Method and apparatus for dual-pass rate-control video encoding are described.
Video images in an information stream can be transmitted to a user via a broadband communication network, for instance, over a satellite, cable, or terrestrial transmission medium. Efficient transmission of video requires compression and formatting techniques to be utilized, for instance, due to bandwidth limitations. Various protocols, such as MPEG protocols, have been designed to maximize bandwidth utilization for video information transmission by adding a temporal component to a spatial compression algorithm.
Each individual image or picture in a sequence of images or pictures of video can be referred to as a frame or field. Each picture or frame is made up of a large number of picture elements (pixels) that define the image. Within each picture or frame, redundant pixels describe like parts of a scene, e.g. a blue sky. Various types of compression algorithms have been used to remove redundant spatial elements thereby decreasing the bandwidth requirements for image transmission. For example, sequences of frames of video may contain pixels that are very similar or identical. Thus, to maximize bandwidth utilization, compression and motion compensation protocols, such as MPEG, can be used to minimize the redundant pixels between adjacent frames.
ITU-T H.264/MPEG-4 part 10 provides an example of an International video coding standard. ITU-T H.264/MPEG-4 part 10 is often referred to as MPEG-4 AVC (Advanced Video Coding). MPEG-4 AVC achieves data compression by utilizing coding tools, such as, spatial and temporal prediction, blocks of variable sizes, multiple references, integer transform blended with quantization operation, and entropy coding. MPEG-4 AVC supports adaptive frame and field coding at picture level and is able to encode pictures at relatively low bit rates yet maintains a desired quality of picture, or video quality.
Rate control is used to dynamically adjust encoding parameters so that the resulting compressed bit rate can meet a target bit rate. Rate control is important to regulate the encoded bit stream to satisfy the channel condition and to enhance the reconstructed video quality. In MPEG digital video systems, the complexity of a video frame or picture is measured by the product of the quantization level used to encode the frame or picture and the number of bits used for coding the frame or picture. This means the complexity of a frame or picture is not known until it has been encoded. As a result, the complexity information always lags behind the actual encoding process, which requires the buffering of a number of frames prior to encoding.
For a constant bit rate (CBR) MPEG video encoder, quantization is used as a means for adjusting the number of bits in a coded picture and buffer management is used as a means for providing a constant bit rate stream under conditions of widely varying number of bits per coded picture while trying to maintain uniform quality in reconstructed (i.e., decoded) video. Thus, issues with respect to scene change, buffer management, and quantizer selection are required to be addressed by the video encoder and its rate control algorithm.
With respect to scene changes, identifying a scene change at a cut and managing an abrupt change in video coding that may occur at a scene change boundary provide challenges and can impact video quality. At a scene change cut, the video quality experienced during the “old” (i.e., previous) scene should not noticeably degrade going into the cut. In addition, the video quality of the new scene immediately following the cut should be the same as the “steady state” video quality for the scene as a whole. The above referenced requirements should be met whether transitioning from an easy to encode (i.e., low complexity) scene to a hard to encode (i.e., high complexity) scene, transitioning from a hard to encode (i.e., high complexity) scene to an easy to encode (i.e., low complexity) scene, or transitioning between comparable scenes (with respect to coding efficiency) that may code significantly different.
With respect to buffer management, coded pictures vary greatly in size, and each video encoding standard must specify a buffer model for constant bit rate output from the encoder. For example, the H.264/MPEG-4 standard requires a coded picture buffer (CPB) of a hypothetical reference decoder (HRD); while, the H.262/MPEG-2 standard requires a video buffer verifier (VBV). A video encoder must never violate the given buffer model. Here, the problem is to balance the need to avoid violating the model and yet still use the fullest possible extent of the buffer to ensure that video quality is maximized for a given bit rate.
With respect to quantizer selection, a video encoder must select an integer quantizer for each and every macroblock in every picture or image. The quantizer provides the primary bit rate control mechanism of the encoder. The higher the quantizer, the lower the number of coded picture bits, and the lower the quantizer, the higher the number of coded picture bits. Rate control algorithms of encoders must provide the ability to derive from a target number of bits for a picture, or a subset of a picture, the quantizer value that will lead the encoder to encode the video to the desired number of bits, or as close as possible to the desired number of bits. However, the range of available quantizers may be small, for instance, limited to 52 values between zero (0) and 51 for the H.264/MPEG-4 standard. Thus, a small change in selected quantizer value can result in a large change in number of bits coded.
The H.264/MPEG-4 standard is designed such that a quantizer value decrease of one (1) should lead to a bit increase of about 12%. However, in practice, the percent change can be quite variable and, when increasing or decreasing the quantizer value by greater than one (1), the percent bit change may not be accurately predicted because the percentages tend not to scale well. Accordingly, the ability to accurately predict the number of bits produced via use of a quantizer value can be difficult. An accurate prediction is a necessary condition for an effective solution to buffer management issues discussed above.
Accordingly, a dual-pass MPEG video encoder and rate control algorithm that are able to address video quality issues at scene changes and provide scene change detection that prevent encoder buffer overflows, yet avoid buffer underflows that might harm video quality, and that can be used for straight constant bit rate (CBR) encoding as well as piece-wise CBR encoding, such as in a statistical multiplexer (stat-mux) system, are needed.
This disclosure describes a method of dual-pass rate control video encoding. Uncompressed input video is received with an video encoder and includes a sequence of pictures with a plurality of contiguous sequences of pictures each referred to as a Group of Pictures (GOP) that, when coded, begin with an I-picture in display order and end with a last picture before a next I-picture. A first encoding pass of the uncompressed video is performed with the video encoder, and a second encoding pass of the uncompressed video is performed with the video encoder at a delay relative to the first encoding pass. The first encoding pass detects scene changes within the input video, assigns macroblocks to a pre-determined number of activity classes, and determines a complexity of each picture within the sequence of pictures. The term “macroblocks” refers to rectangular arrays of luma samples and two corresponding blocks of chroma samples in the pictures, the term “activity class” refers to different defined classes of macroblocks based on luma values of the pictures of the input video, and the term “complexity” refers to a number of bits generated per picture and activity class. Information from the first encoding pass concerning the scene changes, the activity classes, and the complexity are used for rate control determined in the second encoding pass for producing and outputting a bit stream of compressed video. During at least one of the first encoding pass and the second encoding pass, the boundaries of at least some of the GOPs are adjusted to be aligned with the scene changes.
This disclosure also describes a method of dual-pass rate control video encoding in which uncompressed input video is received with a video encoder and includes a sequence of pictures. The input video includes a plurality of contiguous sequences of pictures each referred to as a Group of Pictures (GOP) that, when coded, begin with an I-picture in display order and end with a last picture before a next I-picture. The GOP also includes picture types encoded as P pictures, B pictures and B-reference pictures. A first encoding pass of the uncompressed video is performed with the video encoder to detect scene changes, to assign macroblocks to a pre-determined number of activity classes, and to determine a complexity of each picture within the sequence of pictures. A second encoding pass for rate control of the uncompressed video with the video encoder is performed at a delay relative to the first encoding pass. Information from the first encoding pass concerning the scene changes, the activity classes, and the complexity are used for rate control determined in the second encoding pass for producing and outputting a bit stream of compressed video. Quantizer values for rate control are determined by the second encoding pass for each macroblock on a per picture type and activity class basis, and during the second encoding pass, each macroblock determined to require a maximum quantizer value by the video encoder is encoded as a skip picture if encoding the macroblock with a maximum quantizer value would cause an overflow of the coded picture buffer (CPB) of the video encoder.
This disclosure also describes a dual-pass rate control video encoder including a first and a second encoder module. The first pass encoder module being configured to receive uncompressed input video including a sequence of pictures having a plurality of contiguous sequences of pictures each referred to as a Group of Pictures (GOP) that, when coded, begin with an I-picture in display order and end with a last picture before a next I-picture. The first pass encoder module is configured to detect scene changes within the input video, assign macroblocks to a pre-determined number of activity classes, and determine a complexity of each picture within the sequence of pictures. The encoder also includes a delay unit for receiving the uncompressed input video. The second pass encoder module receives the uncompressed input video via the delay unit and is configured to obtain information from the first pass encoder module concerning the scene changes, the activity classes, and the complexity used to determine rate control of the uncompressed video and to produce and output a bit stream of compressed video. At least one of the first pass encoder module and the second pass encoder module is configured to adjust the boundaries of at least some of the GOPs to be aligned with the scene changes.
Various features of the embodiments described in the following detailed description can be more fully appreciated when considered with reference to the accompanying figures, wherein the same numbers refer to the same elements.
For simplicity and illustrative purposes, the principles of the embodiments are described by referring mainly to examples thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the embodiments. It will be apparent however, to one of ordinary skill in the art, that the embodiments may be practiced without limitation to these specific details. In some instances, well known methods and structures have not been described in detail so as not to unnecessarily obscure the embodiments.
The two-pass encoder 10 may be a MPEG-4 AVC encoder and may include hardware, such as, a processor or other circuit used for encoding. It should be understood that the two-pass MPEG-4 AVC encoder may include additional components and that some of the components described herein may be removed and/or modified without departing from a scope of the two-pass MPEG-4 AVC encoder 10. Also, although the two-pass encoder 10 is primarily described with respect to MPEG-4 AVC, it should be apparent that embodiments of the invention may be used with different video coding standards, such as MPEG-2.
In
With respect to video coding in general, pictures or frames referenced by a MPEG video encoder for the purpose of predicting motion of images within adjacent picture or frames are called anchor pictures or frames. For purposes of this disclosure, the word “picture” refers to a field or a frame. The term “intra prediction” refers to a prediction derived from decoded samples within the same or current decoded picture, the term “inter prediction” refers to a prediction derived from decoded samples of reference pictures other than the same or current decoded picture, and the term “reference picture” refers to a picture containing samples that may be used for inter prediction of subsequent pictures in decoding order. The term “macroblock” refers to a rectangular array of luma samples and two corresponding blocks of chroma samples.
The anchor frames or pictures may include the following types of pictures: I-pictures, P-pictures, B-pictures, and B-reference pictures. An I-picture is a picture or groups of pixels (macroblocks) that are decoded using intra-prediction techniques only. In contrast, a P-picture is a picture that may be decoded using either intra-prediction or inter-prediction with at most one motion vector and reference to predict samples values of each block. Thus, a P-picture can contain references to previously encoded pictures within a sequence of pictures. A B-picture is a picture that may be decoded using either intra prediction or inter-prediction with at most two motion vectors (i.e., bi-directional) and references to predict samples values of each block. B-pictures can contain macroblocks referred from previously encountered frames and macroblocks from frames that follow the frame being currently analyzed, and B-pictures can entail a type of look-ahead scheme to describe the currently analyzed image in terms of an upcoming image. A B-reference picture is a picture that is both a B-picture and a reference picture.
Both B-picture and P-picture encoding reduce duplication of pixels by calculating motion vectors associated with macroblocks in a reference frame or picture, resulting in reduced bandwidth requirements. The choice of encoding type for a particular frame or picture is typically dependent upon the complexity of the particular image.
With the above definitions in mind, a contiguous sequence of coded pictures in decode order that begins with an I-picture and ends with the last picture just before the next I-picture is referred to as a Group of Pictures (GOP). A sub-GOP is a contiguous sequence of coded pictures in display order starting with an I-picture or a P-picture and ending with the last picture just before the next I-picture or P-picture. For purposes of example, a picture-type sequence may be: IBBPBBPBBI. Here, the GOP structure is represented as “IBBPBBPBB” which includes the following sub-GOPs: “IBB”, “PBB”, and “PBB”.
The rate control algorithm discussed herein and used by the encoder 10 is GOP based. All key parameters are calculated on a GOP-by-GOP basis and are subject to change at GOP boundaries.
In the GOP based embodiment of rate control algorithm discussed herein, scene changes are aligned with GOP boundaries. (See step 36 in
In the dual pass encoder 10, every picture of a given type (I, P, B, reference B) is coded with a constant quantizer in the first pass for all macroblocks of that picture type for purposes of providing a uniform metric across all scenes. (See step 24 in
The first encoding pass 24 of encoder 10 is used for purposes of scene-change detection using macroblock activity values (see step 30 in
Complexity is calculated in the first encoding pass of encoder 10 on a per picture basis and is stored in a sliding window used by second pass encoding of encoder 10. (See step 40 in
Thus, in the first pass encoding 24 provided by first pass encoder 12, a sufficient amount of data is collected so that complexity metrics can be calculated for use during second pass rate control encoding (see step 44 in
The target encoder buffer fullness at the beginning of each GOP and at every intermediate picture within a GOP is calculated by the encoder 10. (See step 52 in
For some content, the prediction of encoded bits generated for a given quantizer may not be very accurate. Thus, a multiplier (to target bits) to adjust for failure of accurate bit prediction is used during second pass encoding by encoder 10. (See step 54 in
With the above general description in mind, the procedures performed in each of first and second pass encoding, 24 and 44, of encoder 10 is discussed below in detail.
There are three main responsibilities for the first pass 24 performed by the first pass encoder module 12 of the dual pass encoder 10: (i) identify scene change 30; (ii) adjust GOP boundaries 36; and (iii) generate data 38 for use by the second pass encoder module 14 during second pass encoding 44.
First pass encoding 24 of encoder 10 obtains as much information as possible and feeds the information to the look-ahead picture buffer 40 of the second pass encoder module 14. With this information, the frame or picture at which a scene change occurs and the sub-GOP are pre-identified in the look-ahead picture buffer of the second pass encoder module 14. For this purpose and as described above, a nominal P-picture of a sub-GOP is promoted to an I-picture (if not already an I-picture in the sub-GOP) in the look-ahead picture buffer of second pass encoder 14. See step 36 in
The bits in each coded picture can be divided into residual bits and non-residual bits. The non-residual bits include motion vectors as well as macroblock types. Rate control only controls or selects the quantizer used for each macroblock. Macroblocks are classified into activity classes (k) based on original input luma values. Quantizers (QP) are calculated by the second pass encoder 14 on a per activity class basis. See step 50 in
For purposes of obtaining consistent, accurate information within scenes and at scene changes, the first encoding pass 24 is run with a constant quantizer (QP) for all macroblocks in all activity classes. Only picture bit counts are used because the picture bit counts are consistently accurate. Traditionally, non-residual bit count estimates have been inconsistent and varied and thus are not used. Accordingly, first pass encoding 24 by encoder 10 handles all of the pictures of the input video 16 in a uniform, consistent manner.
The first pass encoding 24 of the first pass encoder module 12 is optimized as a data collector and scene detector and does not have the objective of providing single-pass encoding with any type of rate control. Rather, the first pass is responsible for scene detection 30, for adjusting GOP boundaries 34, and for building a model of the complexity 28 of the input video 22 for use during second pass encoding 44.
The length (N) of a GOP can be stated as follows: N=nI+nP+nB-ref+nB, where nI is the number of I-pictures in the GOP (typically one), nP is the number of P-pictures in a GOP, nB-ref is the number reference B-pictures in a GOP, and nB is the number of non-reference B-pictures in a GOP. The number of P-pictures can be further refined as NP=nIp+np where nIp is zero for progressive count and is equal to nI for interlaced content. The subscript “Ip” is used to denote the P-picture immediately following an I-picture in an interlaced frame coded as an I-field followed by a P-field. Because of scene changes, the length (N) of GOPs will not always be the same nominal value and can vary from GOP to GOP.
First pass encoding 24 of encoder 10 places the complexities for all coded pictures into a sliding window look-ahead buffer 40. Since the first pass is run with a constant quantizer over all pictures (for instance, with a QP equal to 30 for all but I-pictures which are encoded with a quantizer of 28), the number of actual bits generated for each picture suffices as the complexity for that picture. Header bits, which include sequence parameter set, picture parameter set, SEI, and access unit delimiter NAL units, are not included in the picture complexities. The complexity (total picture bits excluding header bits) for a picture (i) is denoted as ci, the header bits are denoted as ui, and the picture type (I, P, B-ref, or B) are denoted as τi.
The macroblocks of the original (input) pictures are categorized according to their spatial activity (see step 26 in
mb_counti(k)=|{j:A(mbij)=k}|.
The total number of macroblocks for any given picture in a sequence is a constant mb_count so that ∀i: mb_count=Σi=0M−1mb_counti(k). For a given activity class k and picture (i), the average macroblock activity is denoted by
These per activity class average macroblock activities are generated by the Ambarella HW used in first pass encoding 24. The picture level average macroblock activity (across all activity classes) is used in identifying scene change. For a given picture (i), it is defined as:
Scene change detection 30 in the first pass encoding 24 is based on average macroblock activity of a set of prior pictures compared with the average macroblock activity of a set of current/next pictures in display order. Because of the possibility of memory limitations, there may be restrictions on the number of pictures used to determine a scene change. For frame based encoding, let Xj represent frames indexed by display order (rather than encode order). If the current frame (picture) is Xj0, then the prior pictures are the set of pictures: P={Xj0−6, Xj0−5, Xj0−4, Xj0−3, Xj0−2, Xj0−1} unless P contains a scene change, in which case, the set of prior pictures is the maximal subset of P not including another scene by including the frame. The set of current/next pictures is the set of {Xj0, Xj0+1}. For field coded pictures, let Xj,1 and Xj,2 represent the first and second fields respectively for frame Xj (in display order). If the current frame is field-coded as {Xj0,1, Xj0,2} then the prior pictures are the set of pictures: P={Xj0−3,1, Xj0−3,2, Xj0−2,1, Xj0−2,2, Xj0−1,1} unless P contains a scene change in which case the set of prior pictures is the maximal subset of P not including another scene but including the field Xj0−1,1. Only five fields are used because there are cases where a scene change occurs between two fields in the same frame. The set of current/next pictures is the set {Xj0,1, Xj0,2, Xj0+1,1, Xj0+1,2}.
Given a set of pictures {Xj0, Xj1, . . . , Xjm} with matching picture level average macroblock activities P={āj
(min N)−(max P)≧t, or (1)
(min P)−(max N)≧t. (2)
There is also an additional scene change detection mechanism based on comparing the complexity of the current P picture with the complexity of the previous P picture. For any two pictures i and j where j<i, τi=τj=P, and there does not exist a k such that j<k<i with τk=P, a scene change is declared at picture (i) if the function sc(ci, cj) returns “True”. This function is defined as:
This additional scene change detection is a secondary mechanism and is only invoked if the primary mechanism does not declare a scene change. The secondary mechanism as defined may typically only detect a scene change from easy-to-hard to encode scene changes.
Adjusting GOP boundaries at scene change is accomplished by promoting the P-picture in a scene-change sub-GOP to an I-picture (if there is not already an I-picture). See step 36 in
With the above description of the first pass in mind, the data generated by the first pass for use during the second pass includes the following per picture items (see step 38 in
Based on the information provided by the first pass (see step 46 in
Video quality at scene change is ensured based on handling of scene change sub-GOPs. The first pass identifies which pictures are part of the old scene and which are part of a new scene within a sub-GOP. See steps 32 and 24 of
The complexities (bits) for a given picture are distributed across the number (M) of activity classes (k). The notation ci(k) is used for the bits in a picture attributed to the macroblocks in activity class (k). Thus,
Within a given GOP, the average complexity for a given picture type and activity class can be determined. See step 48 in
A weight is associated with each picture type and activity class in a given GOP. The weights are normalized so that the weight for a P-picture is always 1. For the H.264/MPEG-4 standard, each decrease in quantizer (QP) by 1 approximately results in an increase in number of bits by 21/λ where λ=6. An offset between −2 and −6 in the average quantizer for an I-picture from the average quantizer for a P-picture in the same GOP has been found to provide more uniform visual results in most cases. Similarly, offsets between +2 and 0 for a reference B-picture and between +4 and 0 for a B picture (from a P-picture) provide more uniform visual results. In some cases, an offset less than −6 for an I-picture or greater than 4 for a B-picture (or 2 for a reference B-picture) can be used. This leads to tuning parameters δqI, δqB and δqB-ref for these respective offsets. For example, these can be set to δqI=10, δqB=−10, and δqB-ref=−10. Thus, using the “Clip3” function in the H.264/MPEG-4 standard, leads to the following set of values for picture weights for a given activity class (k) where 0<k<M:
wI(k)=Clip3(22/λ, 2δq
wP(k)=1,
wB-ref(k)=Clip3(2δq
wB(k)=Clip3(2δq
The weighted sum of the complexities per activity class is denoted by
C(k)=nI·wI(k)·
The total weighted sum across all activity classes is denoted by
The motivation for the above equations is as follows. Second pass encoding receives information from First pass encoding with respect to how predictable a current scene may be, more specifically, how well a P picture may be estimated from the associated reference P/I picture and how well the B/Bref can be estimated from the P pictures. From this information, second pass encoding determines how to weight the different picture types. For example, the more predictable the content of the current scene may be, the wider the spread in the weights. Alternatively, if the content within the current scene is not very predictable, the weights converge to a value near 1. However, as the content becomes very predictable, then the weights will spread. Thus, if the video is near still content, then a lot of bits (low QP) will be required to encode the I picture because the rest of the pictures, P/B/Bref, estimate very well and will not require many bits to encode. However, if the P picture cannot be estimated well from the I picture, the content in the P picture will require significant recoding. In this case, it would be a waste to code the I picture at a significantly lower QP and it would actually cause a beat or flicker when the I picture was decode and displayed in the decoded video.
The total number of header bits within a GOP is denoted by:
U=(nI·ūI))+(nP·ūP)+(nB-ref·ūB-ref)+(nB·ūB)
The size of the coded picture buffer (CPB) is denoted as V; the buffer fullness before encoding a picture is denoted as bf and the desired buffer fullness after encoding the picture is bf′. In an ideal world, bfi+1=bf′. Let picture_bitsi=bit ratei/frame_rate be the average target number of bits for a given picture. For the constant bit rate (CBR) case, every picture has the same average number of target bits; in a stat-mux case, bit_ratei will vary from frame to frame. The index for a first picture in a GOP is denoted as i0, and the index of the first picture in the next GOP by i1=i0+N. Thus, for a given GOP, the total target bits is denoted by
These lookahead bits must be allocated to the different activity classes. A fraction γ of the lookahead bits is allocated to be proportional to the per activity class complexities and the remaining bits to be proportional to the number of macroblocks in a given activity class. The number of lookahead bits in a given GOP allocated to activity class (k) is thus denoted by
It can then be shown that Σi=0M−1lookahead_bits(k)=lookahead_bits−U. The fraction γ can be varied between 0.43 and 0.69 based on wI(k). A weighting for the mb_count(k) (not reflected in the above equation) is also used to give more bits to the lower activity areas. As an example, this weighting may be set at 1.1, 1.05, 0.98, and 078 for M=4.
For frame encoding, an initial target number of bits for the I picture at the beginning of the next GOP is
For field-encoding, the second field in the frame at the beginning of a GOP is coded as a P-field. If this field has a complexity greater than the average P-picture in the GOP then it needs to be considered along with the I-field according to the multiplier α where
The desired buffer fullness before the beginning I picture in the next GOP (which is equal to the desired buffer fullness after the last picture in the GOP is encoded) is then
For a given picture k in a GOP, knowing the desired buffer fullness at the end of a GOP, bf′i
bf′j−1=bf′j−(tj+uj)+picture_bitsj, j=i1−1,i−2, . . . ,k+1,
where tj is the target number of bits for picture j. If cj is available in the look ahead buffer then we use it in calculating the target bits, otherwise we assume equal distribution of target bits for a given picture type. Thus
Not considering buffer fullness, the target picture bits for the macroblocks in activity class k for picture n is
tn(k)=wτ
and the target picture bits for the entirety of picture n (less the header bits un) is
It is desired that after encoding picture n, the buffer fullness will be the desired buffer fullness from the above recursion, so that ideally,
bfn+tn+un−picture_bitsn=bf′n.
Because the above equation is not likely to hold true, the target bits are proportionally adjusted by how far off they are from the desired buffer fullness by the factor
The adjusted target picture bits per activity class from which the desired quantizer qn(k) is calculated for activity class k in picture n is then target_bitsn(k)=F·ti(k)
from which an initial estimate of the quantizer can be derived for activity class k in picture n,
The estimated number of encoded bits per activity class for this quantizer is then
ên(k)=cn(k)·2(q
The actual number of encoded bits is denoted by αn(k). It is not uncommon to find that the estimate is too large by a factor of 2 to 8; this means that the estimated quantizer is too conservative and the actual quantizer should be lower. On the other hand, it is also possible that the estimate could be too small compared to the actual; this situation might prove dangerous because the actual is now larger than the target which could cause the encoder buffer to overflow. These large errors, in the ratios (or differences) between actual bits and estimated bits, mean that for some scenes, the model, of an approximate 12% increase (or decrease) in bits by lowering (or increasing) the quantizer by one, fails significantly. This becomes more likely the further the initial estimated quantizer is from q1.
To accommodate these failures of the model, a multiplier (to the target bits) is used to adjust for the failure of ên(k) to accurately predict the number of bits actually generated. This multiplier is scene-based (as well as activity-based) and does not change significantly within a scene. There is a different multiplier for each activity class within a scene. Rather than calculating an “instantaneous” multiplier, ên(k)/αn(k) , a simple filter over the estimated bits and the actual bits in each activity class within a given scene is performed. There are different filtered values for each picture type. For picture n and activity class k, the filtered estimated bits are denoted by {tilde over (e)}j,n(k) and the filtered actual bits are denoted by ãj,n(k), where j=I, Ip, P, B-ref, or B. The estimated multiplier for picture n and activity class k is denoted by {circumflex over (m)}n(k). At the first picture, n, of a scene, {circumflex over (m)}n(k)=1. Within a scene, if τn≠j, then
{tilde over (e)}j,n(k)={tilde over (e)}j,n−1(k) and {tilde over (α)}j,n(k)={tilde over (α)}j,n−1,
and if τn=j then
The estimated multipliers for pictures within a scene are calculated by dividing the weighted filtered estimated bits by the weighted filtered actual bits:
The estimated multiplier {circumflex over (m)}n(k) for the current picture is dependent on the estimated quantizer {circumflex over (q)}n−1(k), used for the most recent picture. The multiplier that will actually be used in the calculation for picture n is denoted by mn(k). If {circumflex over (q)}n(k)=q1 then clearly mn(k)=1 because the predicted actual bits should be very accurate since the target bits are very close to the first pass bits. If {circumflex over (q)}n(k)={circumflex over (q)}n−1(k) then mn(k) should be close to {circumflex over (m)}n(k) because that was close to what was used in the previous coded picture. If {circumflex over (q)}n(k)≦q1and {circumflex over (q)}n−1(k)≧q1 or if {circumflex over (q)}n(k)≧q1 and {circumflex over (q)}n−1(k)≦q1 then mn(k)=1. In the other possibilities some interpolation/extrapolation needs to be performed.
There are four cases:
The k quantizers that are actually used for coding picture n are then
where q1 is the constant quantizer used in the first pass. In the current implementation, the minimum quant, qmin, has the value of 10. Quantizers are further constrained such that within a GOP, if picture type τn=P or τn=Ip, then ∀k: 0≦k<M, qn(k)≧qi
For any pictures m and n within the same sub-GOP, if τm=B-ref and τn=P, or if τm=B and τn=B-ref then ∀k: 0≦k≦M, qm(k)>qn(k).
On difficult content, at low bit rates, it may turn out that even using the maximum quantizer value of 51 is insufficient to preclude the encoder from over-running its buffer. To forestall such a possibility, frame rate reduction is utilized by first calculating the estimated bits for picture n, est_bitsn, based on the qn(k) derived above as
Then the estimated buffer fullness after encoding picture n, denoted by est_bfn, is calculated as
est_bfn=bfn+est_bitsn+un−picture_bitsn.
When the quantizer for the highest activity class, qn(M−1), calculates to a value greater than 51 before clipping in the above equation for qn(k) and when est_bfn>bf′n and if est_bfn>0.9. V then we will code picture n as a skip picture under either of the following conditions:
If the picture coded as a skip picture from the above frame rate reduction process is a P picture type, then all subsequent B-reference pictures and B pictures that reference the P picture are also encoded as a skip picture. If the picture coded as a skip picture from the above frame rate reduction process is a B-reference picture type, then all subsequent B pictures that reference the B-reference picture are also encoded as a skip picture. This will prevent buffer overflow and will prevent jitter when the decoded video is played.
The devices, units, modules, and storage discussed above can physically be provided on a circuit board or within an electronic device and can include various processors, microprocessors, controllers, chips, disk drives, and the like. It will be apparent to one of ordinary skill in the art that the modules, processors, controllers, units, and the like may be implemented as electronic components, software, hardware or a combination of hardware and software.
While the principles of the invention have been described above in connection with specific devices, systems, and methods, it is to be clearly understood that this description is made only by way of example and not as limitation on the scope of the invention as defined in the appended claims.
This application claims priority to and is a continuation of U.S. application Ser. No. 14/809,754, filed Jul. 27, 2015, which is a continuation of U.S. application Ser. No. 13/330,137, filed on Dec. 19, 2011, the disclosures of which are incorporated herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4394774 | Widergren et al. | Jul 1983 | A |
5099322 | Gove | Mar 1992 | A |
5933450 | Ozkan et al. | Aug 1999 | A |
5978029 | Boice et al. | Nov 1999 | A |
6101222 | Dorricott | Aug 2000 | A |
6192154 | Rajagopalan | Feb 2001 | B1 |
6252905 | Pokrinchak et al. | Jun 2001 | B1 |
6804301 | Wu et al. | Oct 2004 | B2 |
6959044 | Jin | Oct 2005 | B1 |
6961376 | Wu et al. | Nov 2005 | B2 |
7099389 | Yu et al. | Aug 2006 | B1 |
7197072 | Hsu et al. | Mar 2007 | B1 |
7295612 | Haskell et al. | Nov 2007 | B2 |
7302000 | Chen | Nov 2007 | B2 |
7453938 | Haskell et al. | Nov 2008 | B2 |
7471726 | Srinivasan | Dec 2008 | B2 |
7609897 | Oneda et al. | Oct 2009 | B2 |
7856059 | Haskell et al. | Dec 2010 | B2 |
8165204 | Bronstein et al. | Apr 2012 | B2 |
8325807 | Nilsson et al. | Dec 2012 | B2 |
9094684 | Schwartz et al. | Jul 2015 | B2 |
20010038669 | Hall et al. | Nov 2001 | A1 |
20020159523 | Wang et al. | Oct 2002 | A1 |
20030235220 | Wu | Dec 2003 | A1 |
20030235247 | Wu | Dec 2003 | A1 |
20040151243 | Bhaskaran et al. | Aug 2004 | A1 |
20040252893 | Togashi | Dec 2004 | A1 |
20050036548 | He | Feb 2005 | A1 |
20050036549 | He | Feb 2005 | A1 |
20050084007 | Lightstone et al. | Apr 2005 | A1 |
20060045367 | Chao et al. | Mar 2006 | A1 |
20060126728 | Yu et al. | Jun 2006 | A1 |
20060159166 | Mohsenian | Jul 2006 | A1 |
20080130989 | Moriya et al. | Jun 2008 | A1 |
20080181256 | Schwartz et al. | Jul 2008 | A1 |
20090213938 | Lee et al. | Aug 2009 | A1 |
20100303148 | Hiron et al. | Dec 2010 | A1 |
20110122942 | Kudana | May 2011 | A1 |
20110150074 | Wang et al. | Jun 2011 | A1 |
20110150076 | Wang et al. | Jun 2011 | A1 |
20110150094 | Wang | Jun 2011 | A1 |
20110176562 | Wang | Jul 2011 | A1 |
20110176600 | Wang | Jul 2011 | A1 |
20120027089 | Chien et al. | Feb 2012 | A1 |
20120082210 | Chien | Apr 2012 | A1 |
20120106624 | Huang et al. | May 2012 | A1 |
20120189053 | Chen et al. | Jul 2012 | A1 |
20120233405 | Budagavi | Sep 2012 | A1 |
20120269275 | Hannuksela | Oct 2012 | A1 |
20130058405 | Zhao et al. | Mar 2013 | A1 |
20150334395 | Schwartz et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
0924933 | Jun 1999 | EP |
2004004359 | Jan 2004 | WO |
2004105393 | Dec 2004 | WO |
2006099082 | Sep 2006 | WO |
2007008355 | Jan 2007 | WO |
2008008355 | Jan 2008 | WO |
2009045683 | Apr 2009 | WO |
Entry |
---|
International Preliminary Report on from PCT/US2012/070258, dated Jul. 3, 2014, 21 Pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2012/070258, dated Jul. 29, 2013, 27 pages. |
U.S. Appl. No. 13/330,137, filed Dec. 19, 2011, Issued. |
U.S. Appl. No. 14/809,754, filed Jul. 27, 2015, Allowed. |
Number | Date | Country | |
---|---|---|---|
20170078666 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14809754 | Jul 2015 | US |
Child | 15341704 | US | |
Parent | 13330137 | Dec 2011 | US |
Child | 14809754 | US |