This invention relates to a method and apparatus for treating ventricular arrhythmias; and more particularly, relates to a method and apparatus for long-term monitoring of arrhythmias, and for the delivery of acute tachyarrhythmia and bradyarrhythmia therapy using a subcutaneous stimulation device.
It has long been known to use implantable systems to protect patients that are at risk for life-threatening arrhythmias. For example, rapid heart rhythms commonly referred to as tachyarrhythmias are generally treated using implantable devices such as the Medtronic Model 7273 GEM II DR or the 7229 GEM II SR, both commercially available from the Medtronic Corporation. These systems detect the presence of tachyarrhythmia conditions by monitoring the electrical and mechanical heart activity (such as intra-myocardial pressure, blood pressure, impedance, stroke volume or heart movement) and/or the rate of the electrocardiogram. These devices require that one or more defibrillation electrodes be positioned within the atrium and/or ventricle of a patient's heart using current endocardial lead placement techniques. The use of such systems provides consistent long-term monitoring capabilities, and relatively good protection against life-threatening tachyarrhythmias.
Similarly, bradyarrhythmias, which are heart rhythms that are too slow, are generally treated using implantable pulse generators. Such devices are described in U.S. Pat. Nos. 5,158,078, 4,958,632, and 5,318,593, for example. As with devices to treat tachyarrhythmias, most implantable pulse generators that treat these types of conditions generally require leads that are implanted within one or more cardiac chambers.
Although the use of endocardial leads placed within the cardiac chambers of a patient's heart provides the capability to deliver a relatively reliable, long-term arrhythmia therapy, there are disadvantages associated with such treatments. The placement of these leads requires a relatively time-consuming, costly procedure that is not without risks to the patient including infection, the possibility of vascular perforation, and tamponade.
Moreover, some people are not candidates for endocardial leads. For example, patients with artificial mechanical tricuspid valves are generally not candidates for leads that extend from the night atrium, through this valve, to the right ventricle, as is the case with most right ventricular endocardial leads. This is because the use of such leads interfere with the proper mechanical functioning of the valves. Other patients that are not candidates for endocardial lead placement include those with occluded venous access, or patients with congenital heart defects.
Patients that are contraindicated for endocardial lead placement must often undergo a procedure to attach the lead to the external surface of the heart. This type of epicardial lead placement involves a more invasive procedure that requires a longer recovery time, makes follow-up procedures very difficult, and is also associated with increased patient risk, including an increased chance of contracting an infection.
Another problem associated with both endocardial and epicardial leads involves patient growth. More specifically, a lead placed within a child's cardiac vasculature will likely need to be re-positioned or replaced as the child matures. Such lead replacement procedures can be dangerous, especially when previously-placed leads are extracted rather than left in position within the body.
One alternative to endocardial and epicardial leads involves subcutaneously-placed electrode systems. For example, in U.S. Pat. No. RE30,372 by Mirowski, et al., a defibrillation system employs a ventricular endocardial electrode and a plate electrode mounted to the heart directly, subcutaneously, or to the skin to deliver high voltage therapy to the patient. A similar lead system disclosed in U.S. Pat. No. 5,314,430 to Bardy includes a coronary sinus/great vein electrode and a subcutaneous plate electrode located in the left pectoral region which may optionally take the form of a surface of the defibrillator housing.
What is needed, therefore, is a system and method that can provide long-term monitoring for various types of arrhythmias, provide patient therapy when needed, and also overcome the problems associated with both endocardial and epicardial lead placement.
The current invention provides a system and method for long-term monitoring for arrhythmias. The invention includes a pulse generator including means for sensing an arrhythmia. The pulse generator is coupled to at least one electrode or electrode array for providing electrical stimulation to a patient. The stimulation may include cardioversion/defibrillation shocks and/or pacing pulses. The electrical stimulation may be provided between multiple electrodes, or between one or more electrodes and the housing of the pulse generator. In one embodiment, the pulse generator includes one or more electrodes that are isolated from the can. These electrodes may be used to sense cardiac signals.
According to one embodiment of the invention, an apparatus is provided for monitoring cardiac signals of a patient. The apparatus includes a hermetically-sealed housing, sensing means included within the housing, and first and second electrode sets coupled to the sensing means. The first electrode set includes at least one electrode adjacent to a surface of the housing positionable proximate subcutaneous tissue at a first location in the patient's body. The second electrode set is coupled to a connector on the housing and forms an electrode array subcutaneously-positionable in the patient's body at a location different from the first location.
According to another embodiment of the invention, a method of therapy is provided. This method includes monitoring the patient's cardiac signals for a condition such as an arrhythmia, and hereafter delivering a electrical therapy to a patient via a subcutaneous electrode array is the condition is detected. Other aspects of the invention will become apparent from the drawings and the accompanying description.
The current invention provides a system and method for long-term monitoring for arrhythmias. The invention also provides acute therapy delivery in the event an arrhythmia episode is detected. According to one embodiment of the invention, a subcutaneous pulse generator is provided. This pulse generator may be a transthoracic Implantable Cardioversion/Defibrillator (ICD) such as the GemDR™ Model 7271 or the GEM II VR Model 7229, both commercially available from the Medtronic Corporation. The pulse generator is coupled to at least one subcutaneously-placed electrode or electrode array. Cardioversion/defibrillation pulses and/or pacing pulses may be delivered between the electrode and the can of the device, or between two subcutaneously-placed electrodes.
The primary elements of the apparatus illustrated in
Controller 106 performs all of the basic control and timing functions of the device. Controller 106 includes at least one programmable timing counter, which is used to measure timing intervals within the context of the current invention. On time out of the pacing escape interval or in response to a determination that a cardioversion, defibrillation, or pacing pulse is to be delivered, controller 106 triggers the appropriate output pulse from high-voltage output stage 108, as discussed below. In one embodiment, controller may also control the amplitude of pacing pulses, as well as the energy associated with defibrillation and cardioversion shocks.
Following generation of stimulus pulses, controller 106 may be utilized to generate corresponding interrupts on control lines 132 to microprocessor 100, allowing it to perform any required mathematical calculations, including all operations associated with evaluation of return cycle times and selection of anti-tachyarrhythmia therapies according to the present invention. The timing/counter circuit in controller 106 also may control timing intervals such as ventricular refractory periods, as is known in the art. The time intervals may be determined by programmable values stored in RAM 104, or values stored in ROM.
Controller 106 may also generate interrupts for microprocessor 100 on the occurrence of sensed ventricular depolarizations or beats. The timing and morphology of sensed cardiac waveforms may also be used by microprocessor 100 to determine whether an arrhythmia is occurring so that therapy may be delivered as discussed further below.
Output stage 108 contains a high-output pulse generator capable of generating cardioversion/defibrillation pulses. According to the current invention, these pulses may be applied between a subcutaneous electrode or electrode array coupled to terminal 134 and the can of the pulse generator. Alternatively, the pulses may be provided between an electrode coupled to terminal 134 and a second subcutaneous electrode or electrode array coupled to terminal 136. Typically the high-output pulse generator includes one or more high-voltage capacitors, a charging circuit, and a set of switches to allow delivery of monophasic or biphasic cardioversion or defibrillation pulses to the electrodes employed. Output circuit 108 may further provide pacing pulses to the heart under the control of controller 106. These pacing pulses, which may be between 0 and 10 volts in amplitude, are provided via one or more of the subcutaneously-located electrodes.
Sensing of ventricular depolarizations (beats) is accomplished by input circuit 110, which is coupled to electrode 138 and one of electrodes 140 and 142. This circuitry may include amplification, and noise detection and protection circuitry. In one embodiment, signal sensing is disabled during periods of excessive noise. Noise rejection filters and similar circuitry may also be included, as is known in the art. Input circuit 110 provides signals indicating both the occurrence of natural ventricular beats and paced ventricular beats to the controller 106 via signal lines 128. Controller 106 provides signals indicative of the occurrence of such ventricular beats to microprocessor 100 via signal lines 132, which may be in the form of interrupts. This allows the microprocessor to perform any necessary calculations or to update values stored in RAM 104.
Optionally included in the device may be one or more subcutaneously or cutaneously-positioned physiologic sensors 148, which may be any of the various known sensors for use in conjunction with implantable stimulators. Any sensor of this type known in the art may be employed within the context of the current invention. Additionally, if desired, sensors positioned within the cardiovascular system may be utilized. For example, sensor 148 may be a hemodynamic sensor such as an impedance sensor as disclosed in U.S. Pat. No. 4,86,036, issued to Chirife or a pressure sensor as disclosed in U.S. Pat. No. 5,330,505, issued to Cohen, both of which are incorporated herein by reference in their entireties. Alternatively, sensor 148 may be a demand sensor for measuring cardiac output parameters, such as an oxygen saturation sensor disclosed in U.S. Pat. No. 5,176,137, issued to Erickson et al. or a physical activity sensor as disclosed in U.S. Pat. No. 4,428,378, issued to Anderson et al., both of which are incorporated herein by reference in their entireties.
Sensor processing circuitry 146 transforms the sensor output into digitized values for use in conjunction with detection and treatment of arrhythmias. These digitized signals may be monitored by controller 106 and microprocessor 100 and used alone or in combination with sensed electrical cardiac signals to provide diagnostic information used to determine the onset of an arrhythmia or other cardiac conditions. These signals may also be used to determine an optimal time for shock delivery. For example, an impedance sensor may be used to determine when a patient has exhaled so that shock delivery may occur when the lungs are relatively deflated, since this may result in lower defibrillation thresholds (DFTs). Sensor signals may also be stored in RAM 104 for later diagnostic use.
External control of the implanted cardioverter/defibrillator is accomplished via telemetry/control block 120 that controls communication between the implanted cardioverter/pacemaker and an external device 121. Any conventional programming/telemetry circuitry is believed workable in the context of the present invention. Information may be provided to the cardioverter/pacemaker from the external device and passed to controller 106 via control lines 130. Similarly, information from the card cardioverter/pacemaker may be provided to the telemetry block 120 via control lines 130 and thereafter transferred to the external device.
In one embodiment, the external device 121 is a programmer that may be utilized to diagnose patient conditions and to provide any necessary re-programming functions. In another embodiment, the external device may be a patient interface used to provide information to, and/or receive commands from, the patient. For example, the patient interface may be an externally-worn device such as a wrist band that provides a warning to a patient concerning an impending shock. The patient may be allowed to cancel the shock if the patient believes the shock was prescribed erroneously. This may be accomplished, for example, by pushing a button, or issuing a voice command. The patient interface may provide additional information, including a warning that medical attention is required, and/or an indication concerning a low power source. If desired, the patient interface could automatically place an emergency telephone call via a wireless link, and/or could issue patient positional information via a global positioning system (GPS).
Any other system and method used for the detection and treatment of tachyarrhythmias may be incorporated within the current invention. Such systems and methods are described in U.S. Pat. Nos. 5,849,031, 5,193,535, and 5,224,475. In one embodiment the system may include “tiered therapies” for delivering treatment based on the type of arrhythmia detected by the device. According to this approach, arrhythmias are differentiated by analyzing the rate and morphology of a sensed cardiac signal. Those arrhythmias considered less dangerous such as ventricular tachycardias (VTs) may be treated by delivering a series of low-power, relatively high-rate, pacing pulses to the heart. This therapy is often referred to as anti-tachyarrhythmia pacing therapy (ATP). In contrast, more perilous arrhythmias such as ventricular fibrillations (VFs) may be treated by immediately delivering more aggressive shock therapy. This type of system is described in U.S. Pat. No. 5,193,536, issued to Mehra, U.S. Pat. No. 5,458,619 to Olson, U.S. Pat. No. 6,167,308 to DeGroot, and U.S. Pat. No. 6,178,350 to Olson, et al., all incorporated herein by reference. Within the context of the current invention, ATP therapy is delivered using one or more subcutaneous electrodes in the manner discussed below. In one embodiment of the invention, a separate electrode may be provided within a subcutaneous electrode array for delivering the ATP therapy.
According to another aspect of the inventive system, the device may include means for decreasing discomfort associated with high-voltage shocks. It is well known that high-voltage shocks are painful for the patient. This discomfort can be minimized by decreasing the amount of energy associated with the shock. One mechanism for accomplishing this involves delivering a pre-shock pulse waveform, as described in U.S. Pat. No. 5,366,485 issued to Kroll. In one embodiment, this type of waveform could be a programmable feature that is controlled by controller 106 via parameters stored in RAM 104.
In yet another embodiment of the invention, the implantable device includes a drug pump 10 as shown in
Pain control may also be accomplished by providing spinal cord stimulation (SCS). For example, the Medtronic Itrel II implantable neurostimulation system is widely implanted for treatment and alleviation of intractable pain. Clinical reports and studies have shown that SCS can reduce the discomfort associated with high-voltage shocks. This type of system may utilize a lead system of the type described in U.S. Pat. Nos. 5,119,832, 5,255,691 or 5,360,441. These leads, as well as the Medtronic Model 3487A or 3888 leads, include a plurality of spaced apart distal electrodes that are adapted to be placed in the epidural space adjacent to spinal segments T1-T6 to provide SCS stimulation for pain reduction. In this embodiment, initial detection and verification of fibrillation is followed by epidural neural stimulation to produce paraesthesia. Thereafter, a shock may be delivered. Should the cardioversion shock prove unsuccessful, the process is repeated until the cardioversion therapies prove successful or are exhausted. When successful defibrillation is confirmed, the epidural SCS stimulation is halted.
In addition to SCS therapy, other types of stimulation such as Transcutaneous Neurological Stimulators (TENs) may be provided via electrode patches placed on the surface of a patient's body. Subcutaneously-placed electrodes may also be positioned in the T1-T6 area or in other areas of the body to deliver subcutaneous electrical stimulation to reduce pain. In the context of the current invention, the subcutaneously-placed electrode arrays may include specialized electrodes to deliver the subcutaneous stimulation prior to shock delivery to reduce patient discomfort.
Turning now to a more detailed discussion of the electrode systems used with the current invention, the electrode may be of a type shown in
Electrode array 300 may include one or more sensing electrodes such as electrode 310 provided for sensing cardiac signals. This electrode may be used in a unipolar mode wherein signals are sensed between an electrode and the device housing. Alternatively, sensing may be performed between electrode 310 and one of the coil electrodes 306 or another sensing electrode.
In use, the fingers 304 of electrode array are positioned under the skin on a patient's chest, side, back, or any other point of the body as required. Insulative spacers may be located between the fingers, if desired, to prevent the coil electrodes 306A-E from shorting together. If desired, multiple such electrode arrays may be used in conjunction with the current invention. For example, one electrode array may be positioned on the chest over the left ventricle, while another electrode array is positioned behind the left ventricle on the back. Cardioversion/ defibrillation shocks or pacing pulses may be delivered between the two electrode arrays. Alternatively, electrical stimulation may be provided between one or more electrode arrays and the device housing. As noted above, sensing of the patient's cardiac signals may be performed between a subcutaneous electrode array and the device can.
The electrodes used with the current invention may be any of the electrode types now known or known in the future for subcutaneous delivery of electrical stimulation. Such electrodes may be coated with a biologically-active agent such as glucocorticolds (e.g. dexamethasone, beclamethasone), heparin, hirudin, tocopherol, angiopeptin, aspirin, ACE inhibitors, growth factors, oligonucleotides, and, more generally, antiplatelet agents, anticoagulant agents, antimitotic agents, antioxidants, antimetabolite agents, and anti-inflammatory. Such coating may be useful to prevent excessive tissue in-growth. Such electrodes may further include a low-polarization coating such as TiN. Alternatively, the electrodes may be coated with an antibiotic or other biologically-active agent used to prevent infections and inflammation.
In another embodiment, the can itself may include a subcutaneous electrode array of the type described in U.S. Pat. No. 5,331,966, which is incorporated herein by reference in its entirety. This type of array, which is provided by the Medtronic Model 926 Reveal Plus Implantable Loop Recorder, includes at least two sensing electrodes on the can for sensing of cardiac signals. In all such systems, it will be understood that the electrodes A, B, C on the surface of the housing are electrically isolated from one another and the conductive surface of the pulse generator housing 10 through suitable insulating bands and electrical feedthroughs as described in U.S. Pat. No. 4,310,000, incorporated herein by reference. Examples of possible electrode orientations and configurations of a three electrode system comprising the electrodes are set forth in
It will be appreciated that the shapes, sizes, and electrode configurations of the devices shown in
As described above, in one embodiment, the current invention provides a pulse generator coupled to one or more subcutaneous electrodes or electrode arrays. The electrodes provide electrical stimulation to a patient based on sensed cardiac signals. The sensed signals may be obtained using a selected pair of sensing electrodes, which may reside on one or more of the leads coupled to pulse generator 10, or on the device housing itself, as indicated by
Although all of the foregoing examples illustrate a housing including three electrodes, more than three electrodes may be provided. In one embodiment, four or more electrodes may be coupled or adjacent to the device, and the physician may select which of the electrodes will be activated for a given patient. In one embodiment, cardiac signals are sensed between a selected pair of the electrodes based on a signal optimization method. One embodiment of this type of method is disclosed in U.S. patent application Ser. No. 09/721,275 filed Nov. 22, 2000 and incorporated herein by reference in its entirety.
Regardless of which one or more electrodes or electrode pairs are selected for monitoring purposes, the sensed cardiac signals may be analyzed to detect the presence of an arrhythmia. The arrhythmia detection system and method could be, for example, that employed by the Medtronic Model 926 Reveal Plus device commercially available from Medtronic Corporation. Alternatively, a detection method such as described in U.S. Pat. Nos. 5,354,316 or 5,730,142 could be employed. If an arrhythmia is detected, appropriate therapy may be administered. As described above, one embodiment of the invention includes at least one subcutaneous defibrillation electrode array. If monitoring indicates the presence of a tachyarrhythmia or ventricular fibrillation, a high-voltage shock may be delivered between one or more subcutaneous defibrillation electrode(s) and a shocking surface of the can, or one or more electrodes on the can. The shock may alternatively be delivered between multiple defibrillation electrodes. The monitoring system would then determine whether the arrhythmia or fibrillation has terminated. If not, another shock will be administered. This therapy will continue until normal rhythm has been restored. In one embodiment, signals indicative of sensed cardiac waveforms may be stored in RAM 104 and later transferred to an external device via a communication system such as telemetry circuitry 120.
According to another aspect of the invention, the sensing electrodes may be placed on a surface of the can that is different from the shocking surface of the can. Preferably, the shocking surface is adjacent to muscle tissue, whereas the sensing electrodes are placed adjacent to subcutaneous tissue.
As described above, therapy for bradyarrhythmia may be provided in addition to, or instead of, the tachyarrhythmia therapy. In this embodiment, output circuit 108 includes the capability to deliver lower-voltage pulses for transthoracic pacing therapy for bradyarrhythmias, as described above in reference to
Following delivery of a pacing pulse, the output circuit begins charging in preparation for delivery of another pulse while monitoring of the cardiac signals continues. For example, monitoring of the patient's heart rate may be performed to determine whether it is less than some predetermined rate such as forty beats per minute. If so, another transthoracic, monophasic pacing pulse is delivered. This process of pulse delivery followed by charging of the output circuit is repeated until an intrinsic heart rate of greater than the predetermined minimum rate is detected.
The transthoracic pacing provided by the current invention will likely be uncomfortable for the patient. Thus, this function is not intended to provide chronic therapy. Once therapy delivery has occurred for a bradyarrhythmic episode, a more traditional device should be implanted to provide long-term therapy. In one embodiment, the device may record whether any ACC/AHA class I pacing indications has been met by the detected bradyarrhythmic event. For example, if asystole greater than three seconds and/or an escape rate less than forty beats per minute has been detected, these indications are recorded. This data may then be transferred to an external device to generate a physician notification. Other actions may be taken, such as sounding an alarm, for example.
It may be appreciated from the foregoing discussion that providing repeated therapy, and in particular, repeated high-voltage pacing stimulation, will deplete a system power source, such as a battery, relatively quickly. Therefore, in one embodiment, the power source is rechargeable. For example, the pulse generator may include rechargeable nickel cadmium batteries. Such batteries may be recharged over a period of several hours using a radio frequency link. Alternatively, a rechargeable capacitive energy source such as disclosed in U.S. Pat. No. 4,408,607 to Maurer may be utilized. In yet another embodiment, the pulse generator may include both an implanted radio frequency (RF) receiving unit (receiver) incorporating a back-up rechargeable power supply and a non-rechargeable battery, as described in U.S. Pat. No. 5,733,313 incorporated herein by reference. The rechargeable power supply is charged by an external RF transmitting unit worn by the patient. Any other type of rechargeable power supply known in the art for use with implantable medical devices may be used in the alternative.
In one embodiment, the power source selected for use in the current invention is capable of delivering up to ten therapy shocks, with additional power being available for threshold testing. However, compromises will exist since the power source capacity will determine device size. In yet another embodiment the device is a 75-joule device having a volume of no more than 75 cubic centimeters. Preferably, the device includes a power source and associated charge circuitry that provides a charge time of no more than three minutes during the useful life of the device. In another embodiment, the device should be capable of delivering a 35-joule shock after a one-minute charge time over the useful life of the device.
The above-described inventive system and method provides a therapy that avoids the risks of transvenous lead delivery. Such a system may be used for patients that are at-risk for arrhythmias, but have not yet experienced a confirmed arrhythmic episode. The device may therefore provide a needed long-term monitoring function, as well as any interventional therapy that is required. Preferably, after an episode is detected and therapy is delivered for a first time, the current system would be replaced with a more conventional implantable defibrillator.
As discussed above, the inventive system provides many important benefits over other conventional systems for some patients. The procedure is faster because there is no need for venous or epicardial access, and therefore the procedure is less invasive, and would not require procedures needing sophisticated surgical facilities and devices. Additionally, the implant procedure can be accomplished without exposing the patient to potentially-harmful radiation that accompanies fluoroscopy. The risk of infection is reduced, and the procedure may be provided to patients that are contraindicated for a more traditional device. Additionally, one hundred percent patient compliance is achieved, and the system is more comfortable than externally-worn devices. The system is well suited for pediatric use, since the placement of the electrodes allows lead length to be easily extended as a patient grows. The system may also be employed in parts of the world where more long-term therapies and treatments are not available, and where sophisticated surgical skills and equipment cannot be readily obtained.
This is a continuation of application Ser. No. 10/460,300, filed Jun. 13, 2003 now abandoned, which is a continuation of application Ser. No. 09/990,045, filed Nov. 21, 2001 now abandoned, which claims the benefit of U.S. Provisional Application No. 60/252,811, filed Nov. 22, 2000, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
RE27652 | Mirowski et al. | May 1973 | E |
4030509 | Heilman et al. | Jun 1977 | A |
4157720 | Greatbatch | Jun 1979 | A |
4164946 | Langer | Aug 1979 | A |
4184493 | Langer et al. | Jan 1980 | A |
4210149 | Heilman et al. | Jul 1980 | A |
RE30372 | Mirowski et al. | Aug 1980 | E |
RE30387 | Denniston, III et al. | Aug 1980 | E |
4223678 | Langer et al. | Sep 1980 | A |
4254775 | Langer | Mar 1981 | A |
4291707 | Heilman et al. | Sep 1981 | A |
4300567 | Kolenik et al. | Nov 1981 | A |
4310000 | Lindemans | Jan 1982 | A |
4375817 | Engle et al. | Mar 1983 | A |
4392407 | LaFever et al. | Jul 1983 | A |
4407288 | Langer et al. | Oct 1983 | A |
4408607 | Maurer | Oct 1983 | A |
4428378 | Anderson et al. | Jan 1984 | A |
4450527 | Sramek | May 1984 | A |
4548209 | Wielders et al. | Oct 1985 | A |
4567900 | Moore | Feb 1986 | A |
4595009 | Leinders | Jun 1986 | A |
4603705 | Speicher et al. | Aug 1986 | A |
4693253 | Adams | Sep 1987 | A |
4727877 | Kallok | Mar 1988 | A |
4750494 | King | Jun 1988 | A |
4768512 | Imran | Sep 1988 | A |
4821723 | Baker, Jr. et al. | Apr 1989 | A |
4830005 | Woskow | May 1989 | A |
4865036 | Chirife | Sep 1989 | A |
4932407 | Williams | Jun 1990 | A |
4944300 | Saksena | Jul 1990 | A |
4958632 | Duggan | Sep 1990 | A |
4967747 | Carroll et al. | Nov 1990 | A |
5005587 | Scott | Apr 1991 | A |
5044374 | Lindemans et al. | Sep 1991 | A |
5083562 | de Coriolis et al. | Jan 1992 | A |
5105810 | Collins et al. | Apr 1992 | A |
5105826 | Smits et al. | Apr 1992 | A |
5119832 | Xavier | Jun 1992 | A |
5129392 | Bardy et al. | Jul 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5158078 | Bennett et al. | Oct 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5176137 | Erickson et al. | Jan 1993 | A |
5181511 | Nickolls et al. | Jan 1993 | A |
5184616 | Weiss | Feb 1993 | A |
5193535 | Bardy et al. | Mar 1993 | A |
5193536 | Mehra | Mar 1993 | A |
5203348 | Dahl et al. | Apr 1993 | A |
5205286 | Soukup et al. | Apr 1993 | A |
5209229 | Gilli | May 1993 | A |
5215081 | Ostroff | Jun 1993 | A |
5224475 | Berg et al. | Jul 1993 | A |
5230337 | Dahl et al. | Jul 1993 | A |
5243978 | Duffin, Jr. | Sep 1993 | A |
5251624 | Bocek et al. | Oct 1993 | A |
5255691 | Otten | Oct 1993 | A |
5255692 | Neubauer et al. | Oct 1993 | A |
5261400 | Bardy | Nov 1993 | A |
5292338 | Bardy | Mar 1994 | A |
5300106 | Dahl et al. | Apr 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5314430 | Bardy | May 1994 | A |
5318593 | Duggan | Jun 1994 | A |
5330505 | Cohen | Jul 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5342407 | Dahl et al. | Aug 1994 | A |
5354316 | Keimel | Oct 1994 | A |
5360441 | Otten | Nov 1994 | A |
5360442 | Dahl et al. | Nov 1994 | A |
5366485 | Kroll et al. | Nov 1994 | A |
5366496 | Dahl et al. | Nov 1994 | A |
5376103 | Anderson et al. | Dec 1994 | A |
5376105 | Hedberg | Dec 1994 | A |
5385574 | Hauser et al. | Jan 1995 | A |
5405363 | Kroll et al. | Apr 1995 | A |
5411539 | Neisz | May 1995 | A |
5411547 | Causey, III | May 1995 | A |
5423326 | Wang et al. | Jun 1995 | A |
5433730 | Alt | Jul 1995 | A |
5439484 | Mehra | Aug 1995 | A |
5439485 | Mar et al. | Aug 1995 | A |
5447521 | Anderson et al. | Sep 1995 | A |
5458619 | Olson | Oct 1995 | A |
5466254 | Helland | Nov 1995 | A |
5470341 | Kuehn et al. | Nov 1995 | A |
5476503 | Yang | Dec 1995 | A |
5531766 | Kroll et al. | Jul 1996 | A |
5534019 | Paspa | Jul 1996 | A |
5534022 | Hoffmann et al. | Jul 1996 | A |
5545202 | Dahl et al. | Aug 1996 | A |
5601607 | Adams | Feb 1997 | A |
5603732 | Dahl et al. | Feb 1997 | A |
5607455 | Armstrong | Mar 1997 | A |
5609621 | Bonner | Mar 1997 | A |
5618287 | Fogarty | Apr 1997 | A |
5620477 | Pless et al. | Apr 1997 | A |
5645586 | Meltzer | Jul 1997 | A |
5658319 | Kroll | Aug 1997 | A |
5658321 | Fayram | Aug 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5701895 | Prutchi et al. | Dec 1997 | A |
5713926 | Hauser et al. | Feb 1998 | A |
5730142 | Sun et al. | Mar 1998 | A |
5733313 | Barreras, Sr. et al. | Mar 1998 | A |
5738105 | Kroll | Apr 1998 | A |
5766226 | Pedersen | Jun 1998 | A |
5792205 | Alt et al. | Aug 1998 | A |
5827326 | Kroll et al. | Oct 1998 | A |
5843132 | Ilvento | Dec 1998 | A |
5849031 | Martinez et al. | Dec 1998 | A |
5855593 | Olson et al. | Jan 1999 | A |
5893881 | Elsberry et al. | Apr 1999 | A |
5895414 | Sanchez-Zambrano | Apr 1999 | A |
5904705 | Kroll et al. | May 1999 | A |
5916238 | Hauser et al. | Jun 1999 | A |
5957956 | Kroll et al. | Sep 1999 | A |
6058328 | Levine et al. | May 2000 | A |
6091989 | Swerdlow et al. | Jul 2000 | A |
6093173 | Balceta et al. | Jul 2000 | A |
6095987 | Shmulewitz | Aug 2000 | A |
6144879 | Gray | Nov 2000 | A |
6148230 | KenKnight | Nov 2000 | A |
6157860 | Hauser et al. | Dec 2000 | A |
6167308 | DeGroot | Dec 2000 | A |
6178350 | Olson et al. | Jan 2001 | B1 |
6212063 | Johnson et al. | Apr 2001 | B1 |
6230059 | Duffin | May 2001 | B1 |
6266567 | Ishikawa et al. | Jul 2001 | B1 |
6272379 | Fischell et al. | Aug 2001 | B1 |
6278894 | Salo et al. | Aug 2001 | B1 |
6280462 | Hauser et al. | Aug 2001 | B1 |
6295474 | Munshi | Sep 2001 | B1 |
6334071 | Lu | Dec 2001 | B1 |
6345198 | Mouchawar et al. | Feb 2002 | B1 |
6436068 | Bardy | Aug 2002 | B1 |
6505067 | Lee et al. | Jan 2003 | B1 |
6640135 | Salo et al. | Oct 2003 | B1 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6718628 | Munshi | Apr 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6754528 | Bardy et al. | Jun 2004 | B2 |
6778860 | Ostroff et al. | Aug 2004 | B2 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6834204 | Ostroff et al. | Dec 2004 | B2 |
6856835 | Bardy et al. | Feb 2005 | B2 |
6865417 | Rissmann et al. | Mar 2005 | B2 |
6866044 | Bardy et al. | Mar 2005 | B2 |
6927721 | Ostroff | Aug 2005 | B2 |
6937907 | Bardy et al. | Aug 2005 | B2 |
6950705 | Bardy et al. | Sep 2005 | B2 |
6952608 | Ostroff | Oct 2005 | B2 |
6952610 | Ostroff et al. | Oct 2005 | B2 |
6954670 | Ostroff | Oct 2005 | B2 |
6988003 | Bardy et al. | Jan 2006 | B2 |
6999814 | Hauser et al. | Feb 2006 | B2 |
7292887 | Salo et al. | Nov 2007 | B2 |
7330757 | Ostroff | Feb 2008 | B2 |
7522959 | Hauser | Apr 2009 | B2 |
20010037134 | Munshi | Nov 2001 | A1 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035379 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020049476 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095184 | Bardy et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107544 | Ostroff et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | Ostroff et al. | Aug 2002 | A1 |
20020188252 | Bardy | Dec 2002 | A1 |
20020193834 | Levine | Dec 2002 | A1 |
20030036778 | Ostroff et al. | Feb 2003 | A1 |
20030045904 | Bardy et al. | Mar 2003 | A1 |
20030088277 | Ostroff | May 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030088279 | Rissmann et al. | May 2003 | A1 |
20030088280 | Ostroff | May 2003 | A1 |
20030088281 | Ostroff et al. | May 2003 | A1 |
20030088282 | Ostroff | May 2003 | A1 |
20030088283 | Ostroff | May 2003 | A1 |
20030088286 | Ostroff et al. | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030212436 | Brown | Nov 2003 | A1 |
20040064177 | Bardy et al. | Apr 2004 | A1 |
20050021093 | Brown | Jan 2005 | A1 |
20050038476 | Brown | Feb 2005 | A1 |
20050119707 | Hauser et al. | Jun 2005 | A1 |
20050131464 | Heinrich et al. | Jun 2005 | A1 |
20050143776 | Brown | Jun 2005 | A1 |
20060015163 | Brown | Jan 2006 | A1 |
20060142804 | Hauser et al. | Jun 2006 | A1 |
20080140139 | Heinrich et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
0 347 353 | Dec 1989 | EP |
0 627 194 | Dec 1994 | EP |
0 627 237 | Dec 1994 | EP |
0 460 324 | Mar 1996 | EP |
0 578 748 | May 1996 | EP |
0 517 494 | Sep 1996 | EP |
1 318 855 | Sep 2001 | EP |
64-76877 | Mar 1989 | JP |
4-40966 | Feb 1992 | JP |
5-64666 | Mar 1993 | JP |
5-67310 | Sep 1993 | JP |
6-47098 | Feb 1994 | JP |
6-505662 | Jun 1994 | JP |
07-000538 | Jan 1995 | JP |
7-148275 | Jun 1995 | JP |
2655204 | May 1997 | JP |
WO 9217240 | Oct 1992 | WO |
WO 9220402 | Nov 1992 | WO |
WO 9403233 | Feb 1994 | WO |
WO 9509030 | Apr 1995 | WO |
WO 9729802 | Aug 1997 | WO |
WO 9938568 | Aug 1999 | WO |
WO 9953991 | Oct 1999 | WO |
WO 0007497 | Feb 2000 | WO |
WO 0041765 | Jul 2000 | WO |
WO 0222208 | Mar 2002 | WO |
WO 0224275 | Mar 2002 | WO |
Entry |
---|
Communication mailed by the Japanese Patent Office on Sep. 5, 2006 for counterpart application No. 2002-544121 and English-language translation (12 pages). |
Berul et al., “Minimally Invasive Cardioverter Defibrillator Implantation for Children: An Animal Model and Pediatric Case Report,” Pacing and Clinical Electrophysiology, vol. 24, Issue 12, pp. 1789-1799, Dec. 2001. |
Böcker et al., “Treatment with Implantable Defibrillators in Childhood,” Herzschr Elektrophys, 10(4), pp. 248-251 (Dec. 1999). |
Gradaus et al., “Nonthoracotomy Implantable Cardioverter Defibrillator Placement in Children: Use of Subcutaneous Array Leads and Abdominally Placed Implantable Cardioverter Defibrillators in Children,” Journal of Cardiovascular Electrophysiology, vol. 12, No. 3, pp, 356-360, Mar. 2001. |
Hoffmann et al., “Experience Wth Pectoral Versus Abdominal Implantation of a Small Defibrillator,” European Heart Journal, vol. 19, pp. 1085-1098, 1998. |
International Preliminary Examination Report issued in PCT/US01/43513, Jan. 2003. |
International Search Report issued in PCT/US01/43513, Sep. 2002. |
Leng et al., “Lead Configuration for Defibrillator Implantation in a Patient with Cogenital Heart Disease and a Mechanical Prosthetic Tricuspid Valve,” PACE vol. 24, No. 8, pp. 1921-1292, Aug. 2001. |
Office Action dated Oct. 15, 2004, issued in European Application No. 01 987 042.7-1265. |
Park et al., “Use of an Implantable Cardioverter Defibrillator in an Eight-Month-Old Infant with Ventricular Fibrillation Arising from a Myocardial Fibroma,” PACE vol. 22, No. 1, Part I, pp. 138-139, Jan. 1999. |
European Search Report in European Application No. EP 05105683, issued Aug. 2005. |
Schuder et al., “Experimental Ventricular Defibrillation with an Automatic and Completely Implanted System,” Trans. Amer. Soc. Artif. Int. Organs, vol. XVI, pp. 207-212, 1970. |
Schuder et al., “Ventricular Defibrillation in the Dog Using Implanted and Partially Implanted Electrode Systems,” The American Journal of Cardiology, vol. 33, pp. 243-247, Feb. 1974. |
Stirbis et al., “Optimizing the Shape of Implanted Artifical Pacemakers,” Biomedical Engineering vol. 20, No. 6, pp. 199-200, Nov.-Dec. 1986 and Jul. 1987. |
Subcutaneous Lead System, Model 6996SQ, http://www.medtronic.com/tachy2/leads/6996sq.html, Feb. 7, 2005. |
Written Opinion issued in PCT/US01/43513, Sep. 2002. |
Communication mailed by the European Patent Office on Feb. 7, 2007 for counterpart European Application No. 06126700.1 (10 pages). |
International Search Report dated Mar. 26, 2002, issued in PCT/US01/29168 filed Sep. 14, 2001, published as WO 02/22208 on Mar. 21, 2002, Subcutaneous Only Implantable Cardioverter Defibrillator & Optional Pacer, Inventors: Gust H. Bardy et al. |
International Search Report dated Mar. 21, 2002, issued in PCT/US01/29106 filed Sep. 14, 2001, published as WO 02/24275 on Mar. 28, 2002, Unitary Subcutaneous Only Implantable Cardioverter Defibrillator & Optical Pacer, Inventors: Gust H. Bardy et al. |
J.C. Schuder, PhD., an editorial comment, “Completely Implanted Defibrallator,” Journal of the American Medical Association (JAMA), vol. 214, No. 6, p. 1123, Nov. 9, 1970. |
J.C. Schuder, PhD., an editorial comment, “Standby Implanted Defibrillators,” Archives of Internal Medicine (Specialized Journal of the AMA), vol. 127, Letters to the Editor, p. 317, Feb. 1971. |
Mirkowski et al., “Automatic Detection & Fibrillation of Lethal Arrythmias—A New Concept,” Journal of the American Medical Association (JAMA), vol. 213, pp. 615-616, 1970. |
J.C. Schuder, PhD., et al., “Transthoracic Ventriculator Defibrillation in the Dog With Truncated and Untruncated Exponential Stimuli,” IEEE Transactions on Bio-Medical Engineering, vol. BME-18, No. 6, pp. 410-145, Nov. 1971. |
J.C. Schuder, PhD., “The Role of an Engineering Oriented Medical Research Group in Developing Improved Methods & Devices for Achieving Ventricular Defibrillation: The University of Missouri Experience,” PACE, vol. 16, Part I, pp. 95-124, Jan. 1993. |
Richard A. Friedman, M.D., et al., “Implantable Defibrillators in Children: From Whence to Shock,” Journal of Cardiovascular Electrophysiology, vol. 12, No. 3, pp. 361-362, Mar. 2001, Copyright 2001, by Future Publishing Company Inc., Armonk—NY 1050-0418. |
Valenzuela et al., “Outcomes of Rapid Defibrillation by Security Officers After Cardiac Arrest in Casinos”, NEJM, vol. 343, No. 17, pp. 1206-1209, Oct. 26, 2000. |
Higgins et al, “The First Year Experience with the Dual Chamber ICD,” PACE 23, pp. 18-25, Jan. 2000. |
Bardy et al., “Multicenter Experience with a Pectoral Unipolar Implantable Cardioverter-Defibrillator,” JACC, vol. 28, No. 1, pp. 400-410, Aug. 1996. |
Olson et al., “Onset and Stability for Ventricular Tachyarrhythmia Detection in an Implantable Cardioverter and Defibrallator,” Computers in Cardiology, pp. 167-170, 1986. |
Communication by the Japanese Patent Office dated Apr. 11, 2007 from counterpart application No. 2002-544121 and English-language translation (8 pages). |
Communication mailed by the European Patent Office on Jun. 19, 2006 for European Application No. 05105683.6. |
Office Action dated Oct. 7, 2009, issued in Canadian Application No. 2,428,873 (3 pgs). |
“The Essential Tool for Patients at Increased Risk for Arrhythmias,” Reveal Plus Insertable Loop Recorder (ILR), Model 9526, 6 pages, © 2001 Medtronic. |
Schwacke et al., “Komplikationen mit Sonden bei 340 Patienten mit einem implantierbaren Kardioverter/Defibrillator,” Z Kardiol 88, pp. 559-565, Aug. 1999. |
Communication mailed by the European Patent Office on Oct. 1, 2007 for counterpart European Application No. 08126700.1 (12 pages). |
Subcutaneous Lead System, Model 6996SQ http://www.medtronic.com/tachy/clinician/leads/spec6996sq.html, Oct. 2, 2002. |
Official Action mailed on Apr. 13, 2010, in corresponding Japanese Application No. 2007-211759. |
English Language Transcript of Decision of Final Rejection mailed on Nov. 9, 2010, in corresponding Japanese Application No. 2007-211759. |
Communication pursuant to Article 94(3) EPC dated Jun. 15, 2010, in corresponding European Application No. 06 126 700.1. |
Communication under Rule 71(3) EPC dated Nov. 19, 2010 in corresponding European Application No. 06 126 700.1. |
Office Action (Election/Restriction Requirement) mailed on Sep. 18, 2008, in co-pending U.S. Appl. No. 10/949,877. |
Response to Sep. 18, 2008, Office Action (Election/Restriction Requirement) filed on Mar. 18, 2009, in co-pending U.S. Appl. No. 10/949,877. |
Office Action mailed on Apr. 20, 2009, in co-pending U.S. Appl. No. 10/949,877. |
Response to Apr. 20, 2009, Office Action filed on Oct. 19, 2009, in co-pending U.S. Appl. No. 10/949,877. |
Final Office Action mailed on Jan. 4. 2010, in co-pending U.S. Appl. No. 10/949,877. |
Response to Jan. 4, 2010 final Office Action filed on Feb. 1, 2011, in co-pending U.S. Appl. No. 10/949,877. |
Response to Jun. 15, 2010 Communication filed on Oct. 19, 2010, in corresponding European Application No. 06 126 700.1. |
Response to Oct. 7, 2009 Office Action filed on Apr. 7, 2010, in corresponding Canadian Application No. 2,428,873. |
Office Action (Election/Restriction Requirement) mailed on Dec. 17, 2009, in co-pending U.S. Appl. No. 11/981,410. |
Response to Dec. 17, 2009, Office Action (Election/Restriction Requirement) filed on Jun. 16, 2010, in co-pending U.S. Appl. No. 11/981,410. |
Office Action mailed on Aug. 23, 2010, in co-pending U.S. Appl. No. 11/981,410. |
Response to Aug. 23, 2010, Office Action filed on Feb. 22, 2011, in co-pending U.S. Appl. No. 11/981,410. |
Summons to attend oral proceedings pursuant to Rule 115(1) EPC for European Patent Application No. 01973151.2-1657/1318856, dated Oct. 11, 2013, 6 pages. |
Response to Communication dated Oct. 1, 2007, from European patent application No. 06126700.1-1265, filed Apr. 11, 2008, 27 pages. |
Office Action dated Jun. 19, 2014, from U.S. Appl. No. 13/476,940, filed May 21, 2012, 21 pages. |
Office Action dated Jul. 15, 2014, from U.S. Appl. No. 14/275,845, filed May 12, 2014, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20050143776 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60252811 | Nov 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10460300 | Jun 2003 | US |
Child | 10968889 | US | |
Parent | 09990045 | Nov 2001 | US |
Child | 10460300 | US |