The present invention concerns an apparatus for driving matrix-type LCD panels and a liquid crystal display.
Display data which represent an image to be displayed on the liquid crystal panel 16 are given to the column driver 14 as serial data by the timing controller 13. Additional signals CLKN, CLKP and LD typically are also supplied to the column driver bank 14 by the controller 13. The controller 13 also supplies signals to the row driver array 15. The row driver array 15 selects a common electrode which should display first in response to a vertical synchronization signal, and thereafter scans in the vertical direction by changing the common electrode to b e selected successively while synchronizing with the horizontal synchronization signal.
As the
In a conventional source driver 14, the output buffers 31 are designed such that the biasing current Ibias, is defined for the most far away row, that is for the Mth row. As a consequence, those rows that are closer to the output buffer 31 see a biasing current Ibias, that is too high. In other words, theses rows are “overdriven”.
In the U.S. patent application published under US 2003/0112215 A1, a liquid crystal display and driver are described where a timing circuitry is provided that divides each row period into a drive period and a voltage maintenance period. During the driver period the output buffers use a higher biasing current in order to charge the column lines of the display panel. During the maintenance period, a lower biasing current is used to maintain the voltage on the column lines. This solution does, however, not address the problem described above where certain rows are driven with currents that are too high.
Thus, it would be generally desirable to reduce the power required to be drawn by the buffers.
It is thus an object of the present invention to provide a solution that takes into account the distance of the individual rows.
It is a further objective of the present invention to provide a concept for reducing the power consumption of an LCD driver.
It is a further objective of the present invention to improve conventional LCD drivers and to reduce their current consumption.
These disadvantages of known systems, as described above, are reduced or removed with the invention as described and claimed herein.
An apparatus in accordance with the present invention is claimed in claim 1. Various advantageous embodiments are claimed in claims 2 through 8.
A liquid crystal display in accordance with the present invention is claimed in claim 9 and advantageous embodiments are claimed in claims 10 and 11.
An apparatus according to the present invention comprises output buffers for driving the columns of an LCD panel. A bias generator is employed that provides a common biasing current to all output buffers. The apparatus further comprises means for providing information regarding the physical position of a dot to be driven on the LCD panel. According to the present invention, this information is obtained by counting the number of incoming load signals (LD). A switchable current source is employed that allows the level of the biasing current to be changed according to the physical position.
According to the present invention, a liquid crystal display is proposed that comprises a plurality of liquid crystal pixel electrodes arranged as an array of rows and columns. There is a plurality of row and column lines for driving the liquid crystal pixel electrodes, and a plurality of output buffers for driving the plurality of column lines. All output buffers are operable at a common biasing current. Special means for varying the common biasing current are provided, whereby the biasing current depends on the physical distance between the output buffers and the row to be driven.
By varying the common biasing current of all output buffers row period-by-row period, it is possible to reduce the power consumption of the source driver, whilst still providing sufficient current to switch the column lines in the time available.
It is an advantage of the present invention that it can be used for driving any kind of LCD display, such as a TFT display, or an OLED (organic light emitting display), for example. Additional features and advantages of the invention will be set forth in the description that follows, and in part will be apparent from the description.
For a more complete description of the present invention and for further objects and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying drawings, in which:
The means 43 may comprise a counter that counts the LD signals. The counter 43 may comprise a series of flip-flops. A signal at the output of the last flip-flop in this series may be used to reset the counter. In order to ensure that the counter is properly initiated after power-on, an external reset may be provided. The counter 43 issues a digital signal that represents the number of the row that is to be driven next. In the present example, the digital signal has N digits.
According to the present invention, the switchable current source 42 changes the level of the biasing current Ibias according to the physical position. Since the physical position is represented by a corresponding digital signal provided by the counter 43, the switchable current source 42 comprises a number of digitally controlled switches. Depending on the digital signal, these switches provide a contribution to the biasing current Ibias.
The means 43 and the switchable current source 42 can be realized in different ways. For the sake of simplicity, in the following an embodiment is described where the switchable current source 42 comprise M switches (each being formed by a pair of MOSFET transistors, for example) and where each of these switches contributes to the biasing current Ibias only if the respective digit of the digital signal shows a logic “1”. If all switches are identical, one can obtain a biasing current Ibias as illustrated in
It is obvious that this is just one possible embodiment where the biasing current Ibias varies step-by-step and the slope is linear, as illustrated by means of the line 50 in
It should be noted that the buffer biasing current is not the complete current drawn by the output buffers, which generally is drawn from a power supply. This power supply is not shown in any of the Figures.
According to another embodiment, the number of current steps is reduced. If two adjacent rows are driven with the same biasing current Ibias, one needs just M/2 different current steps. In this case, the first and second rows are both driven with the biasing current Ibias. The third and fourth rows are driven with a biasing current Ibias2, and so forth. This approach allows to reduce the number of transistor pairs inside the switchable current source 42 needed to provide the biasing current. If the LCD panel has M=1200 rows (in case of an UXGA panel), one would need 600 transistor pairs rather than 1200 transistor pairs.
It is also possible to further reduce the number of transistor pairs needed by forming groups each comprising q rows. If the LCD panel has M rows, this approach would required M/q transistor pairs. Assuming that the LCD panel has M=1200 rows and that q=10, one would need 120 transistor pairs only.
One possible embodiment of the switchable current source 42 is given in
A transistor serving as dummy switch may be positioned between the first MOSFET transistor 51 and the positive voltage node V. Such a dummy switch, if always in an on-state, may be employed for matching reasons. Note that this dummy switch is optional, however.
Yet another embodiment is illustrated in
The prescaler 52 provides for a bias resolution of a factor q. If there are M rows, the bias resolution would be q/M.
Using the current source 42 being based on the mirroring principle of a well defined reference current, as described in connection with
As a result, one obtains a device where all buffers are biased stronger as the row index increases, that is the biasing current increases with each row period, or if several rows from a group, the biasing current increases with each row group. Due to this, it is possible to ensure that the settle time for each pixel of the row is kept rather constant even if i (with 0<i≦M) is increasing.
According to the present invention, the biasing current is varying according to the number of load signals LD. It is clear from the above that the power consumption can be quite low since the present invention allows each row to be driven with an appropriate (sufficient) current. It is not necessary anymore to drive the rows with currents that are too high.
A liquid crystal display 70, according to the present invention is shown in
In a preferred embodiment, the output buffers of liquid crystal display 70 have signal inputs and outputs. The outputs (Y1-YN) are connected to drive a respective column line and the signal input is connected to a digital-to-analogue conversion means (e.g. digital-to-analogue conversion means 24 in
The invention presented in the U.S. patent application published under US 2003/0112215 A1, may be combined with the teaching of the present invention. This allows to realize a device where the physical location of the row has an impact on the biasing current. At the same time, the biasing current may be reduced after the drive period to a lower biasing current that is sufficient to maintain the voltage on the column lines.
It is appreciated that various features of the invention which are, for clarity, described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable subcombination.
In the drawings and specification there has been set forth preferred embodiments of the invention and, although specific terms are used, the description thus given uses terminology in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | Kind |
---|---|---|---|
0420051.5 | Sep 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/52943 | 9/8/2005 | WO | 3/9/2007 |