This application is based on and incorporates herein by reference Japanese Patent Application No. 2002-228273 filed on Aug. 6, 2002.
The present invention relates to an air-fuel ratio sensor, particularly to a deterioration detecting apparatus for an air-fuel ratio sensor for diagnosing a deterioration of a downstream air-fuel ratio sensor arranged downstream from a catalyst. More specifically, the present invention relates to an apparatus for detecting a deterioration of an air-fuel ratio sensor capable of detecting a deterioration of a downstream air-fuel ratio sensor at early time and accurately.
Oxygen sensors are arranged respectively upstream and downstream from a catalyst interposed in an exhaust emission system of an engine. Further, in such a construction, an air-fuel ratio feedback correction coefficient is set based on an output value of the upstream oxygen (O2) sensor arranged upstream from the catalyst and an air-fuel ratio is controlled such that an air-fuel ratio upstream from the catalyst becomes a target air-fuel ratio. Further, a dual O2 air-fuel ratio control system is proposed to achieve proper formation of an air-fuel ratio by correcting the air-fuel ratio feedback correction coefficient based on an output value of the downstream oxygen sensor arranged downstream from the catalyst.
Meanwhile, in such a dual O2 air-fuel ratio control system, when the respective oxygen sensors are deteriorated, response of the oxygen sensors is deteriorated. Therefore proper air-fuel ratio control is deteriorated.
Further, in the dual O2 air-fuel ratio control system, a deterioration of the catalyst is diagnosed by comparing outputs of the two oxygen sensors provided upstream and downstream from the catalyst. Therefore, when the respective oxygen sensors are deteriorated, accuracy of diagnosing the deterioration of the catalyst using the oxygen sensors is also deteriorated. Therefore it is necessary to detect the deterioration of the air-fuel ratio sensors.
At this occasion, since the upstream oxygen sensor is arranged upstream from the catalyst, an oxygen concentration in exhaust emission gas emitted from the engine is directly detected. Therefore, when a variation of the air-fuel ratio is brought about, the upstream oxygen sensor immediately reacts with the variation of the air-fuel ratio. Hence, the deterioration of the upstream oxygen sensor can comparatively easily be detected by monitoring the output of the upstream air-fuel ratio sensor when the variation of the air-fuel ratio is brought about.
In contrast thereto, since the downstream oxygen sensor is provided downstream from the catalyst, the downstream oxygen sensor detects the air-fuel ratio in emission gas after passing the catalyst. Therefore, even when the variation of the air-fuel ratio is brought about, the variation of the air-fuel ratio is smoothed by oxygen adsorption and separation by oxidation and reduction reaction of the catalyst or a storage effect of the catalyst and the downstream oxygen sensor detects the smoothed air-fuel ratio. Further, the storage effect of the catalyst is changed by the deterioration. Therefore, it is difficult to detect the deterioration of the downstream oxygen sensor per se from a state of reaction of the downstream oxygen sensor with respect to the variation of the air-fuel ratio of the engine.
In order to resolve the problem, a method is proposed to detect the deterioration of the downstream air-fuel ratio sensor which is difficult to be effected by influence of the catalyst. For example, in JP-U-03-037949, an output of an oxygen sensor downstream from a catalyst is detected with respect to a variation in an air-fuel ratio upstream from the catalyst before the catalyst is activated. Further, in JP-A-62-250351, deterioration is detected when an air-fuel ratio is changed more than a catalyst storage function as at fuel cut-off.
However, according to the method of detecting the deterioration of the oxygen sensor before activating the catalyst as in JP-U-03-037949, a condition of detecting the deterioration is limited to that in cold starting. Similarly, according to the method of detecting the deterioration of the oxygen sensor at fuel cut-off as in JP-A-62-250351, a condition of detecting the deterioration is limited to that at fuel cut-off. Particularly, in the case of the vehicle of an automatic transmission, fuel cut-off is hardly operated in running a city area. Therefore a frequency of executing deterioration detection is reduced.
In this way, in either of the methods, the executing condition is significantly limited. Therefore the frequency of detection is reduced. Further, even when the executing condition is established, the executing condition is under a transient condition. Therefore it is difficult to ensure detection accuracy.
Therefore, it is an object of the invention to provide an apparatus for detecting a deterioration of an air-fuel ratio sensor which is difficult to be effected by an influence of a catalyst storage function and capable of ensuring a number of times of detection frequency.
In order to achieve this object, according to the invention, a deterioration of an air-fuel ratio sensor is detected by comparing outputs of the air-fuel ratio sensor when a temperature of a solid electrolyte element is adjusted at least to two different temperatures.
Abnormality of the air-fuel ratio sensor is detected by utilizing a characteristic that when the temperature of the solid electrolyte element of the air-fuel ratio sensor is changed, sensitivity with respect to an emission gas component is changed by a difference in the temperature of the solid electrolyte element, that is, the activity of an electrode portion thereof.
For example, in the case of a normal air-fuel ratio sensor, in accordance with a change of the temperature of the element, the sensitivity with respect to exhaust emission gas is changed. Therefore, when output waveforms are compared between different element temperatures, a difference is produced. In contrast thereto, in the case of a deteriorated air-fuel ratio sensor, the electrode portion is deteriorated, the activity is reduced. Therefore, even when the element temperature of the solid electrolyte is changed, the change of the output waveform is reduced. Therefore, the deterioration of the air-fuel ratio sensor can be detected by comparing outputs of the air-fuel ratio sensor at different temperatures of the solid electrolyte element.
Here, the air-fuel ratio sensor may be provided with the above characteristic and includes a linear air-fuel ratio sensor or an oxygen sensor. Further, although the invention is particularly effective in an air-fuel ratio sensor provided downstream from a catalyst, the invention can also be used in an air-fuel ratio sensor provided upstream from the catalyst.
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
In
At the most upstream portion of an intake pipe 12 of an engine 11, an air cleaner 13 is provided. On the downstream of the air cleaner 13, an air flow meter 14 for detecting an intake air amount is provided. On the downstream of the air flow meter 14, a throttle valve 15 and a throttle opening degree sensor 16 for detecting a throttle opening degree are provided.
Further, on the downstream of the throttle valve 15, a surge tank 17 is provided. At the surge tank 17, an intake pipe pressure sensor 18 for detecting an intake pipe pressure is provided. Further, at the surge tank 17, an intake manifold 19 for introducing air to respective cylinders of the engine 11 is provided. In the vicinity of an intake port of the intake manifold 19 of each cylinder, a fuel injection valve 20 for injecting fuel is attached.
Meanwhile, at the middle of an exhaust pipe 21 (emission gas path) of the engine 11, an upstream catalyst 22 and a downstream catalyst 23 for reducing harmful components (CO, HC, NOx or the like) in emission gas are installed in series. In this case, the upstream catalyst 22 is formed in a comparatively small capacity such that warming up is finished at early time in starting and exhaust emission in starting is reduced. In contrast thereto, the downstream catalyst 23 is formed in a comparatively large capacity such that emission gas can sufficiently be cleaned even in a high load region increasing an amount of emission gas.
Further, on the upstream of the upstream catalyst 22, a linear air-fuel ratio sensor 24 for outputting a linear air-fuel ratio signal in accordance with an air-fuel ratio of emission gas is provided. On the downstream of the upstream catalyst 22 and on the downstream of the downstream catalyst 23, a first oxygen sensor 25 and a second oxygen sensor 26 are provided. Those sensors 25 and 26 have a so-called Z characteristic in which outputs thereof are respectively changed comparatively rapidly in the vicinity of a stoichiometric air-fuel ratio. Hereinafter, a combination of the linear air-fuel ratio sensor and the oxygen sensors is described as an air-fuel ratio sensor. Further, at a cylinder block of the engine 11, a cooling water temperature sensor 27 for detecting cooling water temperature and a crank angle sensor 28 for detecting an engine rotational number NE are attached.
Outputs of the various sensors are inputted to an engine control circuit (hereinafter, referred to as “ECU”) 29. The ECU 29 is mainly constituted by a microcomputer and controls, for example, an air-fuel ratio of emission gas by a feedback control by executing a program stored in ROM (storage medium) included therein.
According to the first embodiment, the air-fuel ratio of emission gas is controlled by a known feedback control manner.
Further,
First, processing of a target air-fuel ratio setting program of
For example, in low load operation having a small flow rate of emission gas, emission gas can considerably be cleaned only by the upstream catalyst 22. Therefore, response of the air-fuel ratio control is excellent when the first oxygen sensor 25 is used as the sensor on the downstream used for setting the target air-fuel ratio λTG. However, when the emission gas flow rate is increased, an emission gas component amount passing through the upstream catalyst 22 without being cleaned at inside thereof is increased. Therefore, it is necessary to clean emission gas by effectively using both of the upstream catalyst 22 and the downstream catalyst 23. In this case, it is preferable to carry out the air-fuel ratio feedback control also in consideration of the state of the downstream catalyst 23. Therefore, it is preferable to use the second oxygen sensor 26 as the sensor on the downstream used for setting the target air-fuel ratio λTG.
Further, the shorter the delay time by which a change in the air-fuel ratio of emission gas emitted from the engine 11 (a change in an output of the air-fuel ratio sensor 24 on the upstream of the upstream catalyst 22) emerges as a change in an output of the first oxygen sensor 25, it signifies, the larger the emission gas component amount passing through the upstream catalyst 22 without being cleaned at inside thereof (that is, a cleaning efficiency is reduced). Therefore, when the delay time of the change in the output of the first oxygen sensor 25 is short, it is preferable to use the output of the second oxygen sensor 26 as the sensor on the downstream used in setting the target air-fuel ratio λTG.
Hence, a condition of selecting the second oxygen sensor 26 as the sensor on the downstream used in setting the target air-fuel ratio λTG is:
<1> the delay time (or period) by which the change in the air-fuel ratio of emission gas emitted from the engine 11 (the change in the output of the linear air-fuel ration sensor 24) emerges as the change in the output of the first oxygen sensor 25 is shorter than a predetermined period, or
<2> the intake air amount (emission gas flow rate) is equal to or larger than a predetermined value.
When either one of the two conditions <1> and <2> is satisfied, the second oxygen sensor 26 is selected and when both of the conditions are not satisfied, the first oxygen sensor 25 is selected. Further, the second oxygen sensor 26 may be selected when both of conditions <1> and <2> are satisfied.
After selecting the sensor on the downstream used for setting the target air-fuel ratio λTG in this way, the processing proceeds to step 702 and determines rich or lean by whether output voltage VOX2 of the selected oxygen sensor is higher or lower than the target output voltage (for example, 0.45V) in correspondence with the stoichiometric air-fuel ratio (λ=1). Here, in the case of lean, the processing proceeds to step 703 and determines whether the air-fuel ratio is lean also at preceding time. When the air-fuel ratio is lean both in preceding time and current time, the processing proceeds to step 704 and calculates a rich integration amount λIR from a data map in accordance with a current intake air amount QA.
As maps of the rich integration amount λIR, a map for the upstream catalyst downstream sensor (first oxygen sensor) is stored as shown in
Further, when the air-fuel ratio has been rich at preceding time and is inverted to lean at current time, the processing proceeds from step 703 to step 706 and calculates a proportional (skip) amount λSKR to the rich side in accordance with the rich component storage amount OSTRich of the catalyst. Further, the rich component storage amount OSTRich is calculated in the manner known in the art.
A map characteristic of
Meanwhile, at step 702, when the output voltage VOX2 of the oxygen sensor is rich, the processing proceeds to step 708 and determines whether the air-fuel ratio has been rich also at preceding time. When the air-fuel ratio is rich both at preceding time and current time, the processing proceeds to step 709 and calculates a lean integration amount λIL from the maps shown in
A map characteristic of the lean integration amount λIL of
Further, when the air-fuel ratio has been on the lean side at preceding time and is inverted to the rich side at current time, the processing proceeds from step 708 to step 711 and calculates the skip amount λSKL to the lean side from the map shown in
The map characteristic of
As is apparent from the map of
Next, other examples of processing of setting the target air-fuel ratio will be explained in reference to flowcharts of
ECU 29 changes a target output voltage TGOX of the first oxygen sensor 25 in accordance with the output of the second oxygen sensor 26 when the first oxygen sensor 25 is selected as the sensor on the downstream used in setting the target air fuel ratio λTG of the air-fuel ratio feedback control by executing a target air-fuel ratio setting program of
In the target air-fuel ratio setting program of
Thereafter, the processing proceeds to step 715, determines rich or lean by whether the output voltage VOX2 of the selected oxygen sensor is higher or lower than the target output voltage TGOX, calculates the target air-fuel ratio λTG by the above method at steps 703 through 713 in accordance with a result of the determination, stores rich or lean at that time and finishes the program.
Next, processing of the target output voltage setting program of
In this case, the map of the target output voltage TGOX is set such that when the output voltage of the second oxygen sensor 26 (an air-fuel ratio of a gas flowing out from the downstream catalyst 23) falls in a predetermined range (β≦output voltage≦α) in the vicinity of the stoichiometric air-fuel ratio, the target output voltage TGOX is reduced (becomes lean) as the output of the second oxygen sensor 26 is increased (becomes rich). Further, in a region in which the output of the second oxygen sensor 26 is larger than a predetermined value α, the target output voltage TGOX becomes a predetermined lower limit value (for example, 0.4V). In a region in which the output of the second oxygen sensor 26 is smaller than a predetermined value β, the target output voltage TGOX becomes an upper limit value (for example, 0.65V).
Thereby, the target output voltage TGOX of the first oxygen sensor 25 is set to fall in a range in which an adsorption amount of an emission gas component of the downstream catalyst 23 becomes equal to or smaller than a predetermined value or the air-fuel ratio of emission gas flowing in the downstream catalyst 23 falls in a range of a predetermined cleaning window.
Meanwhile, when the second oxygen sensor 26 is selected as the sensor on the downstream used for setting the target air-fuel ratio λTG, the processing proceeds from step 901 to step 903 and sets the target output voltage TGOX to a predetermined value (for example, 0.45V).
In
The heater 135 is contained at inside of an atmosphere side electrode layer 134 for heating the sensor main body (atmosphere side electrode layer, solid electrolyte layer, emission gas side electrode layer) by heat generating energy thereof. The heater 135 is provided with a heat generating capacity sufficient for activating the sensor main body 131.
ECU 29 is provided with a microcomputer (MC) 120 constituting the center of internal operation thereof. The microcomputer 120 is connected to a host microcomputer 116 for realizing fuel injection control or ignition control communicatably to each other. The linear air-fuel ratio sensor 24 is attached to the exhaust pipe 21 extended from an engine main body of the engine 11 and an output thereof is detected by the microcomputer 120. The microcomputer 120 is constituted by well-known CPU, ROM, RAM, backup RAM and the like for executing various operation processing, not illustrated, for controlling a heater control circuit 125 and a bias control circuit 140 according to the prescribed controlling program.
Here, a bias instruction signal Vr is inputted to the bypass control circuit 140 via a D/A converter 121, a low pass filter (LPF) 122 and a switch 160. Further, the output of the linear air-fuel ratio sensor 24 in correspondence with the air-fuel ratio (oxygen concentration) from time to time is detected and a detected value thereof is inputted to the microcomputer 120 via an A/D converter 123. Further, heater voltage and heater current are detected by the heater control circuit 125, mentioned later, and a detected value thereof is inputted to the microcomputer 120.
Further, the predetermined bias instruction signal Vr is applied to an element, a change between predetermined time t1 and t2 shown in
impedance=ΔV/ΔI
The detected element impedance value is inputted to the microcomputer 120. The element impedance is provided with a strong correlation with element temperature as shown by
Further, similarly in the first oxygen sensor 25 and the second oxygen sensor 26, element temperature of the oxygen sensor can be controlled by detecting element impedance and controlling a heater provided to each of the first and the second oxygen sensor 25 and 26 by a duty control such that the element impedance becomes a predetermined value.
As a method therefor, according to the embodiment, as shown by
In the flowchart shown in
First, at step 401, a deviation (Δimp) between the target impedance calculated from the target element temperature and the element impedance detected by the element impedance detecting circuit is calculated. At step 402, an integrated value of the impedance deviation (ΣΔimp) for carrying out integral control is calculated. At step 403, heater duty is calculated from an equation shown below by using the deviation, an integral value, a proportional coefficient P1 and an integral coefficient I2.
heater duty (%)=P1×Δimp+I2×ΣΔimp
The heater duty calculated here is inputted to the heater control circuit designated by numeral 125 of
Here, the heater duty is a control amount of a heat generating amount for controlling temperature of the oxygen sensor element and based on power (W). In order to control temperature constant, it is preferable to control power constant. When temperature is controlled by the heater duty, in order to prevent temperature from changing by changing the supplied voltage, a correction relative to reference voltage (for example, 13.5V), that is, a correction by power×(13.5/voltage)2 is carried out.
In recent years, there is proposed a laminated type air-fuel ratio sensor for constituting an element and heater by an integrated structure for promoting heater function, the proposal is applicable naturally to such a sensor and to any sensor so far as the sensor is the air-fuel ratio sensor arranged with an electrode at a solid electrolyte element regardless of a kind thereof.
The ECU 29 is constructed and programmed as shown in
Here, the target impedance is calculated by the following procedure. An operating state is determined by an operating state determining block 210 by information from the crank angle sensor 28, the air flow meter 14, the throttle opening degree sensor 16 and the cooling water temperature sensor 27 showing the operating state of the engine.
Based on a result of determining the operating state, at a specific gas sensitivity priority determining block 211, it is determined whether a composition of emission gas emitted from the engine is mainly of rich gas or mainly of lean gas under a current operating condition or an operating state immediately thereafter. When it is determined that the composition is mainly of lean gas in a state in which NOx is liable to generate under high load or in accelerating by the specific gas sensitivity priority determining block 211, at a target element temperature setting block 212, the target element temperature is set to, for example, 720° C. in order to elevate the element temperature of the oxygen sensor to promote lean gas reactivity.
Conversely, when it is determined that the composition is mainly of rich gas (or mainly constituted by rich gas) in a state in which HC, CO is liable to generate under low temperature, low load or in decelerating by the specific gas sensitivity priority determining block 211, at the target element temperature setting block 212, the target element temperature is set to, for example, 420° C. in order to lower the element temperature of the oxygen sensor to promote rich gas reactivity.
Alternatively, at a diagnosis execution determining block 215, it is determined whether an operating state in which deterioration detection (diagnosis) of the first oxygen sensor 25 or the second oxygen sensor 26 is to be executed is brought about based on a result of determining the operating state at the operating state determining block 210.
When it is determined that the operating state in which the diagnosis is to be executed is brought about, at the target element temperature setting block 212, the element temperature of the oxygen sensor is controlled to a low temperature state (for example, 400° C.) for a predetermined period of time. Thereafter, the oxygen sensor element temperature is controlled to a high temperature state (for example, 700° C.) for a predetermined period of time.
Here, the target element temperature setting block 212 determines the target element temperature by putting priority on a determination result of the diagnosis execution determining block 215 more than a determination result of the specific gas sensitivity priority determining block. That is, when it is determined at the diagnosis execution determining block 215 that the operating state in which the diagnosis is to be executed is brought about, the target element temperature is set to the temperature for executing the diagnosis. Further, when it is determined at the diagnosis execution determining block 215 that the operating state in which the diagnosis is to be executed is not brought about, the target element temperature is set based on the result determined by the specific gas sensitivity priority determining block 211.
Next, reactivities of rich and lean gases of the oxygen sensor will be explained in reference to characteristic diagrams of
CO (adsorbed)+1/2 O2−(adsorbed)⇄CO2+2e−
Further,
CO+NO→CO2+N2
2NO+4e→N2+2O2−
Based on the target temperature set by the target element temperature setting block 212 of
Next, diagnosis processing of the first oxygen sensor 25 will be explained in reference to a flowchart of
The routine is started at a predetermined timing of time or a number of times of injection (step 500). First, at step 501, a condition of executing diagnosis is determined based on whether an engine rotational speed or an intake air amount falls in a predetermined range, or whether catalyst temperature is equal to or lower than predetermined temperature. Here, it is preferable that the condition of executing diagnosis is a stable steady-state running state in order to promote accuracy of deterioration detection.
When it is determined that the condition of executing diagnosis is established at step 501, at step 502, low element temperature control is started by setting a target element impedance to 2000Ω such that element temperature of the first oxygen sensor 25 becomes low (for example, 400° C.).
At step 503, it is determined whether the element impedance (imp) falls in a predetermined range in order to detect whether the element temperature is desired temperature. Here, processing at step 502 and at step 503 are repeated until the impedance falls in the predetermined range. When the impedance falls in the predetermined range, the processing proceeds to step 504.
At step 504, an output voltage change speed of the first oxygen sensor 25 is calculated by calculating a change amount ΔV between predetermined timings of the output voltage of the first oxygen sensor 25 in the low element temperature state.
ΔV=|Vn−Vn−1|
Here, notation Vn designates a current value of the first oxygen sensor 25 and notation Vn−1 is a preceding value of the output of the first oxygen sensor 25.
Further, although according to the embodiment, the change speed is calculated without differentiating a rich direction of the oxygen sensor (change speed is a positive value) and a lean direction thereof (change speed is a negative value), the change speed may be calculated only in a specific direction of rich or lean.
At successive step 505, in order to promote accuracy of deterioration detection, a change speed integrated value (sd1oxs1) is calculated based on the following equation by summing up the change speed for a predetermined time period.
sd1oxs1=ΔVn−1+ΔVn
Here, notation ΔVn designates a current value of the change amount ΔV and the notation ΔVn−1 designates a preceding value of the change amount ΔV.
Next, at step 506, it is determined whether a predetermined time period T3 has elapsed. Here, processing of step 504 to step 506 are repeated until it is determined that the predetermined time period T3 elapses. When it is determined that the predetermined time period T3 has elapsed at step 506, the processing proceeds to step 507.
At step 507, the element temperature control is switched to high element temperature control. According to the embodiment, the target impedance is set to 25Ω such that the element is at high temperature (for example, 700° C.).
At successive step 508, it is determined whether the element impedance (imp) falls in a predetermined range (15Ω≦imp≦25Ω). Here, processing at step 507 and at step 508 is repeated until it is determined that the element impedance falls in the predetermined range. When it is determined that the element impedance falls in the predetermined range at step 508, similar to the processing at low temperature, at step 509, an oxygen sensor voltage change speed at high temperature ΔV (=|Vn−Vn−1|) is calculated and at step 510, the oxygen sensor voltage change speed integrated value sd1oxsh (=ΔVn−1+ΔV) is calculated.
Next, it is determined whether a predetermined time period T5 has elapsed at step 511. Here, when the predetermined time period has not elapsed, processing of from step 509 to step 511 are repeated until the predetermined time period elapses. When the predetermined time period has elapsed, the processing proceeds to step 512.
At step 512, a deviation amount (de1oxh1) between the change speed integrated value sd1oxs1 at low temperature and the change speed integrated value sd1oxsh at high temperature is calculated by the following equation.
de1oxh1=sd1oxs1−sd1oxsh
Next at step 513, the change speed integrated value deviation amount de1xh1 and a previously set predetermined value are compared. Here, when the change speed integrated value deviation amount de1oxh1 is smaller than the previously set predetermined value X, the processing proceeds to step 514 and determines that the first oxygen sensor is deteriorated. Further, when the change speed integrated value deviation amount de1oxh1 is larger than the previously set predetermined value, the processing proceeds to step 515 and determines that the first oxygen sensor is normal and not deteriorated.
Next, operation of the embodiment will be explained in reference to time charts of
Here, (a) shows whether the condition of executing the diagnosis processing is established. Further, (b) shows whether the element temperature control is requested at normal control time when the diagnosis processing are not executed, or low element temperature control time or high element temperature control time when the diagnosis processing are executed. Further, (c) shows the element temperature of the solid electrolyte. (d) shows the output of the first oxygen sensor when the sensor is deteriorated and (e) shows the output of the first oxygen sensor when the sensor is normal. (f) shows the change speed integrated value sd1oxs1 at low element temperature control time and (g) shows the change speed integrated value sd1oxsh at high element temperature control time. (h) shows the change speed integrated value deviation amount de1xh1. Further, (i) shows an abnormality detection flag.
In
Next, at and after time t12 at which the element temperature of the solid electrolyte is stabilized at low temperature (the element impedance falls in the predetermined range (1800Ω<imp≦2200Ω)), the output of the voltage of the normal oxygen sensor is varied by a large amount since the reactivity by rich gas (CO) is increased. In contrast thereto, the variation amount of the output of the deteriorated oxygen sensor is small since the reactivity is reduced. The change speed is calculated by calculating the output variation amount of the oxygen sensor at that time at every predetermined timing. The change speed calculated in this way is summed up until reaching time t13 and the integrated value of the change speed sd1oxs1 at low temperature control is calculated.
Successively, when time t13 is reached, at this time, the high element temperature control (high temperature control) of the element temperature of the first oxygen sensor is requested and the target impedance is set to be small (for example, 25Ω). Thereby, the heater is controlled such that the element temperature of the solid electrolyte becomes 700° C.
At and after time t14 at which the solid electrolyte element is stabilized at high temperature (the element impedance falls in the predetermined range (15Ω<imp≦25Ω)), the variation amount of the output voltage of the normal oxygen sensor is reduced since the reactivity by rich gas (CO) is reduced in comparison with that at low temperature control. Further, the variation amount of the deteriorated sensor is similarly reduced.
During a time period until reaching time t15, the change speed integrated value sd1oxsh in high temperature control is calculated similar to that in low temperature control.
Further, at a time point of time t15, the change speed integrated value deviation amount de1xh1 which is the deviation between the change speed integrated value sd1oxs1 at low temperature control time and the change speed integrated value sd1oxsh at high temperature control time is calculated. The deviation amount de1xh1 becomes a large value when the oxygen sensor is normal and becomes a small value when the oxygen sensor is deteriorated. Therefore, presence or absence of the deterioration can be determined by comparing with a predetermined determinant. Further, although according to the embodiment, it is determined whether the oxygen sensor is deteriorated or normal, a degree of the deterioration can also be detected by providing a plurality of determinants. Naturally, the deviation amount de1xh1 can also be used as an index of the degree of deterioration as it is.
Further, although according to the embodiment, deterioration detection of the first oxygen sensor 25 is described, the embodiment is not limited thereto but can also be used for deterioration detection of the second oxygen sensor 26. Further, the embodiment can also be used for the linear air-fuel ratio sensor 24.
The diagnosis processing according to the embodiment is less influenced by the catalyst storage function as described in reference to
As shown in
Further, in a state in which the catalyst is deteriorated and particularly the O2 storage function is reduced, the change speed of the oxygen sensor output is increased as shown by
In the first embodiment, detecting abnormality of the oxygen sensor is made by comparing the variations of the sensor outputs when the element temperature of the oxygen sensor is controlled to high temperature and when the element temperature is control to low temperature under a certain specific operating condition. According to the second embodiment, detection performance is further promoted as described below.
In
At step 1001, when it is determined that the condition of executing diagnosis is not established, the processing proceeds to step 1008 and finishes the program. When it is determined that the condition of executing diagnosis is established at step 1001, the processing proceeds to 1002.
At step 1002, it is determined whether the low element temperature control is to be executed. When it is determined that the low element temperature control is to be executed here, the processing proceeds to step 1003 in order to further promote detection performance of diagnosis, makes a proportional control gain (rich side proportional gain) of sub-feedback control by the first oxygen sensor 25 larger than that in normal control to thereby provide larger gas change. According to the embodiment, the gain is increased from 0.1 at normal time to 0.2.
At sensor low element temperature control time, the reactivity with rich gas (CO) of the oxygen sensor is promoted. Therefore, by increasing the control gain in this way, larger correction can be achieved. Therefore, when the sensor detects rich (large output), by carrying out large reducing correction, lean gas can be supplied at once and the oxygen sensor reacts with rich or lean significantly. Further, the processing proceeds to step 1004 and the variation of the sensor output is summed up.
Further, when it is determined at step 1002 that the low element temperature control is not executed, the processing proceeds to step 1005. At step 1005, it is determined whether high element temperature control is to be executed. In the case of the high element temperature control, the processing proceeds to 1006 and makes a proportional control gain (lean side proportional gain) of the sub-feedback control larger than that at normal time similar to step 1003. According to the embodiment, the gain is increased from 0.05 at normal time to 0.1. Further, at step 1007, the variation of the sensor output is summed up.
According to the embodiment, in accordance with the sensor high element temperature control, the proportional gain on the rich side or the lean side is significantly changed to more remarkably extract respective gas reaction characteristics. However, it is not necessarily needed to change the respective gains in order to promote detection performance. However, in executing diagnosis, the proportional gain of the sub-feedback control may be increased without depending on the temperature control. Further, the proportional gain of the sub-feedback control may be changed such that only the reactivity on the rich side or the reactivity on the lean side is utilized.
Next, abnormality determination of the first oxygen sensor 25 will be explained in reference to
First, when step 1100 is started at a predetermined timing, at successive step 1101, a determination of whether normal/abnormal of the first oxygen sensor 25 may be determined is executed. This is determined based on whether the sensor output variation integration shown in
When it is determined that the condition of determining diagnosis is established, the processing proceeds to step 1102. At step 1102, there is calculated a ratio pd1oxs (=sd1oxs1/sd1oxsh) of the sensor output variation integration (sd1oxsh) at high element temperature control time relative to the sensor output valuation integration (sd1oxs1) at sensor low element temperature control time. Thereby, the deterioration of the sensor can stably be determined by excluding aging change of catalyst deterioration or the like.
Next, the processing proceeds to step 1103 and determines whether the sensor output variation integration ratio pd1oxs is equal to or smaller than a predetermined value. Here, when the ratio is equal to or smaller than the predetermined value, it is determined that the reactivities of the sensor electrode when the sensor element is at low temperature and at high temperature are deteriorated and the processing proceeds to 1104. Further, at step 1104, a first oxygen sensor abnormality flag is set. Meanwhile, when it is determined that the sensor output variation integration ratio pd1oxs is larger than the predetermined value at step 1103, the processing proceeds to step 1105. Further, a first oxygen sensor normality flag is set.
In
According to this modification, when it is determined at step 1002 in
Also when it is determined that the high element temperature control is being executed at step 1005, similarly, at successive step 1022, at this time, it is determined whether the first oxygen sensor output V1 is less than 0.35V. When it is determined here that the output is less than 0.35V, the processing proceeds to step 1006 and executes a processing similar to that in
Next, operation of the second embodiment will be explained in reference to time charts of
In
In
Next, at time t22 at which the element temperature is stabilized, the proportional gain of the sub-feedback control is set to be large. Therefore, a request for the sub-feedback gain requests high gain. At this time, the output of the oxygen sensor is increased since the oxygen sensor is reacted by rich gas (CO). Since the proportional gain is large, correction to the lean side (reducing correction of injection amount) is significantly promoted and the oxygen sensor output is operated significantly to the lean side.
Here, when the electrode of the oxygen sensor is deteriorated, the reactivity is reduced. Therefore, the illustrated output of the oxygen sensor when deteriorated is brought about. However, when the oxygen sensor is normal, the output is further significantly varied as in the illustrated output of the oxygen sensor at normal time. The variation of the output of the oxygen sensor at this time is summed up and the low temperature time output integrated value is calculated. In this way, the output of the oxygen sensor when the element is at low temperature is finished to be integrated during a predetermined time period between time t22 to t23 and the sensor high element temperature control is successively executed.
However, at time t24, the diagnosis executing condition is not established. Therefore, the sensor high element temperature control is returned to the normal temperature control. Thereafter, when the diagnosis executing condition is established again at time t25, the high element temperature control is started. At time t26 at which the sensor element temperature is stabilized to be high, a request for increasing the sub-feedback gain is issued and the proportional gain is set to be large.
Further, during a predetermined time period from time t26 to t27, the integrated value of the oxygen sensor output variation at the sensor element high temperature time is calculated. At time t27, the integrated values of the output variations of the oxygen sensor when the sensor element is at low temperature and when the sensor element is at high temperature have respectively been calculated. Therefore, the ratio of the integrated values of the output variation of the oxygen sensor when the sensor element is at low temperature and when the sensor is at high temperature is calculated.
When the sensor electrode is normal, the output variation integrated value ratio becomes larger than a predetermined value, however, when the electrode is deteriorated, the output variation integrated value ratio becomes small. By comparing the output variation integrated value ratio with a previously stored determinant in this way, the deterioration of the sensor electrode can be detected.
Although according to the above method, the diagnosis detection is carried out by utilizing the sub-feedback control for correcting the feedback control of the air-fuel ratio by the air-fuel ratio sensor before the catalyst (hereinafter, described as main feedback control), a method of utilizing the main feedback control will be explained in reference to
In
When the sensor element temperature is controlled to be low in this way, the reactivity is promoted by rich gas (CO). Therefore, an effect is achieved by controlling emission gas on the rich side. In contrast thereto, when the sensor element temperature is controlled to be high, the effect is promoted by controlling emission gas in the lean side.
Here, the air-fuel ratio (oxygen sensor output VTG) downstream from the catalyst is set to be slightly rich at step 1031. Further, the air-fuel ratio downstream from the catalyst is set to be slightly lean at step 1033. The diagnosis is executed by detecting the variation of the oxygen sensor by the sub-feedback control.
However, a similar effect can be achieved even when the sub-feedback control is stopped and a variation of the air-fuel ratio by a small amount is provided to the main feedback control at every predetermined time period.
As shown by
The embodiment will be explained in reference to
At successive step 1121, a ratio pd1oxs (=kd1oxs1/kd1oxsh) is calculated. kdloxl is a ratio of the integrated values sdloxsl of the variation of the air-fuel ratio upstream the catalyst to an integrated value sdloxl of the variation of the air-fuel ratio downstream the catalyst which are calculated at step 1120 when the sensor element has low temperature. kd1oxsh is a ratio of the integrated value sdloxsh of the variation of the air-fuel ratio upstream the catalyst to the integrated value sd1oxh of the variation of the air-fuel ratio downstream the catalyst when the sensor element is at high temperature. Next, the processing proceeds to step 1103, and determines whether the first oxygen sensor is normal or abnormal as has been explained in reference to
Although according to the invention, diagnosis is executed by using the integrated value of the output variation of the oxygen sensor, the diagnosis can also be executed by change speed (ΔV) per time, amplitude, or a frequency of the oxygen sensor. However, as shown by
Number | Date | Country | Kind |
---|---|---|---|
2002-228273 | Aug 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5811661 | Scheid et al. | Sep 1998 | A |
6120663 | Kato et al. | Sep 2000 | A |
6258232 | Hasegawa et al. | Jul 2001 | B1 |
6935155 | Yasui et al. | Aug 2005 | B2 |
Number | Date | Country |
---|---|---|
62-250351 | Oct 1987 | JP |
3-87949 | Sep 1991 | JP |
7-198672 | Jan 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20040025856 A1 | Feb 2004 | US |