Not applicable.
Not applicable.
The invention relates to an apparatus for the double-sided, grinding machining of flat workpieces with an upper and a lower work disk, each of which has a work surface with a grinding layer, wherein the work surfaces form a work gap amongst themselves, in which workpieces can be ground, wherein at least one of the work disks is rotatably drivable by means of a driving mechanism, and further having a device for guiding the workpieces in the work gap.
The use of double-side, surface-grinding machines for precise machining of workpieces with two plane-parallel surfaces is known. There are many corresponding machines with different designs. All conventional double-side, surface-grinding machines are similar in that they have two, normally annular work disks, the front surfaces of which are covered with an abrasive material and face each other and which form a work gap amongst themselves, through which the workpieces are guided and thereby processed simultaneously on both sides. A double-side grinding machine with planetary kinematics, as described in DE 195 47 085 A1, is just named as an example.
The machining of certain materials, for example soft steels, with such machines results in normally undesired burr formation on the workpiece edges, whereby remachining on special deburring machines is required. Many models of such machines are also known, wherein grinding burrs are normally removed with brush deburrers. For this, the workpieces are directed past rotating brushes, the bristles of which are studded with abrasive grains. A corresponding device is known for example from DE 20 2004 013 279 U1. The deburring of the workpieces with such machines represents another machining step in addition to the grinding machining, which accordingly increases the effort and cost of the machining of flat workpieces.
Based on the explained state of the art, the object of the invention is to provide an apparatus of the initially named type, with which a double-sided, grinding machining of flat workpieces that tend to form burrs is also possible with little effort and high quality.
For an apparatus of the initially named type, the object of the invention is solved in that deburring means are arranged on at least one of the work disks and are designed to deburr the workpieces during their machining in the apparatus.
In the apparatus, the workpieces to be machined are moved by the guiding device in the work gap formed between the work surfaces of the work disks and thereby ground simultaneously on both sides by the work surfaces in that, in a known manner, at least one of the work disks is driven in a rotating manner. The work disks can be arranged coaxially for machining. However, a non-coaxial alignment of the work disks is also possible. The machining of the flat workpieces normally serves to produce plane-parallel workpiece surfaces. For example, they can be made of a metallic material, in particular a steel material. For example, the workpieces can also be semiconductor wafers or other workpieces.
In the course of the grinding, more or less prominent burrs can form on the workpiece edges depending on the workpiece material. The apparatus according to the invention thus has deburring means arranged on at least one work disk. The deburring means according to the invention can be provided in particular on both work disks. Through these deburring means, the workpieces are already deburred in the apparatus during their grinding machining or respectively the burr formation is already counteracted through the deburring means. Thus, a considerable amount of burrs cannot even form in the first place. The deburring means are thereby arranged such that the workpieces en route to their machining in the apparatus come in contact with both the work surfaces and with the deburring means. The apparatus according to the invention thus combines the functionality of a double-side, surface-grinding machine with that of a deburring machine so that the workpieces are simultaneously ground and deburred. Thus, in situ deburring takes place during machining.
According to one embodiment, the deburring means can be integrated into the work surface of the at least one work disk. The workpieces will be simultaneously deburred in the work gap during their machining in it. A particularly compact construction of the apparatus is achieved in this manner. For this, the at least one work disk can have at least one recess formed in the area of the work surface, in particular at least one groove, in which the deburring means are arranged. Corresponding recesses in the front surface bordering the work gap of the at least one work disk are thus formed for the deburring means.
Depending on the type of machining of the workpieces or respectively the embodiment of the guide device for the workpieces and thus the movement paths described by them in the course of machining in the work gap, different geometrical designs of the deburring means can be advantageous. In another embodiment, the deburring means can thus be arranged in a ring-like manner circumferentially in the work surface and/or radially in the work surface and/or in a curved manner in the work surface.
An integration of the deburring means in the work surfaces is in particular advantageous for devices with so-called planetary kinematics. According to another embodiment, the device can have at least one, in particular several, runner disks arranged in the work gap for guiding the workpieces, which receives the workpieces to be processed in recesses and can be rotated by means of a roller device, whereby workpieces received in the runner disk move along cycloid paths in the work gap. The roller device can have, in a known manner, an inner and an outer pin or toothed ring, wherein at least one of the pin or toothed rings can be rotated by means of a drive. The at least one runner disk can then accordingly have external teeth on its perimeter, with which it rolls on it during the rotation of at least one pin or toothed ring.
It is also possible to arrange the deburring means outside of the work surface on the at least one work disk. The deburring means can thereby be connected with the work disk, but do not have to be. Furthermore, it can be provided that the deburring means are arranged annularly and circumferentially on the outer perimeter of the work disk. Additionally or alternatively, it can be provided in the case of annularly designed work disks that the deburring means are arranged annularly circumferentially on the inner perimeter of the work disk. The deburring means thus run annularly along the inner and/or outer perimeter of the at least one work disk. In this embodiment, the workpieces are debarred when they are removed from the work gap or enter it and thus make their way into the action area of the deburring means. This removal or insertion of the workpieces and the corresponding contact with the deburring means can take place once or cyclically in the course of workpiece processing.
The design of the deburring means outside of the work surface is particularly suitable for devices that do not have planetary kinematics. Accordingly, in the case of the apparatus according to the invention, the device for guiding the workpieces in the work gap can also guide for the purpose of machining the workpieces out of one area outside of the work gap into the work gap and back out of it again. Such a device can for example have a rotatably driven guide disk, the rotational axis of which is arranged mainly parallel but offset to the rotational axis/axes of the work disks. The workpieces can be held by this guide disk and in the course of the rotation of the guide disk guided into the work gap, through it and out of the work gap again. They thereby come in contact with the deburring means arranged for example on the edge of the at least one work disk.
According to another especially practical embodiment, the deburring means can have deburring brushes, which protrude with their bristles over the plane of the work surface of the at least one work disk. The brushes can have individual bristle bunches, which are provided with abrasive grains for deburring. The bristle bunches are arranged behind each other along a for example annular, radial or curved progression of the deburring means. They protrude slightly beyond the plane spanned by the work surface of the respective work disk, that is in particular into the work gap. The workpieces then come in contact with the bristles during machining and are deburred in this manner. In practice, it has proven beneficial if the bristles protrude 0.1 mm to 1 mm over the work surfaces into the work gap.
According to another embodiment, the deburring means, in particular the deburring brushes, can be height-adjustable. This height adjustability can define exactly how far the deburring means can extend into the work gap. Moreover, a continuous readjustment of the position of the deburring means can be performed with the height adjustability if necessary, in order to maintain the desired projecting length even in the case of wear and tear of the deburring means. Normally, the wear of the deburring means takes place faster or slower than the wear of the grinding layers of the work disks. The height adjustment of the deburring means can for example take place through replaceable fixed or adjustable spacers, on which the deburring means, for example the deburring brushes are mounted. However, an adjustment is also conceivable by means of set screws, which can be actuated manually or by motor and permit height adjustment in this manner.
According to another embodiment, the deburring means can be driven in a rotating manner. The deburring effect is improved through rotation of the deburring means. The deburring means can thereby be driven by the same drive as the at least one work disk. But it is also conceivable to provide another separate drive than that of the work disk for the deburring means. This is conceivable in particular when the deburring means are arranged outside of the work disks and independently of them. In the case of this embodiment, the rotational speeds for the work disks and the deburring means can be selected independently of each other and opposite rotational directions can also be set for example. The flexibility is thereby increased and the deburring effect can be further optimized.
One exemplary embodiment of the invention is explained below in greater detail using figures. The drawing shows schematically in:
While this invention may be embodied in many different forms, there are described in detail herein a specific preferred embodiment of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiment illustrated
If not specified otherwise, the same reference numbers are used for the same objects in the figures.
For machining, the workpieces to be ground are inserted into the recesses 26 of the runner disks 24. The two work disks 18, 22 are aligned with each other coaxially by pivoting the pivot arm 12. They then form amongst themselves a work gap, in which the runner disks 24 are arranged with the workpieces held by them. In the case of at least one rotating upper or lower work disk 18, 22, the upper work disk 18 is then pressed for example onto the workpieces by means of high-precision load system. A pressing force is then exerted on the workpieces to be processed from both the upper and the lower work disk 18, 22 and they are simultaneously ground on both sides. The structure and the function of this type of double-side machining machine 10 are generally known to a person skilled in the art.
The structure and the function of this type of double-side machining machine 10 are generally known to a person skilled in the art. Of course, the work disks can also be arranged non-coaxially with respect to each other, for example mainly parallel, but have rotational axes arranged offset with respect to each other. Such machines are also generally known to a person skilled in the art.
Depending on the design of the guide device for the workpieces and thus the paths described by them in the course of the machining in the work gap, further geometrical designs of the deburring means 44 can be advantageous. In this regard, a top view of the work disk 22 with deburring brushes 44, which progress radially in the work surface 36 and are integrated into the work surface 36, is shown in
Please note that even though
The deburring brushes 44 shown in the figures are height-adjustable so that a sufficient projecting length of the deburring brushes 44 beyond the work surface plane into the work gap is always ensured even during the wear of the brushes 44. In the example shown, this projecting length is set between 0.1 and 1 mm
This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 063 228 | Dec 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/008184 | 11/18/2009 | WO | 00 | 8/10/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/072289 | 7/1/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1763820 | Rodemeyer | Jun 1930 | A |
5121572 | Hilscher | Jun 1992 | A |
5584898 | Fulton | Dec 1996 | A |
5778481 | Amsden et al. | Jul 1998 | A |
5846122 | Graebner et al. | Dec 1998 | A |
5902173 | Tanaka | May 1999 | A |
5934983 | Wada et al. | Aug 1999 | A |
5944591 | Chen | Aug 1999 | A |
6080042 | McGregor et al. | Jun 2000 | A |
6142859 | Ross et al. | Nov 2000 | A |
6146244 | Atsugi et al. | Nov 2000 | A |
6210259 | Malkin et al. | Apr 2001 | B1 |
6254461 | Benning et al. | Jul 2001 | B1 |
6261156 | Johnson et al. | Jul 2001 | B1 |
6379230 | Hayashi et al. | Apr 2002 | B1 |
6439965 | Ichino et al. | Aug 2002 | B1 |
6485357 | Divine | Nov 2002 | B1 |
6793837 | Wenski et al. | Sep 2004 | B2 |
6811469 | Yamamoto et al. | Nov 2004 | B2 |
6841057 | Wadensweiler et al. | Jan 2005 | B2 |
6986703 | Weber | Jan 2006 | B2 |
7008308 | Bjelopavlic et al. | Mar 2006 | B2 |
7354337 | Fujita | Apr 2008 | B2 |
7500905 | Iga | Mar 2009 | B2 |
7775858 | Weber | Aug 2010 | B2 |
20020028640 | Barnhart et al. | Mar 2002 | A1 |
20030087593 | Van Der Sluis | May 2003 | A1 |
20050272348 | Min et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
1953840 | Apr 2007 | CN |
33 35 116 | Mar 1984 | DE |
195 47 085 | Jun 1997 | DE |
20 2004 013 279 | Dec 2004 | DE |
0 776 030 | May 1997 | EP |
0 940 219 | Sep 1999 | EP |
0 941 803 | Sep 1999 | EP |
09-272050 | Oct 1997 | JP |
2008073807 | Apr 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20110300785 A1 | Dec 2011 | US |