This invention is directed to an apparatus for detecting uplink ranging codes in a wireless communication system. The following merely illustrates various embodiments of the present invention for purposes of explaining the principles thereof. It is understood that those skilled in the art will be able to devise various equivalents that, although not explicitly described herein, embody the principles of this invention.
The switch 206 receives outputs from the cross-correlation unit 204, and selectively passes the outputs to the screening unit 208 or the second transform unit 210, depending on whether one or more predetermined criteria are met. For example, if the size of the ranging code book is smaller than a predetermined value, the switch 206 will pass the outputs from the cross-correlation unit 204 to the second transform unit 210 bypassing the screening unit 208; if the size of the ranging code book is larger than the predetermined value, the switch 206 will pass the outputs to the screening unit 208 for identifying parts of the received data that match the potential ranging codes, thereby reducing the number of tasks that must be processed by the second transform unit 210—the operation of the screening unit 208 will be described in further detail in following paragraphs. As another example, if the number of the detected ranging codes generated by the detection unit 212 is smaller than a predetermined threshold, the switch 206 will pass the outputs from the cross-correlation unit 204 to the screening unit 208. However, if the number of the detected ranging codes is larger than the predetermined threshold, the switch 206 will forward the outputs from the cross-correlation unit 206 to the second transform unit 210, bypassing the screen unit 208. The scenario in which the switch 206 passes outputs from the cross-correlation unit 204 to the screening unit 208 is referred to as a sub-optimal mode, whereas the scenario in which the switch 206 passes outputs from the cross-correlation unit 204 to the second transform unit 210, bypassing the screening unit 208, is referred to as an optimal mode.
The screening unit 208 filters through the outputs of the cross-correlation unit 204 to identify parts of the data received from the mobile station that match the possible ranging codes from the ranging code book. The screening unit 208 forwards the matches to the second transform unit 210, and discards the identification results that do not match. Mathematically, S=[s(1), s(2), . . . , s(N)] is the cross-correlation vector of the i-th possible ranging code Ci=[ci(1), ci(2), . . . ci(N)] with the received signal [r(1), r(2), . . . , r(N)] in the output of the cross-correlation unit 204. A differential operation is performed to S, i.e. x(n)=s(n+1)s*(n), n=1, 2, . . . , N−1, where s*(n) is the complex conjugate of s(n). Sum x(n) together to provide
and compare y with the predetermined threshold. If y>h, proceed to the second transform unit 210. The second transform unit 210 transforms the outputs from the screening unit 208 with a mathematical algorithm, such as IFFT. Because the number of outputs from the screening unit 208 is reduced, the demands for computing resources by the second transform unit 210 as well as the detection unit 212 are also reduced.
The detection unit 212 receives outputs from the second transform unit 210, and detects the ranging codes for the received data. Various types of information useful for the base station to establish links with the mobile station can be estimated based on the detected ranging codes. For example, the time offset, frequency offset, and the power adjustments of the uplink signals from the mobile station to the base station can be estimated based on the detected ranging codes.
In this embodiment, the time offset is estimated by comparing a signal distribution graph plotted based on the outputs from the second transform unit 210 with a set of predetermined signal distribution patterns of the possible ranging codes. Referring to
In the prior art, the time offset is estimated by the peak location of the signal distribution curve. However, the estimated result may not be accurate as the location of the peak on the time line may be affected by noise. In this embodiment, the time offset is determined by relative peak locations in a pattern, thereby eliminating influences of noise and factional sampling offsets. As a result, the accuracy of time estimation is improved.
The detection unit 212 can also detect frequency offsets using the received ranging codes. For example in an Orthogonal Frequency Division Multiplexing (OFDM) system, suppose the OFDM symbol length is N, and ranging signal is transmitted at the first OFDM symbol. Let [rj(1), rj(2), . . . , rj(N)] be the j-th received OFDM symbol in frequency domain. Suppose the i-th ranging code is detected and the corresponding time offset is πi. Steps of estimating the corresponding frequency offset to the i-th ranging code are described as following:
conduct cross-correlation for [r3(1), r3(2), . . . , r3(N)] and [r2(1), r2(2), . . . , r2(N)] with the i-th ranging code Ci=[ci(1), ci(2), . . . , ci(N)] respectively. The results of cross-correlation are expressed as S2=[s2(1), s2(2), . . . , s2(N)], S1=[s1(1), s1(2), . . . , s1(N)], with s2(n)=r3(n)ci*(n), s1(n)=r2(n)ci*(n).
perform the cross-correlation for [r2(1), r2(2), . . . , r2(N)], [r1(1), r1(2), . . . , r1(N)], with the i-th ranging code Ci=[ci(1), ci(2), . . . , ci(N)] respectively. In the second cross-correlation, a phase rotation is considered for the cyclic prefix structure of initial ranging. The results of cross-correlation are presented as S2=[s2(1) s2(2), . . . , s2(N)], S1=[s1(1), s1(2), . . . , s1(N)], with s2(n)=r2(n)ci(n)exp(jnφ0), s1(n)=r1(n)ci(n), where j=√{square root over (−1)} the value φ0 depends on the length of cyclic prefix.
or φi=phase(Z2(πi)Z1*(πi)), where Z1*(n) is the complex conjugate of Z1(n).
Based on φi to calculate the frequency offset respect to the i-th ranging code
where Ts is the duration time of one OFDM symbol, fc is the system carry frequency.
One advantage of the present invention is its flexibility in switching between the sub-optimal and optimal modes. This allows a base station to use its resources more efficiently than that implemented according to the conventional technology when detecting ranging codes. For example, if the ranging code book contains a large number of possible ranging codes, the proposed apparatus will switch to the sub-optimal mode to reduce the demanding for resources in data processing; if the ranging code book contains a small number of possible ranging codes, the proposed apparatus will switch to the optimal mode in order to achieve a more accurate or through result of data processing. Another advantage of the proposed apparatus is that the accuracy of the time offset estimation is improved as it is determined by patterns instead of peak locations.
It is noted that the proposed apparatus is applicable to any distributed frequency domain PN (Pseudo-random Noise) sequences. This includes any preamble, ranging for FDMA (Frequency Division Multiple Access), OFDMA (Orthogonal Frequency Division Multiple Access), and any combination of them, synchronized or unsynchronized, frequency division duplex (FDD) or time division duplex (TDD).
The above illustration provides many different embodiments or embodiments for implementing different features of the invention. Specific embodiments of components and processes are described to help clarify the invention. These are, of course, merely embodiments and are not intended to limit the invention from that described in the claims.
Although the invention is illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention, as set forth in the following claims.
The present application claims the benefit of U.S. Provisional Application Ser. No. 60/853,861, which was filed on Oct. 24, 2006.
Number | Date | Country | |
---|---|---|---|
60853861 | Oct 2006 | US |