This invention relates to a computing system deployment system. In particular, it relates to an apparatus for discovering computing services architecture and developing patterns of computing services and method therefor.
Conventional computing systems, for example enterprise applications, typically possess multi-tier and distributed architectures. Unlike standalone applications in the past, these enterprise applications provide specialized solutions catering to different business needs within organizations or across geographically distant installations. The elaborate structure of these enterprise applications gives rise to a vast quantity of heterogeneous enterprise back-end computing.
Management of the enterprise applications to maintain architectural integrity and performance of the enterprise applications is critical for creating new applications and for providing availability of business services to users.
The aspects of the computing systems typically requiring management includes the deployment and configuration of computing system services, system functionality diagnosis, maintaining the integrity of the component dependencies within a computing system, and monitoring and balancing of computing system component loading for improving computing system performance.
In the course of managing the computing systems, a situation requiring components of an application to be moved between two systems at different locations may arise. Alternatively, new resources may be made available to the system that the enterprise applications reside within. In both these situations, there is a need to reconfigure a previously configured system. In most cases, the deployment of an application or its components requires complicated procedures that requires specialized training in the application being installed as system integrity has to be preserved at all times.
A computing system typically undergoes several configuration changes and a few revisions of its associated components in the course of its life. Once an application is deployed within a system and becomes operational, it will undergo further component replacements, enhancements and expansion in scale. Thus, keeping the dependencies and the integrity of large-scale systems becomes problematic as possibly, different vendors provide different applications. Typically, maintaining the computing systems needs to be performed by an administrator who is deploying the computing systems or applications. In such a situation, the dependencies and inter-connection requirements between computing systems are provided to the administrator in the form of instructional manuals. Further knowledge of the requirements and limitations of each system, application or its components is dependant on the experience and tacit capability of the administrator.
Therefore, it is desirable to have a common framework and method for capturing or specifying all these information in a structured manner, so that the dependency calculations can be automated.
A computing system deployment method addresses the foregoing issues by introducing layers and clusters for segregating computing system, system and resource components based on their functionality and services provided thereby. Associations between components are registered in profiles to facilitate dependency tracking. The computing system deployment method allows for structured deployment of the computing system onto a first host system. The profiles further facilitate migration of the computing system and its associated components onto a second host system without compromising system integrity.
Existing infrastructures can benefit from the computing system deployment method once information relating to the deployed computing services is known. A computing services architecture discovery method based on the computing system deployment method provides steps for discovering deployed computing services to facilitate infrastructure re-architecting, re-alignment processes and optimization.
Existing reverse engineering and software exploration methods and tools are typically domain specific and largely relate to software maintenance and engineering, database reverse engineering and object-oriented design patterns and recovery for recovering software-coding patterns at source-level. Examples of these methods and tools include PLASTIC by Plastic Software, which provides documentation and annotation capabilities once a pattern of the deployed computing services is discovered. Jbuilder and TogetherSoft are Integrated Development Environment (IDE) tools. These IDE tools provide two-way process in which discovered patterns can be modified and the corresponding source codes are automatically changed and vice versa. Another example is Microsoft Visio by Microsoft, which can construct an object model of a database when the connection information for the database is provided. However, it does not allow any modification to be made to the database schema unless the database is supported by the Visio product.
Other such methods and tools are for website and web applications architecture recovery and network topology designing. Examples of these methods and tools include Adobe GoLive and Network Sonar. The Adobe GoLive can construct a graphical diagram of the website development based on the web-page repositories by traversing through the link elements found in the web-pages and construct the diagram. The Network Sonar can construct topology diagrams, network connectivity diagrams from existing network by employing probing techniques such as SNMP and ICMP.
These methods and tools do not provide information on how each component (e.g. web-servers and applications servers) inter-operates with each other, its dependencies and configuration, which are essential information to aid in the understanding of the existing infrastructure as a whole and planning for new deployments or migration. Discovered service architectures and patterns are not readily modified and fine-tuned due to the lack of proper tools and framework for storing information relating to the deployed components. Further, discovered patterns that represent best practices and bad practices cannot be archived for future references. Thus, future system deployment designs cannot be leveraged from the knowledge of past experiences due to the lack of such archives.
Clearly, there is a need for an apparatus for discovering computing services architecture and developing patterns of computing services and method therefor, wherein tools are provided for fine-tuning the discovered computing services architecture and abstracting pats therefrom and archiving the patterns for future references.
An apparatus for discovering computing services architecture and developing patterns of computing services and method therefor are disclosed. The apparatus, according to an embodiment of the invention, provides a graphical user interface for displaying a deployment plan of deployed computing services. Components in the deployment plan are interconnected by links indicating dependency relationships between the components. Bach component and link is assigned a confidence value, which is based on a calculated weight of the properties of each component The apparatus fryer provides editing tools for manipulating the components in the deployment plan as well as for creating and managing patterns.
Therefore, in accordance with a first aspect of the invention, there is disclosed an apparatus for discovering computing services architecture and developing patterns of computing services, the apparatus comprising:
In accordance with a second aspect of the invention, there is disclosed a method of discovering computing services architecture and developing patterns of computing services, the method comprising the steps of:
Embodiments of the invention are described hereinafter with reference to the following drawing, in which:
FIGS. 6 to 12 and 14 show examples of a user graphic interface of an apparatus for discovering and developing patterns according to an embodiment of the invention; and
An apparatus for discovering computing services architecture and developing patterns of computing services and method therefor are provided hereinafter.
The apparatus for and method for discovering computing services architecture and developing patterns of computing services (hereinafter referred to as“the System”) according to an embodiment of the invention is described with reference to FIGS. 1 to 14. The System is preferably based on a computing system deployment model 100 as shown in
The computing system deployment model 100 is for planning and realizing a deployment of a computing system (not shown) onto a computer-based host system 102, which typically comprises multiple geographically dispersed sub-systems. The computing system comprises multiple components 202 (shown in
The service components are for providing one or multiple application-specific, vendor-specific or domain-specific services, which include providing service-related contents such as web-contents and user account data.
The system components are conventionally known as server components and are for providing computing system-based resources and services to other components 202 within the host system 102. Examples of such system components are DNS servers, FTP servers, system libraries, Windows registries and key repositories.
The resource components represent one of a physical hardware that is associated with a computing node or a virtual device representing the physical hardware. Examples of hardware represented by the resource components include network cards, hard disks, routers, firewalls and memory modules.
The components 202 in each layer 104 are grouped into clusters 204 based on the functions thereof as shown in
Each cluster 204 has an associated cluster profile (not shown). The cluster profile contains a description of an associated cluster and a function descriptor describing the function of the components 202 contained therein.
Component Profile
Each component 202 has a corresponding component profile 300 as shown in
The association requirement 304 indicates which of the components 202 in the host system 102 are required for associating with the component being described by the component profile 300. For example, in the case of a service component, the component profile 300 is a service profile. Thus, the association requirement 304 indicates system components required for associating with the service component being described by the service profile.
The association restriction 306 indicates which of the components 202 in the host system 102 that are in conflict with and have been prohibited from accessing the component being described by the component profile 300. The association restriction 306 further provides information on potential and known conflicts. The information on the conflicts allows the conflicts to be properly managed or alleviated during the deployment of the computing system.
The contract specification 308 states the information to be provided by a corresponding component 202 for accessing the component 202 described by the component profile 300. An application of the contract specification is illustrated using a hypertext transfer protocol (HTTP) server (not shown) as follows. The system component of the HTTP server, for example an Apache HTTP server, requires a valid alias and a root directory location to be specified for access thereto. The valid alias and root directory location requirements are stated in the contract specification 308 of the system profile describing the system component of the Apache HTTP server. Therefore, a service component of an Enterprise server, for example, requiring access to the system component of the Apache HTTP server has to be provided with information required by the contract specification 308 thereof. The service component of the Enterprise server then provides the Apache HTTP server with the required valid alias and root directory location to the system component of the Apache HTTP server for access of the same thereby in accordance to the association requirements 304 of the service profile describing the service component.
The list of access controls 310 specifies the ability of a component 202 contained in another cluster 204, preferably from the same layer 104, to access the component 202 being described by the component profile 300 and vice-versa. The access controls 310 are conventionally provided by the vendors of the components 202 in the host system 102 to avoid association of components 202 supplied by one vendor from accessing or being accessed by components 202 supplied by another vendor. Further, the access controls 310 can be utilized for marketing, political, security or operational reasons.
The ownership history 312 indicates one or multiple owners of the component 202 described by the component profile 300 and the relative priority that each owner has over the component 202 based on the configuration of the deployment. The owner is one or more of any combination of a system including the host system 102, a cluster including the service, system and resource clusters, and a component 202 in the host system 102.
The component history 314 tracks the current and past configuration the component described by the component profile 300 is deployed upon. The component history 314 further reflects the dependency of other components 202 in the host system 102 on the component. The component history 314 is further used for restoring and archiving deployed computing systems. This enables any corruption to the computing system or the components therein to be rectified by enabling redeployment or restoration of the computing system to its most recent pre-corrupted state.
The list of cost specifications 316 specifies the corresponding cost of using of the component 202 being described by the component profile 300. The cost of using a component includes virtual memory usage (for example a random access memory or RAM), physical storage usage (for example a hard disk drive), the physical storage expansion requirements with respect to time and the like system resource requirements. The cost specifications 316 allows an administrator of a computing system to decide upon the viability of installing a component or a cluster of components while considering the current and future impact on system resource requirements if the component is installed.
The component configuration specification 318 specifies multiple configuration parameters for deploying the component. Each parameter is specified as a key-value pair, wherein the key refers to the parameter name, such as“application-name” and the value refers to as specific value corresponding to the parameter name, in this case, the specific application name, such as“oracle”. Another example of a key-pair is “server-port=80”. Other parameters include run-time information relating to how each component 202 is deployable and alterable parameters that affect the run-time behavior of the component 202. The run-time information includes installation paths, network ports and addresses, location of application-specific configuration files and logs, and the like component configuration details. The run-time information is one of application-specific, domain-specific and vendor-specific and ensures substantial accuracy in planning for the deployment of the computing system or the realization of the computing system infrastructure.
Discovery Steps
Using the framework of the component profile 300 described in the foregoing with reference to
The operational principle behind the discovery steps 400 is based on the fact that most, if not all, component profiles of deployable components have a default or recommended configuration. Further, deployment of these components tends not to deviate too much from the recommended configuration and certain parameters used in the recommended configuration are also used or customized in the actual deployment.
However, it is unlikely that one vendor supplies all the deployed components. As such, information in the component profiles supplied by one vendor typically differs from information in the component profiles supplied by another vendor.
The discovery steps 400 seek to detect the presence of the deployed components and discover the properties (i.e. configuration and dependencies information) of the detected components and re-organize these discoveries into the framework of the component profile 300 for aiding the construction of a reusable deployment plan using the computing system deployment model 100 described in the foregoing. The operation of the discovery steps 400 is illustrated with reference to
Specifying Discovery Pool
The specification of discovery pool step 402 is concerned with specifying or identifying a pool of component profiles for detecting the associated deployed components. Typically, these component profiles are provided by the vendors of the deployed components and contain default and/or recommended deployment parameters. The step 402 preferably involves performing one or more of the following tasks:
Each discovery proxy specifies either discovery-scripts for self-constructing (or self-discovering) the profile of a corresponding deployed component or a link to another component profile from which the properties therein can be inherited when re-constructing the profile of the corresponding deployed component. The information discovered by the discovery-scripts associated with the discovery proxy is compiled to provide a component profile, wherein the management information of the deployed component is arranged according to the framework of the component profile 300.
The discovery-scripts are platform-dependent or platform-independent scripts, which are executed during the detection and extraction step 404 as described hereinafter. Existing software reverse-engineering techniques such as source-code-level and binary-level analysis can be incorporated into the discovery scripts, depending on the granularity of extraction and level of understanding of the deployed components needed and difficulties in discovering the information. The discovery-scripts can also serve as additional discovery hints to enhance the detection and extraction process. Thus, component profiles can be tailored not just for planning and deployment but also for the discovery thereof. That is, the component profiles can be used as a means for specifying explicit instructions to drive and guide the detection and extraction process. Examples of the discovery-scripts include:
In order to enhance the detection of component dependencies and conflicts, components that are specified in the association requirement and association restriction properties of each specified component profile may be automatically included into the discovery pool. However, the dependencies and mandatory contract specifications of the components automatically included into the discovery pool are preferably validated in this step 402 according to the contract specification 308 as defined in the component profile of each deployed component. Therefore, components that meet the association requirement but do not meet the contract specification are not included into the discovery pool.
Detecting and Extracting
Once the pool of component profiles is specified, the detection and extraction step 404 is initiated to search for the deployed components corresponding to the specified component profiles in the discovery pool and extract properties therefrom upon detecting the deployed components. The step 404 comprises three sub-steps:
In the sub-step (i), a component corresponding to a specified component profiles in the discovery pool is deemed successfully detected if one or a combination of the following weighted parameters are detected in the file-system, system resources (such as network ports), system registries or other operating system dependent information source.
Base Directory Detection. A BasePath pathname attribute in the configuration property, which specifies the default base pathname location for the deployed component, matches fully or partially against pathnames that exist in the actual file-system. For partial matching, only the last element of the pathname is matched. The matching process is non-case sensitive and involves discarding any leading or ending non-alphabetical and white-space characters.
Configuration File Detection. A filename specified by a ConfigFile attribute in the configuration property matches fully or partially with one or more filenames that exist in the detected base directory or sub-directories thereof.
Error Log File Detection. A filename specified by an ErrorLog attribute in the configuration property matches fully or partially with one or more filenames that exist in the detected base directory or sub-directories thereof.
Log File Detection. A filename specified by a Log attribute in the configuration property matches fully or partially with one or more filenames that exist in the detected base directory or sub-directories thereof.
A Content Detection. One or more filenames or pathnames specified in the content property (not shown in
Component Name Detection. A Component Name attribute in the descriptor property matches a filename or directory name fully or partially in the existing file-system or a key in a system registry.
Vendor name Detection. A Component Vendor Name attribute in the descriptor property matches a filename or directory name fully or partially in the existing file-system or a key in a system registry.
Discovery-script Component Detection Test For discovery proxies or component profiles with discovery-scripts, executing the component detection discovery-scripts returns a COMPONENT_DETECTED or COMPONENT_NOT_DETECTED result.
Using a simple conditional probability, which measures the likelihood that a component is present, the final score of a component, after the performance of the sub-step (i), is given by:
where p represents the likelihood that a parameter is present, the value of p is between 0 and 1, with 1 indicating that the parameter is very likely to be present, w represents a weight associating with the parameter, the value of w is between 0 and 1, with 1 indicating that the parameter is very important, and n represents the number of parameters associated with one component.
Further, the foregoing detection conditions can be used to test for heuristics by using the association requirement and association restriction properties specified in the component profiles. These heuristics includes (a) Absence of Conflicts—no conflicting components detected and (b) Presence of Dependencies—detected presence of some or all dependant deployed components.
The outcome of the sub-step (i) is the successful detection of deployed components having corresponding component profiles as specified in the discovery pool. Further, any successfully detected conditional values or attributes are also updated into the appropriate properties and attributes of the corresponding component profiles. These updated component profiles are referred to as re-constructed component profiles. Information in each re-constructed component profile is arranged in a systematic and consistent manner in accordance with the component profile 300 framework described in the foregoing with reference to
If the discovered attributes of the detected component fail to match with the attributes that are specified in the corresponding component profile, the detected component is tagged with an Identity-Incomplete status. If two or more detected components are found to match with one component profile specified in the discovery pool, each of these detected components is tagged with an Identity-Ambiguous status.
In the sub-step (ii), information relating to the configurations of the detected components are extracted and updated in the configuration property of the corresponding re-constructed component profiles. Attributes that are previously updated in the sub-step (i) are ignored. Incomplete and un-customized or default attributes are information that need to be extracted from the detected components.
For discovery proxies or component profiles with discovery-scripts, the extraction process is performed by executing the configuration extraction discovery-script therein. Otherwise, if configuration files are detected in the sub-step (i), partial matching of configuration keys is performed to deduce and extract the corresponding key values from the configuration files. This is achieved by performing string matching against the detected configuration files. This matching is also extended to the system registry, if one exists. If the component profile specifies only one default configuration set, which comprises multiple configuration key-value pairs of a component, in this case all the configuration key-value pairs, but multiple configuration sets are extracted from the detected component, the detected component is tagged with a Configuration-Ambiguous status. Thus, several possible configuration sets are generated for the user to choose from. However, if the extraction process fails to extract configuration keys specified in the component profile, the detected component is tagged with a Configuration-Incomplete status.
The outcome of the sub-step (ii) is the updated configuration information in the configuration property of the reconstructed component profiles of the detected deployed components. Further, each detected component is tagged with an appropriate status.
In the sub-step (iii), one or more detected components having dependency relationships detected in the sub-step (i) are verified to comply with mandatory dependency relationships specified in the requirement property of the corresponding component profiles. To determine if a dependency relationship of the one or more detected components is valid, contract information is extracted from the detected components and compared against contract information specified in the corresponding component profiles. If contract information cannot be extracted, the dependency relationship is deemed invalid.
For discovery proxies or component profiles with discovery-scripts, the contract extraction discovery-script is used for extracting contract information from the detected components. If there are no discovery-scripts and if configuration files are detected for the components having the same dependency relationship, partial matching of default and mandatory contract keys contained in the configuration files of the detected components is performed to deduce and extract common contract values that describe the dependency relationship. If a system registry exists, the matching process is also extended thereto. If the required dependency contract key and value cannot be determined, the dependency relationship is deemed invalid.
If one or more mandatory dependency relationships are not uniquely matched or validated, each of the corresponding detected components is tagged with a Dependency-Ambiguous status. If a complete match or one mandatory dependency relationship is not successfully verified, each of the corresponding detected components is tagged with a Dependency-Incomplete status.
The outcome of the sub-step (iii) is the confirmation of the dependency relationships between the detected components as specified in the corresponding component profiles.
Ambiguity and Incomplete Discovery Resolution
At the conclusion of steps 402 and 404, the properties of the deployed components are either completely discovered or partially discovered. The partially discovered components are tagged with one or a combination of Identity-Ambiguous, Identity-Incomplete, Configuration-Ambiguous, Configuration-Incomplete, Dependency-Ambiguous and Dependency-Incomplete statuses. These partially discovered components may be further fine-tuned in the step 406.
The step 406 requires user-assistance and preferably involves using the System according to an embodiment of the invention to help in resolving the ambiguity and incomplete discoveries. For the ambiguous discoveries, namely, the identity, configuration and dependency ambiguities, the user is required to select one of the detected alternatives for each of the ambiguities. For the incomplete discoveries, namely, the identity, configuration and dependency incompletes, the user is required to provide the incomplete parameters and attributes in the corresponding component profiles.
Deployment Plan Construction and Validation
In the step 408, a deployment plan is constructed from the re-constructed component profiles of the corresponding detected deployed components provided by the previous steps 402, 404 and 406. Further, the constructed deployment plan can be further refined and validated by using the System to provide a final deployment plan and patterns therefrom can be extracted and archived for future references.
The deployment plan is preferably graphically presented as nodes (each node represents a component) and dependency lines linking the nodes for indicating dependency relationships therebetween, like the exemplary deployment plan 505 shown in
The step 408 also addresses over-detection and under-detection issues. Over-detection of deployed components, which is, partially addressed in the earlier steps where such components are tagged with ambiguous and/or incomplete statuses, arises from incorrect detection conditions or incorrect assignment of parameter weights. Thus, in the step 408, components that appear in the deployment plan but are not actually deployed in the computing system are removed or deleted from the deployment plan. The over-detection issue can be address by making the default detection conditions and weights dynamically adjustable or by having an adaptive or self-learning detection process. Alternatively, specific discovery-scripts are needed to accurately detect specific components.
Under-detection is typically detection misses that occur due to the following factors:
The first factor can be easily resolved by including the component profiles into the specified discovery pool. The second factor can be addressed by fine-tuning or relaxing the detection conditions and weights. Alternatively, discovery-scripts can be used to accurately detect the deployed components. The third factor can be addressed by creating a component profile for each of the detected components. Discovery proxy can be provided to automatically self-construct a component profile from the discoveries made by the execution of the discovery-scripts therein. Alternatively, a component profile can be recreated in a conventional manual way by describing the corresponding detected component and embedding hints therein for use during the detection and extraction process.
The System
Steps 406 and 408 preferably use the System according to an embodiment of the invention to help resolve the partially discovered components and to refine and validate the constructed deployment plan to provide a final deployment plan and patterns of the computing service.
The System allows the characteristics of the components of a computing service to be represented in a logical and easy to understand manner and provides editing tools for users to manipulate the properties and associations of the components. Further, the System enables patterns of deployment plan to be abstracted, analyzed and archived for future referencing. Thus, the System also provides tools for managing patterns of deployment plan and documentation.
The System comprises a graphical user interface (GUI) 600 as shown in
The deployment plan of a computing service is represented graphically in the visualizer window 602. Typically, each component 610 in the computing service is connected to another component 610 by a link 612 indicating a dependency relationship between the linked components 610. The arrowed end of the link 612 indicates the parent component and the non-arrow end of the link 612 indicates the child or dependent component. For example, as shown in
Confidence Value and Confidence Difference Value
Each component 610 and link 612 of the deployment plan in the visualizer window 602 is annotated with a confidence value. The confidence value for each component 610 is derived from the detection probability of each component 610 and the confidence value for each link 612 is derived from dependency conditional probability of one component on another component. The conditional probabilities of each component 610 and link 612 are normalized to provide a confidence value between zero and 100 with the value 100 indicating that the component is discovered with 100 percent confidence.
The confident value assigned to each component 610 indicates the likelihood the component 610 is actually present in the computing system. For example, as shown in
Further, the components 610 and links 612 can be color coded to enhance understanding. The color given to each component 610 and link 612 is dependent on the confidence value thereof. For example, as shown in
If the user sets a minimum threshold to 50, by using the minimum threshold controller 606, then components 610 and links 612 with confidence values lower than the minimum threshold are represented in red color indicating an unacceptable confidence level. The user can also set an acceptable threshold for all the components 610 and links 612 by using the acceptable controller 608. For example, as shown in
Alternatively, each component 610 and link 612 may be assigned a confidence difference value as shown in
The confidence difference value is a helpful indicator indicating to the user how far off the level of confidence of the components 610 and links 612 are from the acceptable level. Thus, the objective of the user is to manipulate the components 610 to arrive with components 610 and links 612 that have confidence difference values as close to zero as possible, and, preferably, greater than zero.
The GUI 600 provides three interaction modes for users to interact with the deployment plan in the visualizer window 602. These interaction modes include an Automatic Mode, a Fine Tuning Mode and a Manual Mode. In each interaction mode, the users are provided with editing tools for manipulating parameters associating with each component 610.
The Automatic Mode is preferably configured as a default mode. In this mode, each component 610 and link 612 in the deployment plan is displayed with a confidence value thereof as shown in
In the Fine Tuning Mode, the user is given more access to fine tune critical parameters associating with each component 610 and link 612 to arrive at a higher level of confidence value. A single adjustment of a parameter of a selected component 610 results in the System inspecting and recalculating the confidence values of all components 610 and links 612 in the deployment plan. As such, this mode is preferably used by experience users. To further facilitate the adjustments, the confidence value of each component 610 and link 612 is displayed as confidence difference value as shown in
The Manual Mode is similar to the Fine Tuning Mode except that the System only performs the inspection and recalculation of the confidence values upon the user instructing the System to do so. The reason behind this is to overcome certain functional impediments due to auto-adjustment of the confidence values upon every adjustment to a parameter of a component 610. This mode of interaction is preferred for situations where many manipulations are required and the user prefers to carry out all the manipulations before instructing the System to re-inspect and recalculate the confidence values of the modified deployment plan. A further advantage of this mode over
The GUI 600 also provides a Learning Mode, which operates in conjunction with the above three described interaction modes. The Learning Mode can be activated by simply checking a learn mode box 605. Once activated, the Learning Mode captures known heuristics. These heuristics may include the type of component that works well with another. For example, through the adjustments made to the components 610, the user may arrive at the knowledge that certain databases work very well with certain application servers. Thus, this knowledge may be captured as a pattern that can be used for future deployment plans. Alternatively, if it is established that a database component does not work well with an application server as reflected by the low confidence value, this knowledge may also be captured as anti-pattern. These heuristics may be deposited in a knowledge management framework for future reference. Based on these heuristics, for example, the probability of an application server is present in a computing system can be deduced based on the knowledge that an associated database component, as per the reference pattern, is present in the computing system.
The Automatic Mode, Fine Tuning Mode and Manual Mode can be selected by using the interaction mode controller 604.
The System further comprises editing tools such as discovery tools, pattern tools and learning tools.
Discovery Tools
Discovery tools are provided for manipulating components 610 and links 612 (dependency relationships) between the components 610 in a deployment plan to provide confidence values for the components 610 and links 612 as close to 100 as possible. Manipulating a component involves associating the component with a corresponding component profile from a component profile library, adjusting component dependencies, or modifying the confidence value of the component. Examples of the discovery tools include tool for single component focus; tool for single dependency focus; tool for single component-single dependency focus and tool for single component-multiple dependency focus. Each of these tools can be activated by clicking a button on a floating toolbar 610, as shown in
The single component focus tool allows a user to focus on one detected component at a time. The user can manipulate the detected component by performing a text-based association or by providing a ranking of possible component profiles based on the confidence values. For example, as shown in
The user can also force change the confidence value of a component if the user is certain that the detected component is the correct component. For example, if steps 402 and 404 described in the foregoing detect a component with a confidence value of 60, but the user is certain that correct component is detected, the user can force change the confidence value to 100 to compensate for the inadequate discovery. Further, in the cases where it is obvious to the user, a relationship between two components 610 can be force changed by the user. This is achieved by having the user clicking on one end of a link 612 connecting the two components 610 in the visualizer window 602 and dragging selected end of the link 612 to another component 610 to establish a new relationship thereto. The single dependency focus tool allows a user to focus on one dependency at a time. This tool is used for improving the dependency confidence level by changing the components 902 and 904 as shown in
The single component-multiple dependency focus tool allows a user to manipulate a detected single component 1102 having multiple dependency relationships (links 1110A-C) as shown in
Pattern Tools
Pattern tools are provided for users to create and define patterns. A pattern is created when multiple components are grouped together. The grouping process involves registering the components and the dependency relationships between the components within the group. The created pattern may have dependency relationships with external components that are not part of the created pattern. Further, links and references to other patterns can also be specified as part of the created pattern. The user may also be prompted to provide information relating to how, when and where the created-pattern is preferably usable.
A pattern is defined by using either a text-based approach or a graphic-based approach. The graphic-based approach is illustrated in
Once a pattern is created, the pattern can be archived in a pattern library for future references. The pattern can be used as template, which indicates a best practice or bad practice. Bad practice template (or anti-pattern) should be avoided even though the pattern solves a problem. This identification process can be performed either manually or automatically. The user can manually tag a pattern as a good pattern or a bad one based on the experience of the user. Alternatively, pattern-matching techniques can be employed to match an identified pattern against a list of known good or bad patterns to provide a score of how good or bad a pattern is.
Each pattern can also be assigned a unique signature. The unique signature is generated by using a hashing scheme, which processes information contained in the component profiles of the components in the pattern. Accordingly, once a component in the pattern is changed or modified, the unique signature for the pattern also changes. Thus, the unique signature can also be used as an index for searching purposes.
The System preferably provides a user interface 1300 for managing or documenting patterns in the pattern library, as shown in
The user interface 1300 further comprises a More Info button 1308 for providing extra information on a selected pattern, a Create button 1310, a Modify button 1312, a Delete button 1314, a Compare button 1316 and a Discover button 1318, as shown in
The buttons 1310, 1312, 1314 and 1316 allow a user to create, modify, delete and compare patterns in the patterns window 1304, respectively. The Discover button 1318 allows the user to either start a fresh discovery process based on a selected pattern or search for a selected pattern in a computing system. This discovery process is also known as a pattern based discovery process.
The pattern based discovery process allows a user to search for matching patterns in the Internet or extracting patterns from an identified computing system. The pattern extracting process involves analyzing the identified computing system for patterns and comparing the patterns against patterns in a pattern library. If a match is found, either partially or fully, the patterns extracted are displayed in the visualizer window 602, where components that constitute a matched pattern are preferably highlighted in the same color. Further, the user is able to mark each pattern extracted as correct, acceptable or anti-pattern, which is then archived for future use.
Each pattern can also be assigned a weight, similar to the weights assigned to the properties in a component profile as described in the foregoing. The pattern weight is a useful indicator when comparing an infrastructure against a partial pattern, which is a subset of a complete pattern. For example, as shown in
Tools are also provided for comparing one pattern against another to derive a super-pattern, which is typically a merger of two or more individual patterns together. For example, if a user observes two patterns consistently deployed on the same computing system, the user may combine the two patterns together to provide one super-pattern. The pattern comparing process involves superimposing one pattern on another. Once the overlaying association is established, the System compares the differences between the overlaying patterns and provides an indicator, preferably similar to the confidence value or confidence difference value, for indicating the level of matching accuracy. The higher the level of matching is, the closer a pattern is to a known pattern.
A strategy-to-pattern approach is another way for creating patterns. Strategies are often associated with computing service deployment process. Thus, strategies typically comprise specific deployable components as well as actual deployment options such as configuration information and specific products to be used. Using a strategy as a starting point, patterns can be created by modifying the specific deployable components in the strategy to a generic component. For example,
Learning Tools
The System also provides learning tools that are similar to macro recorders, which record the user's interaction in the visualizer window 602. The recorded interaction may be supplemented with additional information manually provided by the user. The recorded interaction is archived as an activity that can be invoked by the user to repeat the activity, thus, enhancing the productivity of using the System.
In the foregoing manner, an apparatus for discovering and developing patterns of a computing service and method therefor are described according to an embodiment of the invention for addressing one or more of the foregoing disadvantages of conventional methods and tools. It will be apparent to one skilled in the art in view of this disclosure that numerous changes, modifications and combinations can be made without departing from the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
SG/02/00095 | May 2002 | SG | national |
SG/02/00110 | Jun 2002 | SG | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SG03/00113 | 5/16/2003 | WO | 6/2/2005 |