguous with the outwardly and perpendicularly extending flange 37. The locating protrusions 40 are preferably generally tapered in both the circumferential and axial direction. Complementary notches 41 are provided in the inwardly extending flanges 36 of the chamber inlet and outlet. In fitting the extension tubes 38 the protrusions 40 are aligned with the notches 41, and upon full insertion of the tubes, the protrusions 40 enter into a tight frictional fit with the notches 41 ensuring substantial if not complete sealing. It will be appreciated that the mechanism employed to ensure proper location and sealing of the extension tubes into the water chamber may take many forms. Many alternatives will suggest themselves to persons skilled in the art such as glued joints, various forms of plastic welding and various configurations of clipping means and protrusions. The above description is of one particular preferred embodiment and is not meant to be in any way limiting.
It will be readily appreciated that the construction of the water chamber as described is simple to manufacture and each of the plastic components is itself capable of simple injection molding. Consequently a water chamber according to the present invention is, while providing significant advantages, not significantly more expensive than existing chambers.
Number | Date | Country | Kind |
---|---|---|---|
503495 | Mar 2000 | NZ | national |
This application is a division of U.S. patent application Ser. No. 11/428,704, filed Jul. 5, 2006, which is a division of U.S. patent application Ser. No. 10/246,328, filed Sep. 18, 2002, which issued as U.S. Pat. No. 7,111,624, Sep. 26, 2006, which is a continuation-in-part of U.S. patent application Ser. No. 09/808,567, filed Mar. 14, 2001, which issued as U.S. Pat. No. 6,918,389, Jul. 19, 2005, each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
485127 | Lynch | Oct 1892 | A |
3243753 | Kohler | Mar 1966 | A |
3582968 | Buiting | Jun 1971 | A |
3584193 | Badertscher | Jun 1971 | A |
3695267 | Hirtz et al. | Oct 1972 | A |
3766914 | Jacobs | Oct 1973 | A |
3823217 | Kampe | Jul 1974 | A |
3914349 | Stipanuk | Oct 1975 | A |
4013122 | Long | Mar 1977 | A |
4013742 | Lang | Mar 1977 | A |
4038980 | Fodor | Aug 1977 | A |
4050823 | Frankenberger | Sep 1977 | A |
4051205 | Grant | Sep 1977 | A |
4060576 | Grant | Nov 1977 | A |
4110419 | Miller | Aug 1978 | A |
4152379 | Suhr | May 1979 | A |
4162370 | Dunn et al. | Jul 1979 | A |
4172105 | Miller et al. | Oct 1979 | A |
4177376 | Horsma et al. | Dec 1979 | A |
4203027 | O'Hare et al. | May 1980 | A |
4459473 | Kamath | Jul 1984 | A |
4500480 | Cambio, Jr. | Feb 1985 | A |
4529867 | Velnosky et al. | Jul 1985 | A |
4532088 | Miller | Jul 1985 | A |
4543474 | Horsma et al. | Sep 1985 | A |
4560498 | Horsma et al. | Dec 1985 | A |
4574188 | Midgley et al. | Mar 1986 | A |
4640804 | Mizoguchi | Feb 1987 | A |
4676237 | Wood et al. | Jun 1987 | A |
4682010 | Drapeau et al. | Jul 1987 | A |
4684786 | Mann et al. | Aug 1987 | A |
4710887 | Ho | Dec 1987 | A |
4715998 | Clow | Dec 1987 | A |
4722334 | Blackmer et al. | Feb 1988 | A |
4753758 | Miller | Jun 1988 | A |
4780247 | Yasuda | Oct 1988 | A |
4791966 | Eilentropp | Dec 1988 | A |
4807616 | Adahan | Feb 1989 | A |
4808793 | Hurko | Feb 1989 | A |
4829998 | Jackson | May 1989 | A |
4911157 | Miller | Mar 1990 | A |
4911357 | Kitamura | Mar 1990 | A |
4921642 | LaTorraca | May 1990 | A |
4941469 | Adahan | Jul 1990 | A |
4955372 | Blackmer et al. | Sep 1990 | A |
5031612 | Clementi | Jul 1991 | A |
5062145 | Zwaan et al. | Oct 1991 | A |
5092326 | Winn et al. | Mar 1992 | A |
5101820 | Christopher | Apr 1992 | A |
5121746 | Sikora | Jun 1992 | A |
5148801 | Douwens et al. | Sep 1992 | A |
5224923 | Moffett et al. | Jul 1993 | A |
5231979 | Rose et al. | Aug 1993 | A |
5336156 | Miller et al. | Aug 1994 | A |
5346128 | Wacker | Sep 1994 | A |
5367604 | Murray | Nov 1994 | A |
5388443 | Manaka | Feb 1995 | A |
5392770 | Clawson et al. | Feb 1995 | A |
5404729 | Matsuoka et al. | Apr 1995 | A |
5454061 | Carlson | Sep 1995 | A |
5482031 | Lambert | Jan 1996 | A |
5516466 | Schlesch et al. | May 1996 | A |
5529060 | Salmon et al. | Jun 1996 | A |
5537997 | Mechlenburg et al. | Jul 1996 | A |
5558084 | Daniell et al. | Sep 1996 | A |
5564415 | Dobson et al. | Oct 1996 | A |
5588423 | Smith | Dec 1996 | A |
5640951 | Huddart et al. | Jun 1997 | A |
5673687 | Dobson et al. | Oct 1997 | A |
5705555 | Guilfoy et al. | Jan 1998 | A |
5759149 | Goldberg et al. | Jun 1998 | A |
5769071 | Turnbull | Jun 1998 | A |
5906201 | Nilson | May 1999 | A |
5916493 | Miller | Jun 1999 | A |
5943473 | Levine | Aug 1999 | A |
5988164 | Paluch | Nov 1999 | A |
5991507 | Bencsits | Nov 1999 | A |
6024694 | Goldberg et al. | Feb 2000 | A |
6050260 | Daniell et al. | Apr 2000 | A |
6078730 | Huddart et al. | Jun 2000 | A |
6090313 | Zhao | Jul 2000 | A |
6095505 | Miller | Aug 2000 | A |
6125847 | Lin | Oct 2000 | A |
6158431 | Poole | Dec 2000 | A |
6167883 | Beran et al. | Jan 2001 | B1 |
6189870 | Withall | Feb 2001 | B1 |
6238598 | Chen | May 2001 | B1 |
6256454 | Dykes | Jul 2001 | B1 |
6311958 | Stanek | Nov 2001 | B1 |
6349722 | Gradon et al. | Feb 2002 | B1 |
6367472 | Koch | Apr 2002 | B1 |
6394084 | Nitta | May 2002 | B1 |
6397841 | Kenyon et al. | Jun 2002 | B1 |
6397846 | Skog et al. | Jun 2002 | B1 |
6398197 | Dickinson et al. | Jun 2002 | B1 |
6435180 | Hewson et al. | Aug 2002 | B1 |
6440512 | Thomas et al. | Aug 2002 | B1 |
6463925 | Nuckols et al. | Oct 2002 | B2 |
6474335 | Lammers | Nov 2002 | B1 |
6543412 | Amou et al. | Apr 2003 | B2 |
6564011 | Janoff et al. | May 2003 | B1 |
6694974 | George-Gradon et al. | Feb 2004 | B1 |
6718974 | Moberg | Apr 2004 | B1 |
6816669 | Zimmer et al. | Nov 2004 | B2 |
6918389 | Seakins et al. | Jul 2005 | B2 |
7096864 | Mayer et al. | Aug 2006 | B1 |
7111624 | Thudor et al. | Sep 2006 | B2 |
7120354 | Mackie et al. | Oct 2006 | B2 |
7131842 | Hollingsworth et al. | Nov 2006 | B2 |
7327949 | Cheng et al. | Feb 2008 | B1 |
7364140 | Lipscombe et al. | Apr 2008 | B2 |
7453043 | Park et al. | Nov 2008 | B2 |
7588029 | Smith et al. | Sep 2009 | B2 |
8091547 | Thudor et al. | Jan 2012 | B2 |
8245710 | Makinson et al. | Aug 2012 | B2 |
20010050080 | Seakins et al. | Dec 2001 | A1 |
20020124847 | Smith et al. | Sep 2002 | A1 |
20020186966 | Zimmer et al. | Dec 2002 | A1 |
20030059213 | Mackie et al. | Mar 2003 | A1 |
20050053908 | Satheesh et al. | Mar 2005 | A1 |
20090035733 | Meitar et al. | Feb 2009 | A1 |
20100190143 | Gal et al. | Jul 2010 | A1 |
20100291528 | Huerta | Nov 2010 | A1 |
20110167013 | Pogue et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
36 29 353 | Jan 1988 | DE |
40 34 611 | May 1992 | DE |
33 11 811 | Oct 1994 | DE |
94 09 231.1 | Dec 1994 | DE |
0 258 928 | Sep 1988 | EP |
0356000 | Feb 1990 | EP |
0 481 459 | Apr 1992 | EP |
0 556 561 | Aug 1993 | EP |
0616166 | Sep 1994 | EP |
0 672 430 | Sep 1995 | EP |
0 885 623 | Dec 1998 | EP |
1 138 341 | Oct 2001 | EP |
1 167 551 | Oct 1969 | GB |
2 277 689 | Nov 1994 | GB |
05-317428 | Dec 1993 | JP |
08-061731 | Mar 1996 | JP |
09-234247 | Sep 1997 | JP |
2001-129091 | May 2001 | JP |
379270 | Apr 1973 | SU |
WO 9804311 | Feb 1998 | WO |
WO 9826826 | Jun 1998 | WO |
WO 0110489 | Feb 2001 | WO |
WO 0232486 | Apr 2002 | WO |
WO 02066106 | Aug 2002 | WO |
Entry |
---|
Supplemental European Search Report; Feb. 18, 2013; 6 pages. |
Printout from www.astm.org/Standards/D1351.htm—of—ASTM—D1351—08 Standard Specification for Thermoplastic Polyethylene Insulation for Electrical Wire and Cable; Two (2) pages; Copyright 1996-2010. |
Effect of Polyethylene on Morphology and Dielectric Breakdown in EVA Blends from http://ieeexplore.ieee.org ; One (1) page; Issued date Jul. 8-13, 2007, paper appears in Solid Dielectrics, 2007 ICSD '07. IEEE International Conference. |
Number | Date | Country | |
---|---|---|---|
20120073573 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11428704 | Jul 2006 | US |
Child | 13311433 | US | |
Parent | 10246328 | Sep 2002 | US |
Child | 11428704 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09808567 | Mar 2001 | US |
Child | 10246328 | US |