The present invention relates to an apparatus for discrimination and conveyance of coins and more particularly, to an apparatus for automatically conducting separation and discrimination of coins which are stored in a storing unit and subsequent conveyance and distribution of the coins thus separated and discriminated.
In this specification, the term “coin” has a wide meaning that includes not only coins as currency but also coin equivalents such as tokens and medals other than coins as currency, in which the shape of a “coin” is not limited to a circular one and may be a polygonal or any other one.
Conventionally, apparatuses for automatically conducting separation and discrimination of coins and subsequent conveyance and distribution of the coins thus separated and discriminated, which is typically used for a coin depositing/dispensing apparatus, have been known. For example, Japanese Examined Patent Publication No. 5760233 issued on Jun. 19, 2015 discloses a coin depositing/dispensing apparatus which comprises a coin separation unit using a rotary disk (a rotary plate), a denomination discrimination unit using a rotary wiper (a rotor), and a coin conveyance and distribution unit using an endless belt and a guide rail. The coin separation unit, the denomination discrimination unit, and the conveyance and distribution unit are aligned in such a way that coins to be processed are conveyed along an approximately straight line in a horizontal plane when seeing macroscopically.
Japanese Examined Patent Publication No. 4997374 issued on May 25, 2012 discloses a coin depositing/dispensing apparatus which has an approximately the same structure as that disclosed by Publication No. 5760233.
Japanese Examined Patent Publication No. 6074640 issued on Jan. 20, 2017 discloses a coin sorting apparatus using image discrimination which has a rotary wiper for denomination discrimination and a chute mounted below the rotary wiper. The denomination of coins is discriminated using the rotary wiper and the coins thus discriminated are sorted according to their denominations and thereafter, the coins are guided by the chute to coin storing containers which are provided for the respective denominations.
With the conventional apparatuses for discrimination and conveyance of coins, such as the coin depositing/dispensing apparatus disclosed in Publication Nos. 5760233 and No. 4997374 described above, the coin separation and discrimination section contains the coin separation unit that separates coins which are stored in a container, and the denomination discrimination unit that discriminates the denomination of the coins thus separated and therefore, the whole length of this separation and discrimination section is likely to be long. For this reason, there arises a problem that the size of a coin depositing/dispensing apparatus increases inevitably if the said coin separation and discrimination section is combined with the coin conveyance and distribution unit that distributes the denomination-discriminated coins into the coin storing containers which are provided for the respective denominations while conveying the said coins, thereby constituting the coin depositing/dispensing apparatus. If the coin separation and discrimination section and/or the coin conveyance and distribution unit can be downsized, the apparatus for discrimination and conveyance of coins (and therefore, the coin depositing/dispensing apparatus) can be downsized. However, it is not necessarily easy to downsize them. Accordingly, it is very effective if the coin depositing/dispensing apparatus can be downsized in a different manner from the method of downsizing the coin separation and discrimination section and/or the coin conveyance and distribution unit itself/themselves.
With the aforementioned structure disclosed in Publication No. 6074640, the rotary wiper and the chute mounted below the same are used to largely change the conveying direction of coins to be processed and therefore, from the aforementioned point of view, there is a possibility that the coin depositing/dispensing apparatus may be downsized as desired by using any structure which is the same as or similar to that disclosed in Publication No. 6074640. However, desired downsizing cannot be achieved by simply using such the manner as described above.
The present invention was created while taking the aforementioned circumstances into consideration.
Accordingly, an object of the present invention is to provide an apparatus for discrimination and conveyance of coins that makes it possible to achieve downsizing of this apparatus itself with a simple and low-cost structure compared with the aforementioned conventional apparatuses of this type.
Another object of the present invention is to provide an apparatus for discrimination and conveyance of coins that makes it possible to achieve downsizing of this apparatus itself compared with the aforementioned conventional apparatuses of this type without changing the fundamental or basic structure of the coin discrimination unit.
The above objects together with others not specifically mentioned here will become clear to those skilled in the art from the following description.
An apparatus for discrimination and conveyance of coins according to the present invention comprises:
a coin separation unit that is configured to separate coins which are stored in a coin storing unit from each other, thereby sending the separated coins in a predetermined attitude;
a coin discrimination unit, mounted on a supporting member which comprises an opening, that is configured to discriminate a denomination of coins which are sent from the coin separation unit, thereby sending the discriminated coins; and
a coin conveyance and distribution unit that is configured to distribute coins which are subjected to denomination discrimination in the coin discrimination unit according to respective denominations while conveying the coins.
wherein coins separated in the coin separation unit are moved in a first direction in a plan view through a first delivering region and delivered to the coin discrimination unit; wherein the first delivering region is formed at a connecting part of the coin separation unit to the coin discrimination unit;
coins whose denomination is discriminated in the coin discrimination unit are moved in a second direction which is approximately perpendicular to the first direction in a plan view through a second delivering region and delivered to the coin conveyance and distribution unit; wherein the second delivering region is formed at a connecting part of the coin discrimination unit and the coin conveyance and distribution unit;
a moving direction of coins is changed from the first direction to the second direction through the opening in the second delivering region; and
coins are subjected to distribution while being conveyed in the second direction in the coin conveyance and distribution unit.
With the apparatus for discrimination and conveyance of coins according to the present invention, as explained above, coins which are separated from each other by the coin separation unit are moved along the first direction in a plan view through the first delivering region to be delivered to the coin discrimination unit and then, the denomination of the coins are discriminated by the coin discrimination unit. Thereafter, the coins thus discriminated are moved along the second direction which is approximately perpendicular to the first direction in a plan view to be delivered to the coin conveyance and distribution unit. In the coin separation unit, a plate-shaped rotating member such as a rotary disk is usually used and therefore, when seeing in a plan view, the ratio (Ls/Ds) of the length Ls of the coin separation unit in the first direction with respect to the depth Ds of the same in the second direction is considerably large in value while taking the fact that a driving mechanism for the rotating member is disposed adjacent to the rotating member on its back side into consideration. This is because the length Ls of the coin separation unit in the first direction is considerably larger than the depth Ds of the coin separation unit in the second direction.
Moreover, in the coin discrimination unit, a plate-shaped rotating member such as a rotary wiper is usually used and therefore, when seeing in a plan view, the ratio (Ld/Dd) of the length Ld of the coin discrimination unit in the first direction with respect to the depth Dd of the same in the second direction is considerably large in value while taking the fact that a driving mechanism for the rotating member is disposed adjacent to the said rotating member on its back side, similar to the coin separation unit. This is because the length Ld of the coin discrimination unit in the first direction is considerably larger in value than the depth Dd of the coin separation unit in the second direction.
For this reason, regarding the combination of the coin separation unit and the coin discrimination unit (i.e., the coin separation and discrimination unit) which is formed by aligning the coin separation unit and the coin discrimination unit in the first direction to be adjacent to each other, the ratio (Lsd/Dsd) of the length Lsd of this combination in the first direction with respect to the depth Dsd of the same in the second direction is larger in value than each of the ratios (Ls/Ds) and (Ld/Dd). This means that the coin separation and discrimination unit as the combination has a feature that the length Lsd is relatively large and the depth Dsd is relatively small and that the ratio (Lsd/Dsd) of the length Lsd with respect to the depth Dsd is very large, in other words, the coin separation and discrimination unit has an elongated shape which is elongated in the first direction.
On the other hand, in the coin conveyance and distribution unit, since a plurality of coin ejection devices are arranged along a straight line, the length Lcd varies in accordance with the total number of the denominations to be processed. However, generally speaking, the coin conveyance and distribution unit has a feature that the length Lcd is relatively large and the depth Dcd is relatively small and that the ratio (Lcd/Dcd) of the length Lcd with respect to the depth Dcd is very large, in other words, the coin conveyance and distribution unit has an elongated shape which is elongated along the straight line.
Accordingly, when constituting the apparatus for discrimination and conveyance of coins by combining the aforementioned combination (i.e., the coin separation unit and the discrimination unit which are aligned along a straight line) with the coin conveyance and distribution unit, it is preferred that the aforementioned combination and the coin conveyance and distribution unit are disposed so as to be perpendicular to each other in a plan view to reduce the size of the apparatus. For example, it is preferred that the aforementioned combination is disposed in the first direction and the coin conveyance and distribution unit (or the coin conveyance path) is disposed in the second direction in a plan view. This layout may be termed the “L-shaped layout”. This is because the length of apparatus using the L-shaped layout in the second direction is considerably smaller than that of the conventional linear layout where both of the aforementioned combination (i.e., the coin separation and discrimination unit) and the coin conveyance and distribution unit are disposed in the second direction. This is reflection of the aforementioned feature that the coin separation and discrimination unit (i.e., the combination of the coin separation unit and the coin discrimination unit) has an elongated shape extended in the first direction and the feature that the coin conveyance and distribution unit has an elongated shape extended in the second direction.
As a result, the apparatus for discrimination and conveyance of coins according to the present invention can be downsized compared with the aforementioned conventional apparatus of this type.
Moreover, since the need for realizing the aforementioned L-shaped layout is to change the moving direction of coins which are moved in the aforementioned combination (i.e., the coin separation and discrimination unit) to the second direction from the first direction and vice versa by way of the second delivering region formed at the connecting part of the coin discrimination unit and the coin conveyance and distribution unit, the aforementioned downsizing can be realized with a simple and low-cost structure.
Furthermore, to realize the aforementioned downsizing, it is sufficient to provide the second delivering region at the connecting part of the coin discrimination unit and the coin conveyance and distribution unit and therefore, it is unnecessary to change the fundamental or basic structure of the coin discrimination unit. Accordingly, downsizing of the said apparatus itself can be achieved compared with the aforementioned conventional apparatuses of this type without changing the fundamental or basic structure of the coin discrimination unit.
In a preferred embodiment of the apparatus according to the present invention, the coin discrimination unit conducts its discrimination operation for coins which are delivered from the coin separation unit by way of the first delivering region using a plate-shaped rotating member (e.g., a rotary wiper) which is rotationally driven on the supporting member.
In another preferred embodiment of the apparatus according to the present invention, the coin discrimination unit conducts its discrimination operation for coins which are delivered from the coin separation unit by way of the first delivering region using a plate-shaped rotating member (e.g., a rotary wiper) which is rotationally driven on the supporting member and a guide wall which is formed on the supporting member; and
the guide wall conducts its guiding operation (i) when coins are delivered from the coin separation unit to the coin discrimination unit by way of the first delivering region, (ii) when coins which are delivered to the coin discrimination unit are moved in the coin discrimination unit, and (iii) when coins which are moved in the coin discrimination unit are delivered to the coin conveyance and distribution unit by way of the second delivering region.
In still another preferred embodiment of the apparatus according to the present invention, the coin discrimination unit comprises a plate-shaped rotary member (e.g., a rotary wiper) which is rotationally driven on the supporting member inclined with respect to a horizontal plane, and
discrimination sensors fixed on the supporting member in a discrimination region that is overlapped with the rotary member; and
discrimination of coins which are delivered from the coin separation unit to the coin discrimination unit by way of the first delivering region is performed using the discrimination sensors when the coins pass through the discrimination region in response to rotation of the rotary member.
In a further preferred embodiment of the apparatus according to the present invention, the coin separation unit conducts its separation operation for coins which are stored in the coin storing unit from each other using a plate-shaped rotary member (e.g., a rotary disk) which is rotationally driven on the supporting member.
In a further preferred embodiment of the apparatus according to the present invention, the coin separation unit is mounted on the supporting member along with the coin discrimination unit; and
the first delivering region is formed on the supporting member.
In a further preferred embodiment of the apparatus according to the present invention, there are provided with a direction changing member that is formed to change a moving direction of coins which are delivered from the coin discrimination unit through the opening; and
a coin conveyance path, formed in the coin conveyance and distribution unit, that is configured to allow the delivered coins from the coin discrimination unit through the opening to move for distribution;
wherein the direction changing member is disposed near an entrance of the coin conveyance path;
the direction changing member is configured in such a way that the delivered coins from the coin discrimination unit through the opening are contacted with the direction changing member, thereby adjusting the moving direction of the delivered coins from the coin discrimination unit to the entrance of the coin conveyance path.
In a further preferred embodiment of the apparatus according to the present invention, the direction changing member and the coin conveyance and distribution unit are placed on a back side of the supporting member; and
the delivered coins from the coin discrimination unit through the opening are contacted with the direction changing member and entered the entrance of the coin conveyance path on the back side of the supporting member using natural falling of the coins due to gravity.
In a further preferred embodiment of the apparatus according to the present invention, the coin conveyance path is formed using a guide rail and an inclined surface;
the guide rail forms a bottom of the coin conveyance path;
the inclined surface forms one sidewall of the coin conveyance path; and
coins are conveyed on the coin conveyance path in an obliquely standing state while a periphery and one side of each coin are respectively supported by the guide rail and the inclined surface.
In a further preferred embodiment of the apparatus according to the present invention, an endless belt to which pins are fixed at intervals is extended along the coin conveyance path; and
each coin is engaged with any one of the pins and conveyed on the coin conveyance path according to traveling of the belt.
In a further preferred embodiment of the apparatus according to the present invention, the belt is travelled by a common driving force in synchronization with an operation motion of the coin separation unit and an operation of the coin discrimination unit.
In order that the present invention may be readily carried into effect, it will now be described in detail with reference to the accompanying drawings.
Preferred embodiments of the present invention will be described in detail below while referring to the drawings attached.
The schematic overall structure of an apparatus 1 for discrimination and conveyance of coins according to an embodiment of the present invention is shown in
The apparatus 1 for discrimination and conveyance of coins according to the embodiment of the present invention comprises mainly a coin storing unit 10, a coin separation and discrimination unit 20, and a coin conveyance and distribution unit 60. As dearly shown in
In addition, a coin discrimination region P3 for discriminating the denomination and authenticity of coins C is formed in the coin discrimination section. When coins C which are rotated with the rotation of the rotary wiper 27 pass through the coin discrimination region P3, they are subjected to the denomination discrimination and the authenticity discrimination using discrimination sensors 46 provided in or near the coin discrimination region P3.
The coin storing unit 10 comprises a head 24 attached to the surface of an upper wall 22a (see
The coin separation and discrimination unit 20 comprises the coin separation section that is configured to separate coins C stored in the coin storing unit 10 from each other and to sends the coins C thus separated in a predetermined inclined attitude, and the coin discrimination section that is configured to discriminate the denomination and authenticity of the coins C which are sent from the coin separation section and to sends the coins C thus discriminated to the coin conveyance and distribution unit 60. As seen from
A first depressed part 22b, a second depressed part 22c, a through hole 22d, and a guide wall 22e are formed on the upper wall 22a of the casing 22. Since the first depressed part 22b is formed to receive the rotary disk 26 for coin separation, this part 22b has a circular shape whose diameter is slightly larger than the disk 26 and whose depth is enough for receiving the entirety of the disk 26. Since the second depressed part 22d is formed to receive the rotary wiper 27 for denomination discrimination and authentication discrimination of coins C, this part 22c has an approximately circular shape whose diameter is slightly larger than the wiper 27 and whose depth is enough for receiving the entirety of the wiper 27, which is similar to the first depressed part 22b. However, the second depressed part 22c is necessarily formed in such a way that coins C pass through the upper area of the discrimination sensors 46 for denomination discrimination and authentication discrimination while the coins C are being rotated by the rotary wiper 27 and therefore, the plan shape of this part 22c is slightly deformed from a perfect circle (see
As shown in
Coins C stored in the coin storing unit 10 tend to enter the three engaging recesses 26c of the rotary disk 26 at random to be moved according to the rotation of the disk 26. Since a coin dropping member 30 is fixed onto the upper wall 22a of the casing 22 in the vicinity of the first depressed part 22b, coins C which are raised wastefully by the rotation of the disk 26 are dropped and as a result, the coins C are entered the respective engaging recesses 26c one by one and rotated with the rotating disk 26 around the center of the disk 26. For this reason, the coins C stored in the storing unit 10 are separated from each other and entered the respective engaging recesses 26c one by one and thereafter, sent successively toward the rotary wiper 27. In this way, the coin separation operation for the coins C which are taken out of the storing unit 10 is carried out.
In the aforementioned coin separation process, each coin C which is entered and engaged with one of the three engaging recesses 26c is pushed by the pushing part 26a. Since of the relevant pushing member 26b is configured to push out the coin C from the corresponding engaging recess 26c immediately before the said coin pass through the first delivering region P1, the said coin C can be shifted smoothly to the coin discrimination section by way of the first delivering region P1. This pushing action of the relevant pushing member 26b is realized by a grooved cam 28 which is formed on the casing 22 at the position right below the disk 26 and three cam followers 29 which are fixed to the back surface of the disk 26. Specifically, as shown in
Since a delivering direction regulation or control member 31 is fixed near the first delivering region P1, the coins C which pass through the first delivering region P1 are surely sent to the second depressed part 22c formed on the upper wall 22a of the casing 22. Here, the delivering direction regulation or control member 31 is fixed to the upper wall 22 at the position where the outer edge of the first depressed part 22b is next to the first delivering region P1.
As shown in
The coins C sent to the second depressed part 22c (i.e., the coin discrimination section) by the rotation of the rotary disk 26 are entered and engaged with the respective engaging holes of the wiper 27 while keeping their attitude (in which one side face of each coin C is supported by the inclined surface of the upper wall 22a of the casing 22) and then, moved in the second depressed part 22c along the guide wall 22e in accordance with the rotation of the rotary wiper 27. The moving path of the coins C in the coin discrimination section is extended to the second delivering region R2 from the first delivering region P1. However, the discrimination region P3 is formed between these two delivering regions P2 and P1 and therefore, discrimination of the denomination and authenticity of the coins C can be automatically carried out when the coins C pass through the discrimination region P3. The shape of the guide wall 22e (i.e., the shape of the moving path of the coins C) is determined in such a way that a desired denomination and authenticity discrimination operation of the coins C is automatically carried out in the discrimination region P3. For this reason, the denomination and authenticity discrimination operation of the coins C is conducted only by moving the coins C along the guide wall 22e in the second depressed part 22c using the rotary wiper 27.
The rotary disk 26 and the rotary wiper 27 that perform the above-described operations are rotationally driven using the driving force of a single electric motor 41 in the following way:
The electric motor 41 is fixed to the back surface of the base plate 21. The rotational shaft of this motor 41 is protruded from the surface of the base plate 21 through the same. A driving gear 42, which is connected to the rotational shaft of the motor 41, is exposed from the surface of the base plate 21. The rotation of the driving gear 42 is transmitted to driven gears 43, 44, and 45 which are rotatably supported on the surface of the base plate 21 in this order. Since the rotational shaft of the rotary disk 26 is connected to the driving gear 42, the rotary disk 26 is rotationally driven at the same rotational frequency as that of the driving gear 42. Since the rotational shaft of the rotary wiper 27 is connected to the driven gear 45, the wiper 27 is rotationally driven at the same rotational frequency as that of the driven gear 45. Since the count of the gear teeth of each of the driven gears 43, 44, and 45 is set in such a way that the rotational frequency per minute of the disk 26 is equal to that of the wiper 27, the disk 26 and the wiper 27 are rotated in the opposite directions at the same rotational speed. This means that the disk 26 is rotated in the counterclockwise direction and the wiper 27 is rotated in the clockwise direction, as shown in
The discrimination sensors 46 are fixed to the surface of the base plate 12 in the discrimination region P3. As the discrimination sensors 46, any known sensor may be used and therefore, detailed explanation about the sensors 46 are omitted here. In addition, the reference numeral 46a shown in
A wiper rotation detection sensor 47 is provided on the surface of the base plate 21 for the purpose of detecting whether or not the rotary wiper 27 keeps rotating at a predetermined rotational frequency. In this embodiment, the sensor 47 is configured to detect optically the rotation of the driven gear 44. Specifically, as shown in
A residual quantity detection sensor 25, which is mounted on the side face of the head 24, is provided for detecting the residual quantity of coins C which are waiting for processing (i.e., the total number of the coins C retained in the coin storing unit 10 to wait for processing). The head 24 is not integrated with a substrate box 23. In addition, the head 24 comprises a moving part 24a, which is provided for returning a coin or coins C stored in the coin storing unit 10 in accordance with an ejecting operation by a user. Normally, the moving part 24a is closed, as shown in
A linking part 48, which is formed to protrude from the surface of the base plate 21, is a part for linking a solenoid 40 which is provided on the back side of the base plate 21 with the moving part 24a of the head 24. When the solenoid 40 is energized or deenergized, the linking part 48 is moved according to the reciprocating motion of the plunger of the solenoid 40. The moving part 24a is configured to be opened or closed according to the reciprocating motion of the solenoid 40. This means that the linking part 48 realizes a desired linking operation between the moving part 24a and the solenoid 40 regardless of whether the moving part 24a is opened or closed.
Next, the coin conveyance and distribution unit 60 will be explained below with reference to
In this embodiment, as shown in
As shown in
In the endless belt receiving section of the body 61, a pair of driven gears 64 and 65 which are arranged at a predetermined distance, an endless belt 63 which is stretched between the driven gears 64 and 65, and four distribution flap driving solenoids 72 are provided. The upper opening of the endless belt receiving section is covered with a rear cover 77. An inclined portion 77a (see
In the sensor and solenoid receiving section of the body 61, an introducing coin sensor 67, four conveying coin sensors 68, four falling coin sensors 69, four distribution flap driving solenoids 72, and a reject flap driving solenoid 73 are provided. The upper opening of the sensor and solenoid receiving section is covered with a front cover 78. An inclined portion 78a is formed in the rear part of the front cover 78. The inclined portion 78a of the front cover 78 is overlapped with the inclined portion 77a of the rear cover 77 (see
Engaging pins 63a are fixed to the endless belt 3, which extends along the guide rail 66 so as to be adjacent to the same, at equal intervals and therefore, coins C placed on the guide rail 66 are respectively engaged with any one of the pins 63a and pushed in the coin conveying direction according to the movement of the belt 63. As a result, the said coins C are successively conveyed on the guide rail 66.
In addition, the front cover 77 and the rear cover 78 are attached to the body 61 to cover the endless belt receiving section and the sensor and solenoid receiving section, in which the inclined portions 77a and 78a of the rear and front covers 77 and 78 constitute the two side walls of the coin conveyance path 76 respectively. Thus, coins C placed on the bottom (i.e., the guide rail 66) of the coin conveyance path 76 are moved in the coin conveyance direction while being sandwiched by the inclined portions 77a and 78a. As a result, there is no possibility that the coins C are dropped from the coin conveyance path 76 during conveyance.
In this embodiment, the four gates 76a are respectively provided in the coin conveying path 76 at the corresponding positions to the four openings 66a of the guide rail 66. These four gates 76a are respectively assigned to the first to fourth distribution sections D1 to D4. Each of these gates 76a comprises a distribution flap 70 which is driven by a corresponding one of the four distribution flap driving solenoids 72 placed in the sensor and solenoid receiving section of the body 61; thus, each gate 76a can be opened or closed by the corresponding flap 70.
When no voltage is applied to each of the solenoids 72, the corresponding distribution flap 70 in the first, second, third, or fourth distribution section D1, D2, D3, or D4 is kept closed. When a positive voltage is applied to each of the solenoids 72, the plunger of the corresponding solenoid 72 is moved in a first direction and as a result, the corresponding distribution flap 70 in the first, second, third, or fourth distribution section D1, D2, D3, or D4 is moved in a first rotational direction around a predetermined axis. In this state, the corresponding gate 76a is opened and the distributed coins C are stored in a corresponding one of the coin ejection devices provided below on the rear side of the said gate 76a. On the other hand, when a negative voltage is applied to each of the solenoids 72, the plunger of the corresponding solenoid 72 is moved in a second direction opposite to the first direction and as a result, the corresponding distribution flap 70 in the first, second, third, or fourth distribution section D1, D2, D3, or D4 is rotated in a second rotational direction opposite to the first rotational direction. In this state, the corresponding gate 76a is opened and the distributed coins C are stored in a corresponding one of the coin ejection devices provided below on the front side of the said gate 76a. In this way, coins C of two denominations are distributed and stored in the corresponding coin ejection devices by way of each of the four gates 76a and therefore, coins C of eight denominations can be distributed and stored in the eight coin ejection devices.
Next, the aforementioned constituent elements of the coin conveying and distribution unit 60 will be explained in detail below.
The endless belt 63, which is provided in the endless belt receiving section of the body 61, comprises gear teeth and is stretched between the driven gears 64 and 65 which are fixed at the predetermined interval. The driven gears 64 and 65 are respectively supported by rotational axes 62a and 62b and respectively rotated around these axes 62a and 62b. The belt 63 is supported to be approximately horizontal by the driven gears 64 and 65. Since the driven gear 64 disposed near the coin separation and discrimination unit 20 is connected to the driven gear 45 disposed in the same unit 20 by way of a linking gear 64a (see
Regarding the sensors provided in the sensor and solenoid receiving section of the body 61, the introducing coin sensor 67, the conveying coin sensors 68, and the falling coin sensors 69 are configured to conduct the following operations.
The introducing coin sensor 67, which is disposed at the starting end of the coin conveyance path 76 (or the guide rail 66), detects the presence or absence of the introduction of a coin C into the path 76 and the introduction timing when the introduction of a coin C is present. By the output signal of the introducing coin sensor 67, a control device (a control program) of the apparatus 1 for discrimination and conveyance of coins, which is mounted on a control substrate 32 (see
The four conveying coin sensors 68, which are arranged along the coin conveying path 76 at the predetermined intervals (here, at equal intervals), are respectively disposed at the positions immediately after the four gates 76a of the first to fourth distribution sections D1, D2, D3, and D4. Each of the four conveying coin sensors 68 detects the presence or absence of the conveyance of a coin C at the corresponding gate 76a of the first, second, third, or fourth distribution section D1, D2, D3, or D4, and the conveyance timing when the conveyance of a coin C is present. By the output signal of each conveying coin sensor 68, the control device (the control program) of the apparatus 1 (which is mounted on the control substrate 32) can know the presence or absence of the conveyance of a coin C at the position immediately after the corresponding gate 76a of the first, second, third, or fourth distribution section D1, D2, D3, or D4, and the conveyance timing when the conveyance of a coin C is present.
The four falling coin sensors 69, which are arranged along the coin conveying path 76 at the predetermined intervals (here, at equal intervals) to be slightly apart forward from the coin conveying path 76, are respectively disposed at the positions right above four distribution paths 79 which lead to the four gates 76a of the first to fourth distribution sections D1, D2, D3, and D4. Each of the falling coin sensors 69 detects the presence or absence of the falling of a coin C through the corresponding gate 76a of the first, second, third, or fourth distribution section D1, D2, D3, or D4 when the said gate 76a is opened and the number of the falling coins C when the falling of a coin C is present. By the output signal of each falling coin sensor 69, the control device (the control program) of the apparatus 1 can know the presence or absence of the falling of a coin C through the corresponding gate 76a of the first, second, third, or fourth distribution section D1, D2, D3, or D4, and the number of the falling coins C when the falling of a coin C is present.
Regarding the solenoids provided in the sensor and solenoid receiving section of the body 61, the four distribution flap driving solenoids 72 and the reject flap driving solenoid 73 are configured to conduct the following operations.
The four distribution flap driving solenoid 72 are respectively provided for driving the four distribution flaps 70 to open and close the four gates 76a of the first to fourth distribution sections D1 to D4. Each of the distribution flaps 70, which is disposed in the corresponding gate 76a, distributes coins C of two predetermined denominations into the corresponding two coin ejection devices (not shown) which are attached to the bottom of the body 61. As shown in
As already explained above, when no voltage is applied to each of the distribution flap driving solenoids 72, the corresponding distribution flap 70 in the corresponding gate 76a of first, second, third, or fourth distribution section D1, D2, D3, or D4 is kept closed. When a positive voltage is applied to each of the solenoids 72, the plunger of the corresponding solenoid 72 is moved in the first direction and as a result, the corresponding distribution flap 70 in the first, second, third, or fourth distribution section D1, D2, D3, or D4 is moved in the first rotational direction around the predetermined axis. In this state, the corresponding gate 76a is opened and the distributed coins C are stored in the coin ejection device provided on the rear side of the said gate 76a. On the other hand, when a negative voltage is applied to each of the solenoids 72, the plunger of the corresponding solenoid 72 is moved in the second direction opposite to the first direction and as a result, the corresponding distribution flap 70 in the first, second, third, or fourth distribution section D1, D2, D3, or D4 is rotated in the second rotational direction opposite to the first rotational direction. In this state, the corresponding gate 76a is opened and the distributed coins C are stored in the other coin ejection device provided on the front side of the said gate 76a. In this way, coins C of two denominations are distributed and stored in the corresponding two coin ejection devices by way of each gate 76a. Accordingly, coins C of the predetermined eight denominations can be distributed and stored in the eight coin ejection devices, respectively, using the four distribution flap driving solenoids 72.
The rejection flap driving solenoid 73 is provided for driving a rejection flap 71 (see
When no voltage is applied to the rejection flap driving solenoid 73, the rejection flap in the rejection gate is kept closed. When a voltage is applied to the solenoid 73, the plunger of the solenoid 73 is moved and as a result, the rejection flap is moved in a predetermined rotational direction around a predetermined axis. In this state, the rejection gate is opened and thus, the rejecting coins C are stored in the coin storing container.
The overflow path 75, which is disposed at the terminal end of the endless belt receiving section of the body 61 (see
As shown in
Next, the relationship between the moving direction of coins C in the coin separation and discrimination unit 20 and that in the coin conveyance and distribution unit 60 will be explained below.
As dearly understood from the aforementioned explanation, the coin separation section using the rotary disk 26 and the coin discrimination section using the rotary wiper 27, which are combined together to form the coin separation and discrimination unit 20 in this embodiment, are mounted on the flat surface of the upper wall 22a of the casing 22. Coins C are separated from each other while being rotated by the rotary disk 26 in the coin separation section and thereafter, the coins C thus separated are delivered to the coin discrimination section by way of the first delivering region P1 in the predetermined attitude, in other words, in the standing state which is inclined along the upper wall 22a. In the coin discrimination section, the coins C thus delivered are subject to discrimination in denomination and authenticity while being rotated by the rotary wiper 27 and thereafter, the coins C thus discriminated are delivered to the coin conveyance and distribution unit 60 by way of the second delivering region P2. Accordingly, it is apparent that these two processes, i.e., the separation process and the discrimination process, are carried out on the flat surface of the upper wall 22a while rotating the coins C to be processed on the same surface. Moreover, it is also apparent that the delivering action of the coins C to the coin discrimination section from the coin separation section is conducted in an approximately horizontal direction on the upper wall 22a. Accordingly, it is understood that the two processes of the coin separation and discrimination unit 20 are carried out while moving the coins C along a plane which contains the flat surface of the upper wall 22a in an approximately horizontal direction.
Here, when seeing the moving state or flow of the coins C in the coin separation and discrimination unit 20 macroscopically, it can be said that the two processes of the coin separation and discrimination unit 20 are carried out while moving the coins C in the upward direction X which is indicated by an up arrow in
On the other hand, in the coin conveyance and distribution unit 60, the linear coin conveyance path 76, which is formed using the guide rail 66 and the inclined portions 77a and 78a of the rear and front covers 77 and 78, is extended along the longitudinal axis of the body 61 in an approximately horizontal plane. Coins C to be processed are subjected to the distribution process according to the predetermined denominations and the discharge process for the (inappropriate) coins C to be rejected while being conveyed on the coin conveyance path 76 and then, the coins C thus subjected in this way are moved downward from the path 76.
Accordingly, when seeing the moving state or flow of the coins C in the coin conveyance and distribution unit 60 macroscopically, it can be said that the two processes of the coin distribution and the rejecting coin discharge in the coin conveyance and distribution unit 60 are carried out while moving the coins C in the rightward direction Y which is indicated by a rightward arrow in
Since the aforementioned directions X and Y are perpendicular in the horizontal plane, it can be said that the macroscopic moving direction (i.e., the X direction) of the coins C in the coin separation and discrimination unit 20 and the macroscopic moving direction (i.e., the Y direction) of the coins C in the coin conveyance and distribution unit 60 have an orthogonal relationship to each other. As a result, there arises an advantage that the overall length of the apparatus 1 for discrimination and conveyance of coins according to the embodiment of the present invention in the Y direction can be reduced compared with the conventional one where the macroscopic moving direction of the coins C in the coin separation and discrimination unit 20 and that in the coin conveyance and distribution unit 60 do not have an orthogonal relationship. This is due to the following reason.
Specifically, in the coin separation and discrimination unit 20, the rotary disk 26 is used for coin separation and the rotary wiper 27 is used for coin discrimination and furthermore, the processing surface of the coin separation section and that of the coin discrimination section are formed on the flat surface of the upper wall 22a and are disposed adjacent to each other. Accordingly, the length L20 of the coin separation and discrimination unit 20 in the direction along the long sides of the flat surface of the upper wall 22a in the horizontal plane (in other words, the length L20 of the unit 20 in the X direction in
On the other hand, the depth, i.e., the depth D20 of the coin separation and discrimination unit 20 in the direction perpendicular to the long sides of the flat surface of the upper wall 22a in the horizontal plane (in other words, the depth D20 of the unit 20 in the Y direction in
As a result, in summary, the coin separation and discrimination unit 20 has the feature that the length L20 of the unit 20 in the X direction is relatively large and the depth D20 of the unit 20 in the Y direction is relatively small and that the ratio (L20/D20) of the length L20 to the depth D20 is very small. Accordingly, in the apparatus 1 of the embodiment of the present invention in which the coin separation and discrimination unit 20 and the coin conveyance and distribution unit 60 are arranged to have an orthogonal relationship, the total length L1 in the Y direction of the apparatus 1 is given as the sum (D20+L60) of the depth D20 of the unit 20 and the length L60 of the unit 60. Unlike this, in the conventional layout where the two units 20 and 60 are arranged tin the same direction (i.e., the Y direction), the total length L0 in the Y direction of the conventional layout is given as the sum (L20+L60) of the length L20 of the unit 20 and the length L60 of the unit 60. It is apparent that the former is considerably smaller in value than the latter, i.e., (D20+L60)<<(L20+L60). This fact contributes downsizing of the apparatus 1.
Furthermore, with the apparatus 1 for coin discrimination and conveyance of coins according to the embodiment o the present invention, it is sufficient that the coin separation and discrimination unit 20 and the coin conveyance and distribution unit 60 are arranged or combined to have an orthogonal relationship, and that the through hole 22d of the upper wall 22a and the opening 21a of the base plate 21 are respectively formed and at the same time, the direction changing member 74 is mounted near the starting end of the coin conveyance path 76 of the coin conveyance and distribution unit 60, the apparatus 1 can be realized with a simple and low-cost structure compared with the aforementioned conventional apparatuses of the same type.
Next, the operation of the apparatus 1 for coin discrimination and conveyance of coins according to the embodiment of the present invention will be explained below with reference to
First, as shown in
When the rotary disk 26 is further rotated from the state in
Following this, as shown in
The first coin C which is received by the closest-positioned arm of the wiper 27 is moved downward along with the relevant arm by the clockwise rotation of the wiper 27. This state is shown in
Because of the further rotation of the wiper 27, (the downstream-side edge of) the next arm is contacted with the first coin C which is temporarily stopped at the lowest position of the guide wall 22e, thereby raising the said first coin C by the said arm. At this stage, as shown in
Because of the further rotation of the wiper 27, the first coin C which has been subjected to the denomination and authenticity discrimination is further raised by the relevant arm, as shown in
Because of the further rotation of the wiper 27, the first coin C which has been subjected to the denomination and authenticity discrimination arrives at the second delivering region P2, as shown in
Because of the further rotation of the wiper 27, the first coin C, which has arrived at the second delivering region P2, passes through this region P2, in other words, passes through the through hole 22d of the upper wall 22a and the opening 21a of the base plate 21. As a result, the leading end of the first coin C arrives at the back side of the base plate 21 (in other words, the back side of the coin discrimination section), as shown in
Because of the further rotation of the wiper 27, the first coin C which has passed through the second delivering region P2, the leading end of which has arrived at the back side of the base plate 21, starts to move downward due to the gravity, as shown in
Because of the further rotation of the wiper 27, the first coin C whose leading end has arrived at the back side of the base plate 21 is kept moving toward the starting end or entrance of the coin conveyance path 76 while the moving direction of the first coin C is being changed due to the gravity and the direction changing member 74, as shown in
Because of the further rotation of the wiper 27, the first coin C whose leading end has arrived at the back side of the base plate 21 is kept moving toward the starting end or entrance of the coin conveyance path 76, as shown in
Because of the further rotation of the wiper 27, the entirety of the first coin C arrives at the back side of the base plate 21 and the leading end of the said coin C is entered the entrance of the coin conveyance path 76, as shown in
Through the aforementioned processes, the first coin C, which has been separated from the remaining coins C in the coin separation section, is delivered to the coin discrimination section from the coin separation section by way of the first delivering region P1. After the first coin C is subjected to the predetermined denomination and authenticity discrimination in the discrimination region P3 in the coin discrimination section, the first coin C is delivered to the coin conveyance and distribution unit 60 by way of the second delivering region P2.
In the coin conveyance and distribution unit 60, the coins C which have been delivered from the coin separation and discrimination unit 20 by way of the second delivering region P2 are conveyed on the linear coin conveyance path 76 using the pins 63a fixed onto the endless belt 63. During the conveyance, the four gates 76a, which are formed on the coin conveyance path 76 and respectively assigned to the first, second, third, and fourth distribution sections D1, D2, D3, and D4, are opened or closed based on the result of the denomination discrimination which is carried out in the coin discrimination section of the unit 20, thereby distributing the coins C of the predetermined eight denominations into the corresponding coin ejection devices. The opening/closing operation of each gate 76a is realized by opening or closing the corresponding distribution flap 70 using the corresponding distribution flap driving solenoid 72.
Moreover, during the conveyance of coins C along the coin conveyance path 76, the rejection gate is opened or closed based on the result of the authenticity discrimination which is carried out in the coin discrimination section of the unit 20, thereby discharging selectively the rejecting coins C (e.g., counterfeit coins) to be judged rejected into the dedicated storing container. The opening/closing operation of the rejection gate is realized by opening or closing the rejection flap 71 using the rejection flap driving solenoid 73.
The aforementioned operation in the coin separation and discrimination unit 20 and that in the coin conveyance and distribution unit 60 are controlled by the control device (the control program) of the apparatus 1 according to the embodiment of the present invention which is mounted on the control substrate 32 in the substrate box 23 of the unit 20.
With the apparatus 1 for discrimination and conveyance of coins according to the embodiment of the present invention, as explained above in detail, the coin separation and discrimination unit 20 comprises the coin separation section that is configured to separate coins C stored in the storing unit 10 from each other, thereby sending the separated coins C in the predetermined attitude; and the coin discrimination section, which is mounted on the upper wall 22a of the casing 22 (which corresponds to the supporting member) having the through hole 22d, that is configured to discriminate the denomination and authenticity of the coins C sent from the coin separation section, thereby sending the discriminated coins C. The coin conveyance and distribution unit 60 is configured to distribute the coins C which are subjected to the denomination and authenticity discrimination in the coin discrimination section according to the respective denominations while conveying the said coins C.
Moreover, when seeing the moving state or flow of the coins C macroscopically, the coins C separated in the coin separation section of the unit 20 are moved in the X direction shown in
Accordingly, the coins C separated from each other by the coin separation section are moved in the X direction through the first delivering region P1 to be delivered to the coin discrimination section and then, the denomination and authenticity of the coins C are discriminated by the coin discrimination section. Thereafter, the coins C thus discriminated are moved in the Y direction which is perpendicular to the X direction to be delivered to the coin conveyance and distribution unit 60.
In the coin separation section, the plate-shaped rotary disk 26 is used and therefore, when seeing in a plan view, the ratio (Lcs/Dcs) of the length Lcs of the coin separation section of the coin separation and discrimination unit 20 in the X direction to the depth Dcs of the coin separation section of the unit 20 in the Y direction is considerably large even if the inclination angle of the upper wall 22a and the driving mechanism (which includes the motor 41, the driving gear 42, and the driven gears 43, 44, and 45) for the disk 26 are taken into consideration. This is because the length Lcs is considerably larger than the depth Dcs.
In the coin discrimination section, the plate-shaped rotary wiper 27 is used and therefore, when seeing in a plan view, the ratio (Lcd/Dcd) of the length Lcd of the coin discrimination section of the unit 20 in the X direction to the depth Dcd of the coin discrimination section of the unit 20 in the Y direction is considerably large even if the inclination angle of the upper wall 22a and the driving mechanism (which includes the motor 41, the driving gear 42, and the driven gears 43, 44, and 45) for the wiper 27 are taken into consideration. This is because the length Lcd is considerably larger than the depth Dcd.
For this reason, regarding the combination of the coin separation section and the coin discrimination section (i.e., the coin separation and discrimination unit 20) which is formed by aligning the coin separation section and the coin discrimination section to be adjacent to each other in the X direction, the ratio (L20/D20) of the length L20 of the coin separation and discrimination unit 20 in the X direction with respect to the depth D20 of the same unit 20 in the Y direction is larger in value than each of the ratios (Lcs/Dcs) and (Lcd/Dcd). This means that the coin separation and discrimination unit 20 as the combination has the feature that the length L20 is relatively large and the depth D20 is relatively small and that the ratio (L20/D20) is very large, in other words, the coin separation and discrimination unit 20 has an elongated plan shape along the X direction.
On the other hand, in the coin conveyance and distribution unit 60, since the four coin ejection devices are arranged along the coin conveyance path 76 of the unit 60, the length L60 varies in accordance with the total number of the denominations to be processed. However, generally speaking, the coin conveyance and distribution unit 60 has the feature that the length L60 in the Y direction is relatively large and the depth D60 in the X direction is relatively small and that the ratio (L60/D60) is very large, in other words, the coin conveyance and distribution unit 60 has an elongated plan shape along the Y direction.
Accordingly, when constituting the apparatus 1 for discrimination and conveyance of coins according to the embodiment of the present invention by combining the coin separation and discrimination unit 20 with the coin conveyance and distribution unit 60, it is preferred that the coin separation and discrimination unit 20 and the coin conveyance and distribution unit 60 are disposed so as to be perpendicular to each other in a plan view to reduce the size of the said apparatus 1. For example, it is preferred that the coin separation and discrimination unit 20 is disposed to be extended in the X direction and the coin conveyance and distribution unit 60 is disposed to be extended in the Y direction in a plan view, as shown in
In addition, although the length L1 of the apparatus 1 using the L-shaped layout in the Y direction is considerably smaller than that of the conventional linear layout, the depth D1 of the apparatus 1 in the X direction is slightly larger than that of the conventional linear layout. However, this disadvantage can be easily solved and therefore, there arises no problem.
As a result, the apparatus 1 for discrimination and conveyance of coins according to the embodiment of the present invention can be downsized compared with the aforementioned conventional apparatus of this type.
Moreover, since all the need for realizing the aforementioned L-shaped layout is to change the conveyance direction of coins C conveyed in the coin separation and discrimination unit 20 to the Y direction from the X direction by way of the second delivering region R2 formed at the connecting part of the coin separation and discrimination unit 20 and the coin conveyance and distribution unit 60, the aforementioned downsizing of the apparatus 1 can be realized with a simple and low-cost structure.
Furthermore, to realize the aforementioned downsizing of the apparatus 1, it is sufficient to provide the second delivering region P2 and the moving direction changing mechanism for the coins C (e.g., the direction changing member 74) at the connecting part of the coin separation and discrimination unit 20 and the coin conveyance and distribution unit 60 and therefore, it is unnecessary to change the fundamental or basic structure of the coin discrimination section. Accordingly, downsizing of the said apparatus 1 itself can be achieved compared with the aforementioned conventional apparatuses of this type without changing the fundamental or basic structure of the coin discrimination section.
With the apparatus 1 using the aforementioned L-shaped layout, as described above, the length L1 of the apparatus 1 in the Y direction can be reduced compared with the conventional linear layout; however, there arises a disadvantage that the depth D1 of the apparatus 1 in the X direction is slightly larger than that of the conventional one. However, this disadvantage can be easily addressed or solved on the side of the main apparatus (e.g., a coin depositing/dispensing apparatus) into which the apparatus 1 is incorporated. Accordingly, there arises no problem to achieve the objects of the present invention.
The aforementioned embodiment is an exemplary embodied example of the present invention. Thus, it is needless to say that the present invention is not limited to this embodiment and any other modification is applicable to the embodiment without departing the spirit of the invention.
For example, in the aforementioned embodiment, the coin conveyance path 76 formed using the guide rail 66 and the inclined portions 77a and 78a of the rear and front covers 77 and 78, the endless belt 63 having the pins 63a, and the four gates 76a respectively arranged in the first to fourth distribution sections D1, D2, D3, and D4 are provided in the coin conveyance and distribution unit 60; however, the present invention is not limited to this. Any other structure may be used for this purpose if it is capable of desired coin distribution while conveying coins.
The apparatus for discrimination and conveyance of coins according to the present invention is applicable not only to coins as currency but also to coin equivalents such as token and medals. Moreover, the apparatus for discrimination and conveyance of coins according to the present invention is applicable not only to any coin depositing/dispensing apparatus but also to any coin processing apparatus that necessitates selective conveyance and distribution of coins of desired denominations.
While the preferred forms of the present invention have been described, it is to be understood that modifications will be apparent to those skilled in the art without departing from the spirit of the invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2019-038996 | Mar 2019 | JP | national |