All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present disclosure relates generally to devices that are implanted within the eye. More particularly, the present disclosure relates to systems, devices and methods for delivering ocular implants into the eye.
According to a draft report by The National Eye Institute (NEI) at The United States National Institutes of Health (NIH), glaucoma is now the leading cause of irreversible blindness worldwide and the second leading cause of blindness, behind cataract, in the world. Thus, the NEI draft report concludes, “it is critical that significant emphasis and resources continue to be devoted to determining the pathophysiology and management of this disease.” Glaucoma researchers have found a strong correlation between high intraocular pressure and glaucoma. For this reason, eye care professionals routinely screen patients for glaucoma by measuring intraocular pressure using a device known as a tonometer. Many modern tonometers make this measurement by blowing a sudden puff of air against the outer surface of the eye.
The eye can be conceptualized as a ball filled with fluid. There are two types of fluid inside the eye. The cavity behind the lens is filled with a viscous fluid known as vitreous humor. The cavities in front of the lens are filled with a fluid know as aqueous humor. Whenever a person views an object, he or she is viewing that object through both the vitreous humor and the aqueous humor.
Whenever a person views an object, he or she is also viewing that object through the cornea and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the anterior chamber of the eye through the trabecular meshwork and into Schlemm's canal as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the venous blood stream from Schlemm's canal and is carried along with the venous blood leaving the eye.
When the natural drainage mechanisms of the eye stop functioning properly, the pressure inside the eye begins to rise. Researchers have theorized prolonged exposure to high intraocular pressure causes damage to the optic nerve that transmits sensory information from the eye to the brain. This damage to the optic nerve results in loss of peripheral vision. As glaucoma progresses, more and more of the visual field is lost until the patient is completely blind.
In addition to drug treatments, a variety of surgical treatments for glaucoma have been performed. For example, shunts were implanted to direct aqueous humor from the anterior chamber to the extraocular vein (Lee and Scheppens, “Aqueous-venous shunt and intraocular pressure,” Investigative Ophthalmology (February 1966)). Other early glaucoma treatment implants led from the anterior chamber to a sub-conjunctival bleb (e.g., U.S. Pat. Nos. 4,968,296 and 5,180,362). Still others were shunts leading from the anterior chamber to a point just inside Schlemm's canal (Spiegel et al., “Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?” Ophthalmic Surgery and Lasers (June 1999); U.S. Pat. Nos. 6,450,984; 6,450,984).
A cannula for delivering an ocular implant into Schlemm's canal of an eye is provided, comprising a rigid curved tube adapted to extend through an anterior chamber of the eye to achieve tangential entry into Schlemm's canal, a trough portion formed by an opening extending along a distal portion of the rigid curved tube, and an asymmetric tip disposed at a distal end of the trough portion, the asymmetric tip being located at an intersection between an upper camming surface and a lower camming surface, the upper camming surface being configured to contact scleral tissue of the eye to guide the trough portion into Schlemm's canal, the lower camming surface being configured to contact a scleral spur of the eye to guide the trough portion into Schlemm's canal.
In some embodiments, the asymmetric tip is configured to not pierce the scleral tissue. In other embodiments, the asymmetric tip is configured to pierce the trabecular meshwork. In some embodiments, the asymmetric tip is formed by the upper camming surface being shorter than the lower camming surface.
In one embodiment, the rigid curved tube and the trough portion define a path for directing the ocular implant from a location outside of the eye to a location within Schlemm's canal of the eye.
In some embodiments, the asymmetric tip is sufficiently blunt to slide along an outer wall of Schlemm's canal without cutting the scleral tissue underlying the outer wall of Schlemm's canal.
In one embodiment, the asymmetric tip has an asymmetric V-shape.
In some embodiments, the cannula is shaped and dimensioned so that at least part some of the trough portion can be advanced into Schlemm's canal while a first portion of the rigid curved tube is disposed inside the anterior chamber and a second portion of the rigid curved tube is extended through an incision in the eye to a location outside of the eye.
An ocular implant and delivery system is also provided, comprising a rigid curved cannula adapted to extend through an anterior chamber of an eye to achieve tangential entry into Schlemm's canal of the eye, a trough portion formed by an opening extending along a distal portion of the rigid curved cannula, an ocular implant configured to be carried inside the rigid curved cannula and advanced distally through the rigid curved cannula and along the trough portion into Schlemm's canal, and an asymmetric tip disposed at a distal end of the trough portion, the asymmetric tip being located at an intersection between an upper camming surface and a lower camming surface, the upper camming surface being configured to contact scleral tissue of the eye to guide the trough portion into Schlemm's canal, the lower camming surface being configured to contact a scleral spur of the eye to guide the trough portion into Schlemm's canal.
In some embodiments, the asymmetric tip is configured to not pierce the scleral tissue. In other embodiments, the asymmetric tip is configured to pierce the trabecular meshwork. In some embodiments, the asymmetric tip is formed by the upper camming surface being shorter than the lower camming surface.
In one embodiment, the rigid curved tube and the trough portion define a path for directing the ocular implant from a location outside of the eye to a location within Schlemm's canal of the eye.
In some embodiments, the asymmetric tip is sufficiently blunt to slide along an outer wall of Schlemm's canal without cutting the scleral tissue underlying the outer wall of Schlemm's canal.
In one embodiment, the asymmetric tip has an asymmetric V-shape.
In some embodiments, the cannula is shaped and dimensioned so that at least part some of the trough portion can be advanced into Schlemm's canal while a first portion of the rigid curved tube is disposed inside the anterior chamber and a second portion of the rigid curved tube is extended through an incision in the eye to a location outside of the eye.
In some embodiments, the rigid curved cannula and the trough portion define a path for directing the ocular implant from a location outside of the eye to a location within Schlemm's canal of the eye.
In another embodiment, the asymmetric tip is sufficiently blunt to slide along an outer wall of Schlemm's canal without cutting the scleral tissue underlying the outer wall of Schlemm's canal.
In some embodiments, the asymmetric tip has an asymmetric V-shape.
In another embodiment, the rigid curved cannula is shaped and dimensioned so that at least part some of the trough portion can be advanced into Schlemm's canal while a first portion of the rigid curved cannula is disposed inside the anterior chamber and a second portion of the rigid curved cannula is extended through an incision in the eye to a location outside of the eye.
A cannula for delivering an ocular implant into Schlemm's canal of an eye is also provided, comprising a rigid body having a distal curved portion adapted to gain tangential entry into Schlemm's canal, a lumen extending from a proximal end of the body through at least part of the distal curved portion, the lumen being adapted to contain the ocular implant, a trough formed in the distal curved portion, the trough being defined by an opening along the body that provides access to a concave inner surface, and a distal tip at a distal end of the trough, the distal tip being in a position offset from a central axis of the trough.
In some embodiments, the distal tip is formed at an intersection between an upper camming surface and a lower camming surface. In one embodiment, the upper camming surface is smaller than the lower camming surface.
In some embodiments, the distal tip is sufficiently blunt to slide along an outer wall of Schlemm's canal without cutting scleral tissue underlying the outer wall of Schlemm's canal.
A method of inserting an ocular implant into Schlemm's canal of an eye is provided, the method comprising inserting a curved cannula having a distal trough portion through an anterior chamber of the eye to gain tangential entry of the trough portion into Schlemm's canal, allowing an upper camming surface of a distal tip of the distal trough portion to contact scleral tissue of the eye to guide the distal trough portion into Schlemm's canal, allowing a lower camming surface of the distal tip of the distal trough portion to contact a scleral spur of the eye to guide the distal trough portion into Schlemm's canal, and advancing an ocular implant through the curved cannula and along the distal trough portion into Schlemm's canal.
In some embodiments of the cannulas described herein, a diameter of the rigid curved tube is larger than a width of Schlemm's canal. In one embodiment, the diameter of the rigid curved tube is approximately 400-500 microns. In another embodiment, the diameter of the rigid curved tube is approximately 350-550 microns.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
During the procedure illustrated in
Methods in accordance with this detailed description may include the step of advancing the distal end of cannula 72 through the cornea of eye 20 so that a distal portion of cannula 72 is disposed in the anterior chamber of the eye. Cannula 72 may then be used to access Schlemm's canal of the eye, for example, by piercing the wall of Schlemm's canal with the distal end of cannula 72. Distal opening 74 of cannula 72 may be placed in fluid communication with a lumen defined by Schlemm's canal. An ocular implant carried by the cannula may be advanced out of distal opening 74 and into Schlemm's canal. Insertion of the ocular implant into Schlemm's canal may facilitate the flow of aqueous humor out of the anterior chamber of the eye. Examples of ocular implants that may be delivered through the cannula of this invention may be found, e.g., in U.S. Pat. Nos. 7,740,604; 8,267,882; 8,425,449; US Patent Publ. No. 2009/0082860; and US Patent Publ. No. 2009/0082862.
In the embodiment of
Eye 20 includes an iris 30 that defines a pupil 32 of the eye. Schlemm's canal SC forms a ring around iris 30 with pupil 32 disposed in the center of that ring. Schlemm's canal SC has a first major side 50, a second major side 52, a first minor side 54, and a second minor side 56. First major side 50 is on the outside of the ring formed by Schlemm's canal SC and second major side 52 is on the inside of the ring formed by Schlemm's canal SC. Accordingly, first major side 50 may be referred to as an outer major side of Schlemm's canal SC and second major side 52 may be referred to as an inner major side of Schlemm's canal SC. With particular reference to
The ocular implants referenced above are intended to reside partially or wholly within Schlemm's canal. One function of the cannula is to deliver a leading edge of the ocular implant into Schlemm's canal so that the ocular implant can be advanced circumferentially into Schlemm's canal. The cannula of this invention provides features to help the user guide the distal end of the cannula into Schlemm's canal. These cannula features take advantage of the shapes and properties of the various tissue structures of and around Schlemm's canal to achieve this goal.
When inserting a cannula through the anterior chamber and the trabecular meshwork into Schlemm's canal under gonio lens visualization, the physician may use anatomical landmarks to guide the cannula placement and advancement. One convenient landmark is scleral spur 80 which has the appearance of a white line encircling the anterior chamber AC. Another convenient landmark is a pigment line centered on Schlemm's canal SC. An additional convenient landmark is Schwalbe's line 82.
An ocular implant residing in Schlemm's canal of a cadaveric eye can be seen in
Whenever a person views an object, he or she is viewing that object through the cornea, the aqueous humor, and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.
In the illustration of
A method in accordance with this detailed description may include the step of advancing a distal portion of a cannula into the anterior chamber of the eye. The cannula may then be used to access Schlemm's canal, for example, by piercing the wall of Schlemm's canal with the distal end of the cannula. An ocular implant may be advanced out of the distal opening of the cannula and into Schlemm's canal. A path 94 taken by an ocular implant as it follows Schlemm's canal along surface 92 is illustrated using a row of dots in
Scleral tissue above the trabecular meshwork, and the scleral spur below the trabecular meshwork, are harder than the meshwork tissue. If the physician advances the cannula's distal tip against the scleral tissue above the canal, the angle of the scleral tissue with respect to the approach angle of the cannula, as well as the hardness of that tissue, will tend to guide the cannula tip downward toward and into the meshwork. This effect can be enhanced if the cannula's distal tip is sharp enough to easily penetrate the meshwork but not sharp enough to easily pierce scleral tissue. If, on the other hand, the physician advances the cannula's distal tip onto the scleral spur below the meshwork, the cannula is likely to miss the meshwork and Schlemm's canal altogether.
Likewise, as the ocular implant advances into Schlemm's canal, the ocular implant may press against the scleral tissue supporting the outer major wall of Schlemm's canal and the scleral tissue of the dome-shaped wall that defines the anterior chamber of the eye. As the body of the ocular implant presses against the dome-shaped wall of the eye, the dome-shaped wall provides support for Schlemm's canal and the ocular implant. The support provided by the dome-shaped wall may be represented by force vectors. The direction of these force vectors may be at right angles to points on the spherical surface that defines the anterior chamber. Accordingly, the outer major wall of Schlemm's canal may be supported by the dome shaped wall as the ocular implant advances circumferentially into Schlemm's canal.
During delivery, it is desirable that the ocular implant follow the lumen of Schlemm's canal as it is advanced out the distal opening of the cannula. The ability of the ocular implant to be advanced into and follow the lumen of Schlemm's canal may be referred to as trackability. Characteristics of an ocular implant that effect trackability include axial pushability and lateral flexibility. Axial pushability generally concerns the ability of an ocular implant to transmit to the distal end of the ocular implant an axial force applied to the proximal end of the ocular implant. Lateral flexibility concerns the ease with which the ocular implant body can bend to conform to the shape of the lumen. Trackability may be adversely affected when twisting forces are applied to a curved body. For example, twisting the body of a curved ocular implant about its longitudinal axis may cause the curved body to steer away from a desired path.
A path 94 taken by an ocular implant as it follows Schlemm's canal along surface 92 is illustrated using a row of dots in
Some embodiments include an ocular implant delivery cannula with a distal tip that is offset from the longitudinal center line of the cannula. This arrangement facilitates the intuitive use of anatomical landmarks that can be easy observed using gonioscopic visualization. When the body of the cannula is generally centered on Schlemm's canal, the tip portion of the cannula will pierce the trabecular meshwork and the wall of Schlemm's canal at a point slightly above the center of Schlemm's canal. The offset distal tip also provides the distal end of the cannula with a lower camming surface for guiding the cannula distal end over the scleral spur and an optional upper camming surface for guiding the cannula distal end into Schlemm's canal when the cannula has a diameter larger than a width of Schlemm's canal. The camming surfaces are configured to direct the cannula into Schlemm's canal when the cannula is wider or oversized with respect to a width of the canal.
In
Referring still to
As shown in
In
Body member 120 also includes a trough portion 140 extending between distal tip 128 and tubular portion 130. Trough portion 140 is configured to fluidly communicates with a lumen 144 defined by tubular portion 130 and a distal opening 142 defined by tip portion 132. Because of the offset position of distal tip 128, tip portion 132 is asymmetric about medial plane 122 and trough portion 140 is symmetric about medial plane 124.
Section 146A of
As shown in
Referring to
In
In
In
In
As tip portion 132 is inserted into Schlemm's canal, inner major wall 52 of Schlemm's canal rides along a first leading edge of tip portion 132. The insertion of tip portion 132 into Schlemm's canal SC causes inner major wall 52 to separate from outer major wall 50. The changing shape of Schlemm's canal is illustrated with a plurality of Schlemm's canal profiles shown using dashed lines in
In the embodiment of
While embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.
This application claims the benefit under 35 U.S.C. § 119 of U.S. Patent Appl. No. 61/730,895, filed Nov. 28, 2012, the entirety of which is incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/072001 | 11/26/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/085450 | 6/5/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
703296 | Arnold | Jun 1902 | A |
1601709 | Windom | Oct 1926 | A |
2716983 | George et al. | Sep 1955 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3811442 | Maroth | May 1974 | A |
3948271 | Akiyama | Apr 1976 | A |
4037604 | Newkirk | Jul 1977 | A |
4134405 | Smit | Jan 1979 | A |
4428746 | Mendez | Jan 1984 | A |
4457757 | Molteno | Jul 1984 | A |
4601713 | Fuquo | Jul 1986 | A |
4604087 | Joseph | Aug 1986 | A |
4689040 | Thompson | Aug 1987 | A |
4699140 | Holmes et al. | Oct 1987 | A |
4706669 | Schlegel | Nov 1987 | A |
4722724 | Schocket | Feb 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4826478 | Schocket | May 1989 | A |
4861341 | Woodburn | Aug 1989 | A |
4880000 | Holmes et al. | Nov 1989 | A |
4886488 | White | Dec 1989 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4934363 | Smith et al. | Jun 1990 | A |
4934809 | Volk | Jun 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5190552 | Kelman | Mar 1993 | A |
5213569 | Davis | May 1993 | A |
5246452 | Sinnott | Sep 1993 | A |
5290267 | Zimmermann | Mar 1994 | A |
5360399 | Stegmann | Nov 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5445637 | Bretton | Aug 1995 | A |
5454796 | Krupin | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5536259 | Utterberg | Jul 1996 | A |
5575780 | Saito | Nov 1996 | A |
5591223 | Lock et al. | Jan 1997 | A |
5613972 | Lee et al. | Mar 1997 | A |
5626558 | Suson | May 1997 | A |
5653753 | Brady et al. | Aug 1997 | A |
5676669 | Colvard | Oct 1997 | A |
5792099 | DeCamp et al. | Aug 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5865831 | Cozean et al. | Feb 1999 | A |
5868697 | Richter et al. | Feb 1999 | A |
5879319 | Pynson et al. | Mar 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5919171 | Kira et al. | Jul 1999 | A |
5948427 | Yamamoto et al. | Sep 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6050970 | Baerveldt | Apr 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6186974 | Allan et al. | Feb 2001 | B1 |
6217584 | Nun | Apr 2001 | B1 |
6221078 | Bylsma | Apr 2001 | B1 |
6238409 | Hojeibane | May 2001 | B1 |
6241721 | Cozean et al. | Jun 2001 | B1 |
D444874 | Haffner et al. | Jul 2001 | S |
6328747 | Nun | Dec 2001 | B1 |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6409752 | Boatman et al. | Jun 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6494857 | Neuhann | Dec 2002 | B1 |
6508779 | Suson | Jan 2003 | B1 |
6517523 | Kaneko et al. | Feb 2003 | B1 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6533764 | Haffner et al. | Mar 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6544208 | Ethier et al. | Apr 2003 | B2 |
6544249 | Yu et al. | Apr 2003 | B1 |
6551289 | Higuchi et al. | Apr 2003 | B1 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6699210 | Williams et al. | Mar 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6702790 | Ross | Mar 2004 | B1 |
6726676 | Stegmann et al. | Apr 2004 | B2 |
D490152 | Myall et al. | May 2004 | S |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6881198 | Brown | Apr 2005 | B2 |
6899717 | Weber et al. | May 2005 | B2 |
6939298 | Brown et al. | Sep 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6962573 | Wilcox | Nov 2005 | B1 |
6981958 | Gharib et al. | Jan 2006 | B1 |
6989007 | Shadduck | Jan 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7163543 | Smedley et al. | Jan 2007 | B2 |
7186232 | Smedley et al. | Mar 2007 | B1 |
7192412 | Zhou et al. | Mar 2007 | B1 |
7207965 | Simon | Apr 2007 | B2 |
7207980 | Christian et al. | Apr 2007 | B2 |
7220238 | Lynch et al. | May 2007 | B2 |
7273475 | Tu et al. | Sep 2007 | B2 |
7297130 | Bergheim et al. | Nov 2007 | B2 |
7331984 | Tu et al. | Feb 2008 | B2 |
7488303 | Haffner et al. | Feb 2009 | B1 |
7699882 | Stamper et al. | Apr 2010 | B2 |
7740604 | Schieber et al. | Jun 2010 | B2 |
7931596 | Rachlin et al. | Apr 2011 | B2 |
7967772 | McKenzie et al. | Jun 2011 | B2 |
8012115 | Karageozian | Sep 2011 | B2 |
8123729 | Yamamoto et al. | Feb 2012 | B2 |
8172899 | Silvestrini et al. | May 2012 | B2 |
8267882 | Euteneuer et al. | Sep 2012 | B2 |
8282592 | Schieber et al. | Oct 2012 | B2 |
8308701 | Horvath et al. | Nov 2012 | B2 |
8337509 | Schieber et al. | Dec 2012 | B2 |
8372026 | Schieber et al. | Feb 2013 | B2 |
8414518 | Schieber et al. | Apr 2013 | B2 |
8425449 | Wardle et al. | Apr 2013 | B2 |
8512404 | Frion et al. | Aug 2013 | B2 |
8529494 | Euteneuer et al. | Sep 2013 | B2 |
8551166 | Schieber et al. | Oct 2013 | B2 |
8629161 | Mizuno et al. | Jan 2014 | B2 |
8636647 | Silvestrini et al. | Jan 2014 | B2 |
8647659 | Robinson et al. | Feb 2014 | B2 |
8657776 | Wardle et al. | Feb 2014 | B2 |
8663150 | Wardle et al. | Mar 2014 | B2 |
8663303 | Horvath et al. | Mar 2014 | B2 |
8734377 | Schieber et al. | May 2014 | B2 |
8808222 | Schieber et al. | Aug 2014 | B2 |
8939906 | Huang et al. | Jan 2015 | B2 |
8939948 | De Juan, Jr. et al. | Jan 2015 | B2 |
8945038 | Yablonski | Feb 2015 | B2 |
8951221 | Stegmann et al. | Feb 2015 | B2 |
8961447 | Schieber et al. | Feb 2015 | B2 |
8974511 | Horvath et al. | Mar 2015 | B2 |
9039650 | Schieber et al. | May 2015 | B2 |
9050169 | Schieber et al. | Jun 2015 | B2 |
9066750 | Wardle et al. | Jun 2015 | B2 |
9066783 | Euteneuer et al. | Jun 2015 | B2 |
9301875 | Tu et al. | Apr 2016 | B2 |
9636254 | Yu et al. | May 2017 | B2 |
9642746 | Berlin | May 2017 | B2 |
9693901 | Horvath et al. | Jul 2017 | B2 |
9730638 | Haffner et al. | Aug 2017 | B2 |
9757276 | Penhasi | Sep 2017 | B2 |
9775729 | McClain et al. | Oct 2017 | B2 |
9782293 | Doci | Oct 2017 | B2 |
9788999 | Schaller | Oct 2017 | B2 |
9795503 | Perez Grossmann | Oct 2017 | B2 |
9808373 | Horvath et al. | Nov 2017 | B2 |
20010002438 | Sepetka et al. | May 2001 | A1 |
20020003546 | Mochimaru et al. | Jan 2002 | A1 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020052653 | Durgin | May 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20020165504 | Sharp et al. | Nov 2002 | A1 |
20020193805 | Ott et al. | Dec 2002 | A1 |
20030004457 | Andersson | Jan 2003 | A1 |
20030040754 | Mitchell et al. | Feb 2003 | A1 |
20030055372 | Lynch et al. | Mar 2003 | A1 |
20030060748 | Baikoff | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030060784 | Hilgers et al. | Mar 2003 | A1 |
20030093084 | Nissan et al. | May 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030125351 | Azuma et al. | Jul 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040024453 | Castillejos | Feb 2004 | A1 |
20040030302 | Kamata et al. | Feb 2004 | A1 |
20040082939 | Berlin | Apr 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040098124 | Freeman et al. | May 2004 | A1 |
20040102729 | Haffner et al. | May 2004 | A1 |
20040106975 | Solovay et al. | Jun 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040122380 | Utterberg | Jun 2004 | A1 |
20040127843 | Tu et al. | Jul 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040193095 | Shadduck | Sep 2004 | A1 |
20040193262 | Shadduck | Sep 2004 | A1 |
20040199171 | Akahoshi | Oct 2004 | A1 |
20040210181 | Vass et al. | Oct 2004 | A1 |
20040210185 | Tu et al. | Oct 2004 | A1 |
20040216749 | Tu | Nov 2004 | A1 |
20040225357 | Worst et al. | Nov 2004 | A1 |
20040249333 | Bergheim et al. | Dec 2004 | A1 |
20040254517 | Quiroz-Mercado et al. | Dec 2004 | A1 |
20040254519 | Tu et al. | Dec 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20040260228 | Lynch et al. | Dec 2004 | A1 |
20050041200 | Rich | Feb 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050090806 | Lynch et al. | Apr 2005 | A1 |
20050090807 | Lynch et al. | Apr 2005 | A1 |
20050101967 | Weber et al. | May 2005 | A1 |
20050107734 | Coroneo | May 2005 | A1 |
20050119601 | Lynch et al. | Jun 2005 | A9 |
20050119636 | Haffner et al. | Jun 2005 | A1 |
20050125003 | Pinchuk et al. | Jun 2005 | A1 |
20050131514 | Hijlkema et al. | Jun 2005 | A1 |
20050149114 | Cartledge et al. | Jul 2005 | A1 |
20050154443 | Linder et al. | Jul 2005 | A1 |
20050165385 | Simon | Jul 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20050197667 | Chan et al. | Sep 2005 | A1 |
20050203542 | Weber et al. | Sep 2005 | A1 |
20050209549 | Bergheim et al. | Sep 2005 | A1 |
20050209550 | Bergheim et al. | Sep 2005 | A1 |
20050244464 | Hughes | Nov 2005 | A1 |
20050250788 | Tu et al. | Nov 2005 | A1 |
20050260186 | Bookbinder et al. | Nov 2005 | A1 |
20050266047 | Tu et al. | Dec 2005 | A1 |
20050271704 | Tu et al. | Dec 2005 | A1 |
20050273033 | Grahn et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050288619 | Gharib et al. | Dec 2005 | A1 |
20050288745 | Andersen et al. | Dec 2005 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060032507 | Tu | Feb 2006 | A1 |
20060052879 | Kolb | Mar 2006 | A1 |
20060069340 | Simon | Mar 2006 | A1 |
20060074375 | Bergheim et al. | Apr 2006 | A1 |
20060079828 | Brown | Apr 2006 | A1 |
20060084907 | Bergheim et al. | Apr 2006 | A1 |
20060106370 | Baerveldt et al. | May 2006 | A1 |
20060116626 | Smedley et al. | Jun 2006 | A1 |
20060149194 | Conston et al. | Jul 2006 | A1 |
20060154981 | Klimko et al. | Jul 2006 | A1 |
20060155238 | Shields | Jul 2006 | A1 |
20060155300 | Stamper et al. | Jul 2006 | A1 |
20060167421 | Quinn | Jul 2006 | A1 |
20060167466 | Dusek | Jul 2006 | A1 |
20060173397 | Tu et al. | Aug 2006 | A1 |
20060178674 | McIntyre | Aug 2006 | A1 |
20060189915 | Camras et al. | Aug 2006 | A1 |
20060189916 | Bas et al. | Aug 2006 | A1 |
20060189917 | Mayr et al. | Aug 2006 | A1 |
20060195055 | Bergheim et al. | Aug 2006 | A1 |
20060195056 | Bergheim et al. | Aug 2006 | A1 |
20060195187 | Stegmann et al. | Aug 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20060241749 | Tu et al. | Oct 2006 | A1 |
20060264971 | Akahoshi | Nov 2006 | A1 |
20060276759 | Kinast et al. | Dec 2006 | A1 |
20070010827 | Tu et al. | Jan 2007 | A1 |
20070021725 | Villette | Jan 2007 | A1 |
20070027452 | Varner et al. | Feb 2007 | A1 |
20070073275 | Conston et al. | Mar 2007 | A1 |
20070088432 | Solovay et al. | Apr 2007 | A1 |
20070106200 | Levy | May 2007 | A1 |
20070106236 | Coroneo | May 2007 | A1 |
20070112292 | Tu et al. | May 2007 | A1 |
20070118147 | Smedley et al. | May 2007 | A1 |
20070135681 | Chin et al. | Jun 2007 | A1 |
20070179520 | West | Aug 2007 | A1 |
20070191863 | De Juan, Jr. et al. | Aug 2007 | A1 |
20070202186 | Yamamoto et al. | Aug 2007 | A1 |
20070219509 | Tashiro et al. | Sep 2007 | A1 |
20070265582 | Kaplan et al. | Nov 2007 | A1 |
20070270945 | Kobayashi et al. | Nov 2007 | A1 |
20070276315 | Haffner et al. | Nov 2007 | A1 |
20070276316 | Haffner et al. | Nov 2007 | A1 |
20070282244 | Tu et al. | Dec 2007 | A1 |
20070282245 | Tu et al. | Dec 2007 | A1 |
20070293807 | Lynch et al. | Dec 2007 | A1 |
20070293872 | Peyman | Dec 2007 | A1 |
20070298068 | Badawi et al. | Dec 2007 | A1 |
20080015488 | Tu et al. | Jan 2008 | A1 |
20080045878 | Bergheim et al. | Feb 2008 | A1 |
20080058704 | Hee et al. | Mar 2008 | A1 |
20080228127 | Burns et al. | Sep 2008 | A1 |
20080288082 | Deal | Nov 2008 | A1 |
20080312661 | Downer et al. | Dec 2008 | A1 |
20090005852 | Gittings et al. | Jan 2009 | A1 |
20090028953 | Yamamoto et al. | Jan 2009 | A1 |
20090030363 | Gellman | Jan 2009 | A1 |
20090030381 | Lind et al. | Jan 2009 | A1 |
20090036843 | Erskine | Feb 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090054723 | Khairkhahan et al. | Feb 2009 | A1 |
20090069786 | Vesely et al. | Mar 2009 | A1 |
20090082862 | Schieber et al. | Mar 2009 | A1 |
20090104248 | Rapacki et al. | Apr 2009 | A1 |
20090138081 | Bergheim et al. | May 2009 | A1 |
20090182421 | Silvestrini et al. | Jul 2009 | A1 |
20090198248 | Yeung et al. | Aug 2009 | A1 |
20090204053 | Nissan et al. | Aug 2009 | A1 |
20090247955 | Yamamoto et al. | Oct 2009 | A1 |
20090259126 | Saal et al. | Oct 2009 | A1 |
20090281520 | Highley et al. | Nov 2009 | A1 |
20100004580 | Lynch et al. | Jan 2010 | A1 |
20100057072 | Roman et al. | Mar 2010 | A1 |
20100114309 | de Juan et al. | May 2010 | A1 |
20100121342 | Schieber | May 2010 | A1 |
20100137981 | Silvestrini et al. | Jun 2010 | A1 |
20100173866 | Hee et al. | Jul 2010 | A1 |
20100191176 | Ho et al. | Jul 2010 | A1 |
20100191177 | Chang et al. | Jul 2010 | A1 |
20100234726 | Sirimanne et al. | Sep 2010 | A1 |
20100234790 | Tu et al. | Sep 2010 | A1 |
20100262174 | Sretavan et al. | Oct 2010 | A1 |
20100274258 | Silvestrini | Oct 2010 | A1 |
20110009874 | Wardle et al. | Jan 2011 | A1 |
20110098809 | Wardle et al. | Apr 2011 | A1 |
20110196487 | Badawi et al. | Aug 2011 | A1 |
20110218523 | Robl | Sep 2011 | A1 |
20110224597 | Stegmann et al. | Sep 2011 | A1 |
20110319806 | Wardle | Dec 2011 | A1 |
20120010702 | Stegmann et al. | Jan 2012 | A1 |
20120022424 | Yamamoto et al. | Jan 2012 | A1 |
20120035524 | Silvestrini | Feb 2012 | A1 |
20120191064 | Conston et al. | Jul 2012 | A1 |
20120271272 | Hammack et al. | Oct 2012 | A1 |
20130023837 | Becker | Jan 2013 | A1 |
20130150959 | Schieber et al. | Jun 2013 | A1 |
20130182223 | Wardle et al. | Jul 2013 | A1 |
20130184631 | Pinchuk | Jul 2013 | A1 |
20130231603 | Wardle et al. | Sep 2013 | A1 |
20130253402 | Badawi et al. | Sep 2013 | A1 |
20130253403 | Badawi et al. | Sep 2013 | A1 |
20130253437 | Badawi et al. | Sep 2013 | A1 |
20130253438 | Badawi et al. | Sep 2013 | A1 |
20130253528 | Haffner et al. | Sep 2013 | A1 |
20130267887 | Kahook et al. | Oct 2013 | A1 |
20130281907 | Wardle et al. | Oct 2013 | A1 |
20130281908 | Schaller et al. | Oct 2013 | A1 |
20140018720 | Horvath et al. | Jan 2014 | A1 |
20140066821 | Freidland et al. | Mar 2014 | A1 |
20140066831 | Silvestrini et al. | Mar 2014 | A1 |
20140081195 | Clauson et al. | Mar 2014 | A1 |
20140114229 | Wardle et al. | Apr 2014 | A1 |
20140249463 | Wardle et al. | Sep 2014 | A1 |
20150018746 | Hattenbach | Jan 2015 | A1 |
20150022780 | John et al. | Jan 2015 | A1 |
20150038893 | Haffner et al. | Feb 2015 | A1 |
20150045714 | Horvath et al. | Feb 2015 | A1 |
20150057583 | Gunn et al. | Feb 2015 | A1 |
20150057591 | Horvath et al. | Feb 2015 | A1 |
20150065940 | Rangel-Friedman et al. | Mar 2015 | A1 |
20150080783 | Berlin | Mar 2015 | A1 |
20150119787 | Wardle et al. | Apr 2015 | A1 |
20160051406 | Wardle et al. | Feb 2016 | A1 |
20170143541 | Badawi et al. | May 2017 | A1 |
20170172794 | Varner et al. | Jun 2017 | A1 |
20170172795 | Lerner | Jun 2017 | A1 |
20170172797 | Horvath et al. | Jun 2017 | A1 |
20170172798 | Horvath et al. | Jun 2017 | A1 |
20170172799 | Horvath | Jun 2017 | A1 |
20170172800 | Romoda et al. | Jun 2017 | A1 |
20170202708 | Berlin | Jul 2017 | A1 |
20170239272 | Anibati et al. | Aug 2017 | A1 |
20170281409 | Haffner et al. | Oct 2017 | A1 |
20170290705 | Wardle et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
199876197 | Feb 1999 | AU |
1950091 | Apr 2007 | CN |
4226476 | Aug 1993 | DE |
0168201 | Jun 1988 | EP |
0957949 | Nov 1996 | EP |
0766544 | May 1998 | EP |
1615604 | Aug 2009 | EP |
2193821 | Jun 2010 | EP |
1715827 | Dec 2010 | EP |
2380622 | Oct 2011 | EP |
2468327 | Jun 2012 | EP |
2471563 | Jul 2012 | EP |
1833440 | Aug 2012 | EP |
2996648 | Jun 2017 | EP |
1732484 | Aug 2017 | EP |
1740153 | Aug 2017 | EP |
3205333 | Aug 2017 | EP |
H10-504978 | May 1998 | JP |
11123205 | May 1999 | JP |
2002542872 | Dec 2002 | JP |
2006517848 | Aug 2006 | JP |
2006289075 | Oct 2006 | JP |
2010509003 | Mar 2010 | JP |
2011502649 | Jan 2011 | JP |
WO 0007525 | Feb 2000 | WO |
WO 0064389 | Nov 2000 | WO |
WO 0064393 | Nov 2000 | WO |
WO 0197727 | Dec 2001 | WO |
WO 0236052 | May 2002 | WO |
WO 02074052 | Sep 2002 | WO |
WO 02080811 | Oct 2002 | WO |
WO 03015659 | Feb 2003 | WO |
WO 03045290 | Jun 2003 | WO |
WO 2004054643 | Jul 2004 | WO |
WO 2004093761 | Nov 2004 | WO |
WO 2005105197 | Nov 2005 | WO |
WO 2006066103 | Jun 2006 | WO |
WO 2007035356 | Mar 2007 | WO |
WO 2007047744 | Apr 2007 | WO |
WO 2007087061 | Aug 2007 | WO |
WO 2008002377 | Jan 2008 | WO |
WO 2008005873 | Jan 2008 | WO |
WO 2009120960 | Oct 2009 | WO |
WO 2011053512 | May 2011 | WO |
WO 2011057283 | May 2011 | WO |
WO 2011106781 | Sep 2011 | WO |
WO 2011150045 | Dec 2011 | WO |
WO 2012051575 | Apr 2012 | WO |
WO 2013147978 | Oct 2013 | WO |
Entry |
---|
Gulati et al; A novel 8-mm schlemm's canal scaffold reduces outflow resistance in a human anterior segment perfusion model; Invest. Ophthalmol. Vis. Sci.; 54(3); pp. 1698-1704; Mar. 5, 2013. |
Camras et al.; A novel schlemm's canal scaffold increases outflow facility in a human anterior segment perfusion model; Invest. Opthalmol. Vis. Sci. ; 53(10); pp. 6115-6121; Sep. 1, 2012. |
Schieber et al.; U.S. Appl. No. 15/012,544 entitled “Methods and devices for increasing aqueous humor outflow,” filed Feb. 1, 2016. |
Wardle et al.; U.S. Appl. No. 15/150,175 entitled “Ocular implants for delivery into an anterior chamber of the eye,” filed May 9, 2016. |
Wardle et al.; U.S. Appl. No. 14/363,409 entitled “Delivering ocular implants into the eye,” filed Jun. 6, 2014. |
Schieber et al.; U.S. Appl. No. 14/691,267 entitled “Ocular implants with asymmetric flexibility,” filed Apr. 20, 2015. |
Schieber et al.; U.S. Appl. No. 14/692,442 entitled “Methods and apparatus for delivering ocular implants into the eye,” filed Apr. 21, 2015. |
Schieber et al.; U.S. Appl. No. 14/693,582 entitled “Methods and apparatus for delivering ocular implants into the eye,” filed Apr. 22, 2015. |
Euteneuer et al.; U.S. Appl. No. 14/717,744 entitled “Methods and apparatus for treating glaucoma,” filed May 20, 2015. |
Bahler, et al.; Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments; Amer. Journal of Ophthalmology; vol. 138, No. 6; pp. 988-994.e2; Dec. 2004. |
D'Ermo, et al.; Our results with the operation of ab externo trabeculotomy; Ophthalmologica; vol. 163; pp. 347-355; Feb. 1971. |
Ellingsen et al.; Trabeculotomy and sinusotomy in enucleated human eyes; Investigative Ophthalmology; vol. 11; pp. 21-28; Jan. 1972. |
Grant; Experimental aqueous perfusion in enucleated human eyes; Archives of Ophthalmology; vol. 69; pp. 783-801; Jun. 1963. |
Johnstone et al.; “Microsurgery of Schlemm's Canal and the Human Aqueous Outflow System;” American Journal of Ophthalmology, vol. 76 (6): 906-917; Dec. 1973. |
Lee et al.; Aqueous-venous shunt and intraocular pressure. Preliminary report of animal studies; Investigative Ophthalmology; vol. 5; No. 1; pp. 59-64; Feb. 1966. |
Lynch, Mary G.; U.S. Appl. No. 60/131,030 entitled “Devices and methods for treating glaucoma by enhancing aqueous outflow through schlemm's canal and anterior chamber angle ,” filed Apr. 26, 1999. |
Moses, Robert; The effect of intraocular pressure on resistance to outflow; Survey of Ophthalmology; vol. 22; No. 2; pp. 88-100; Sep.-Oct. 1977. |
Maepea et al.; The pressures in the episcleral veins, schlemm's canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure; Exp. Eye Res.; vol. 49; pp. 645-663; Oct. 1989. |
Rosenquist et al.; Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy; Current Eye Res.; vol. 8; No. 12; pp. 1233-1240; Dec. 1989. |
Savage, James; Gonioscopy in the management of glaucoma; Am. Academy of Ophthalmology; Focal Points; vol. XXIV; No. 3; pp. 1-14; Mar. 2006. |
Schultz, Jared; Canaloplasty procedure shows promise for open-angle glaucoma in European study; Ocular Surgery News; vol. 34; Mar. 1, 2007. |
Smit et al.; Effects of viscoelastic injection into schlemm's canal in primate and human eyes; J. Am. Academy of Ophthalmology; vol. 109; No. 4; pp. 786-792; Apr. 2002. |
Spiegel et al.; Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?; Ophthalmic Surgery and Lasers; vol. 30; No. 6; pp. 492-494; Jun. 1999. |
Schieber et al.; U.S. Appl. No. 14/843,563 entitled “Ocular implants for delivery into the eye,” filed Sep. 2, 2015. |
Schieber; U.S. Appl. No. 15/325,628 entitled “Ocular implant delivery system and method,” filed Jan. 11, 2017. |
Kirkness et al,; The Use of Silicone Drainage Tubing to Control Post-Keratoplasty Glaucoma; Eye; 2 (pt 5); pp. 583-590; Apr. 1988. |
Molteno et al.; Long Tube Implants in the Management of Glaucoma; SA Medical Journal; 26; pp. 1062-1066; Jun. 1976. |
Molteno; New implant for drainage in glaucoma; Brit. J. Ophthal; 53; pp. 606-615; Sep. 1969. |
Schocket et al.; Anterior Chamber Tube Shunt to an Encircling Band in the Treatment of Neovascular Glaucoma and other Refractory Glaucomas; Ophthalmology; 92; pp. 553-562; Apr. 1985. |
Wilcox et al.; Hypothesis for Improving Accessory Filtration by Using Geometry; Journal of Glaucoma; 3; pp. 244-247; Fall 1994. |
Number | Date | Country | |
---|---|---|---|
20150282982 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61730895 | Nov 2012 | US |