Information
-
Patent Grant
-
6322673
-
Patent Number
6,322,673
-
Date Filed
Saturday, December 18, 199925 years ago
-
Date Issued
Tuesday, November 27, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Valentine; Donald R.
- Smith-Hicks; Erica
Agents
- Masteller, Jr.; Harold I.
-
CPC
-
US Classifications
Field of Search
US
- 204 206
- 204 227
- 204 207
-
International Classifications
-
Abstract
Apparatus for use in a continuous electrochemical treating line and a method for electrochemically treating at least one surface of a continuous web moving through an electrolyte solution contained within a tank. The apparatus includes at least one electrode extending across the surface of the continuous web in combination with at least two rigid, non-conductive, and non-polar bumper devices also extending the continuous web surface. The bumper devices include a slick contact surface positioned against the continuous web surface at spaced apart locations that prevent the continuous web from moving outside a pass-line through the electrolyte solution and arcing against the electrode. The bumper devices may comprise either a bumper strip or a conduit.
Description
BACKGROUND OF THE INVENTION
This invention is related to apparatus and a process for supporting and maintaining a continuous web product in a pass-line position through an electrolyte solution in a continuous electrochemical treatment operation, and in particular, it is directed to the use of rigid, non-conductive, non-polar bumper devices having a slick surface that contacts and maintains the continuous web in the pass-line position. The apparatus and process improves electrochemical treatment rates, prevents arcing between the continuous web and electrodes positioned adjacent the web pass-line, and produces a continuous electrochemically treated web product having minimal surface defects.
It is recognized, for example in applicant's prior U.S. Pat. No. 5,476,578, incorporated herein in its entirety by reference, that plating efficiency can be increased by using resilient wiper blades that contact and remove bubbles of hydrogen (surface film) from the strip during an electroplating operation. Surface film buildup depletes available electrolyte at the cathodic work surface and reduces plating rates. The resilient wiper blades sweep away the surface film, (depleted electrolyte) thereby creating a hydraulic inflow of fresh electrolyte at the work surface or interface. In the preferred embodiment, the U.S. Pat. No. 5,476,578 teaches using a resilient wiper blade arrangement that allows “ready escape of the depleted electrolyte and replacement with fresh electrolyte.”
In U.S. Pat. No. 5,938,899, also incorporated herein in its entirety by reference, applicant teaches that during electroplating the composite barrier layer comprises a combination of: 1) hydrogen bubbles, 2) a micro-ion depletion layer, and 3) a thermal barrier. This composite barrier prevents, or at least reduces, a rapid exchange of depleted electrolyte with fresh electrolyte at the substrate interface being plated. If the electroplating process fails to provide a continuous supply of fresh electrolyte at the plating interface, the plating rate speed will fall off. Therefore, it is necessary for an efficient plating operation to include means for removing the composite barrier layer and for delivering fresh electrolyte to the plating interface.
With the understanding that the above prior patents demonstrate an improvement in the art, continuous use in production along with careful research has revealed some inherent problems in earlier teaching. For example, it has been found that resilient wiper blades can effectively remove the composite barrier layer from a plating interface. However, because such wiper blades are resilient, their flexibility, creates problems for operators when the gauge or weight of the web material is increased, and in particular, when such resilient wiper blades are used in a horizontal line, the heavier web material causes unwanted flexing in the wiper blades. In such instances, the wiper blades can collapse under the increased load and arc against the plating electrodes positioned adjacent the continuous web pass-line. Such arcing can also occur in a vertical plating operation if extreme web flutter occurs along the pass-line, or if the shape of the web is extraordinarily uneven. In such circumstances, the wavy, vertically moving web, can impact against the resilient wiper blades, cause them to flex or collapse, and arc against the plating electrodes that are vertically positioned along the pass-line.
Production operations have revealed that, in certain instances, dendrites or whiskers can grow on nicked or cut wiper blades and the dendrites can damage and reduce the surface quality of the finished electrochemically treated product. For instance, a metal substrate in sheet or strip form has thin sharp edges that move at very high speeds, about 1,800 feet per minute, through a continuous treatment line. If any web flutter or wobble occurs, the thin sharp edges will cut and nick the wiper blades and bumper devices that are used to wipe and maintain the web in its pass-line position. Such nicks and cuts may attract ions that become nuclei for dendrite or whisker growth in certain combinations of polymer materials submerged in electrolyte baths. As the dendrites enlarge and solidify, their abrasive properties scratch and damage the web surface.
Metal sheet and strip substrates can also have slivers or burrs along the strip edge. Such imperfections also cut and nick wiper blades and bumper devices, even in the absence of any web flutter, creating nuclei for dendrite or “barnacle” growth. Additionally to provide a continuous web, operators weld or join the leading and tailing ends of coiled sheet to provide an uninterrupted web that moves continuously through an electrochemical treatment operation. Such weld joints can also cut and nick wiper blades and bumper devices creating nuclei for dendrite growth.
Research work directed to eliminating dendrite growth has led to the unexpected discovery that if a non-polar material is used to manufacture the bumper devices of the present invention, dendrite growth is eliminated, or at least reduced to a level where it is of little concern. Tests were conducted using various materials to manufacture bumper devices before it was discovered that a non-polar, ultra high molecular weight polymer material, with a slick outer surface having a dry relative coefficient of sliding function to rolled steel of about 0.30 or lower, overcomes all of the aforementioned problems. One such exemplary ultra high molecular weight polymer material suitable for making the bumper devices of the present invention is GAR-DUR®, manufactured by Garland Manufacturing Company, Saco, Me. Referring to the GAR-DUR® UHMW Technical Data Sheet, incorporated herein by reference.
Earlier patents teach using rigid plastic materials to prevent substrates from arcing against plating electrodes. For example, U.S. Pat. No. 4,828,653 discloses using a plurality of parallel rods (4) of a suitable insulating material. However, U.S. Pat. No. 4,828,653 fails to recognize the dendrite problem and completely fails to teach or suggest a solution for reducing or eliminating the dendrites that will form on the rods (4) if the invention is used in production.
U.S. Pat. Nos. 3,619,383, 3,619,384, 3,619,386, and 3,734,838, to Eisner disclose using non-conducting, bumper like devices between a substrate and electrode in a plating line. However, Eisner actually teaches away from the present invention by encouraging operators to scratch the surface of the plated substrate. In each instance, Eisner teaches impregnating his non-conducting bumper like devices with an abrasive grit to facilitate scratching the plated surface as it moves across his bumper.
Additionally, prior teaching fails to provide a positive or pressurized inflow of fresh electrolyte at the plating interface. As heretofore mentioned, the resilient wiper blades sweep away depleted electrolyte creating a natural forced hydraulic inflow of fresh electrolyte at the work surface. However, it must be remembered that if the electroplating process fails to provide a continuous, sufficient supply of fresh electrolyte at the plating interface, the plating rate speed will fall off, Therefore, it is very desirous to provide an inflow of fresh electrolyte to the electrochemical treatment interface at a positive pressure, the pressurized inflow being at a volume that will prevent a slowdown in treatment rate speed.
SUMMARY OF THE INVENTION
It is therefore the primary object of the disclosed invention to provide electrochemical treatment apparatus having rigid non-conductive bumper devices that maintain a continuous web in a pass-line through an electrolyte solution.
It is a further object of this invention to provide rigid non-conductive bumper that resists flexing under a load or web weight.
It is still a further object of this invention to provide rigid non-conductive bumper devices having a slick surface that will not damage the finish surface of an electrochemical treated substrate.
It is another object of this invention to provide non-polar bumper devices that are resistant to dendrite growth.
It is still another object of this invention to provide rigid non-conductive bumper devices having means to deliver a pressurized flow of fresh electrolyte to an electrochemical treatment interface. Other objects and advantages of the present invention will become apparent from the following detailed description thereof.
In satisfaction of the foregoing objects and advantages, the present invention provides apparatus for use in a continuous electrochemical treating line and a method for electrochemically treating at least one surface of a continuous web moving through an electrolyte solution contained within a tank. The apparatus includes at least one electrode extending across the surface of the continuous web in combination with at least two rigid, non-conductive, and non-polar bumper devices also extending beyond the continuous web surface. The bumper devices include a slick contact surface positioned against the continuous web surface at spaced apart locations that prevent the continuous web from moving outside a fixed pass-line through the electrolyte solution and also prevent arcing against the electrode. The bumper devices may comprise either a bumper strip or a conduit.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an elevation view showing a first embodiment of a conduit bumper device.
FIG. 2
is an elevation view showing a second embodiment of a conduit bumper device.
FIG. 3
is an elevation view showing a third embodiment of a conduit bumper device.
FIG. 4
is a cross-section view taken through a conduit bumper device.
FIG. 5
is an isometric view showing a first bumper strip embodiment.
FIG. 6
is an isometric view showing a second bumper strip embodiment.
FIG. 7
is a schematic diagram showing a horizontal electrochemical treatment line using bumper strips to maintain a continuous web in a pass-line through an electrolyte solution.
FIG. 8
is a schematic diagram showing a horizontal electrochemical treatment line using bumper strips in combination with conduit bumper devices to maintain a continuous web in a pass-line through an electrolyte solution.
FIG. 9
is an enlarged portion of the schematic diagram shown in FIG.
8
.
FIG. 10
is a schematic diagram showing a horizontal electrochemical treatment line for treating one side of a continuous web, the treatment line using conduit bumper devices for maintaining the continuous web in a pass-line through an electrolytic solution.
FIG. 11
is a schematic diagram showing a horizontal electrochemical treatment line for treating two sides of a continuous web, the treatment line using conduit bumper devices for maintaining the continuous web in a pass-line through an electrolytic solution.
FIG. 12
is a schematic diagram showing a vertical electrochemical treatment line for treating one side of a continuous web, the treatment line using conduit bumper devices for maintaining the continuous web in a pass-line through an electrolytic solution.
FIG. 13
is a schematic diagram showing a vertical electrochemical treatment line for treating two sides of a continuous web, the treatment line using conduit bumper devices for maintaining the continuous web in a pass-line through an electrolytic solution.
FIG. 14
is a schematic diagram taken along the lines
14
—
14
of
FIG. 13
showing an offset conduit arrangement to prevent the pinching and possible binding of a continuous web between conduit bumper devices.
FIG. 15
is an enlarged cross-section similar to
FIG. 9
showing perforated electrodes used in an electrochemical treatment operation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to
FIGS. 1-3
, the drawings show different exemplary embodiments of conduit bumper devices
10
a,
10
b,
and
10
c
of the present invention. Each conduit embodiment includes a feed side
11
having an attachment end
12
for connection to a supply of fresh electrolyte solution (not shown), and a plurality of spaced apart conduit portions
13
a-
13
z,
each conduit portion having a slick outside surface.
FIG. 1
shows a continuous serpentine shaped conduit bumper
10
a
having a feed side
11
, an attachment end
12
, a capped end
14
, and a plurality of conduit portions
13
a-
13
z
spaced apart along the length of the continuous serpentine shaped conduit between the connection end and the capped end. The conduit portions are aligned in a non-parallel direction to feed side
11
, for example perpendicular, and in the exemplary embodiment shown in
FIG. 1
, the conduit portions
13
a-
13
z
are shown in a parallel spaced apart relationship. However, it should be understood that the conduit portions may be aligned in a non-parallel spaced apart relationship without departing from the scope of this invention.
Referring now to
FIG. 2
, conduit bumper
10
b
includes a feed side
11
, a connection end
12
and a plurality of spaced apart conduit portions
13
a-
13
z
that branch outward from feed side
11
. The spaced apart conduit portions are aligned perpendicular to feed side
11
and each conduit portion includes a connection end
15
communicating with feed side
11
, and a capped end
16
opposite the connection end.
FIG. 3
shows an alternate conduit bumper embodiment
10
c
similar to FIG.
2
. However, in this instance, the spaced apart conduit portions
13
a-
13
z
branch outward at an angle θ from feed side
11
, and each angled conduit portion includes a connection end
15
and a capped end
16
.
As more clearly shown in
FIGS. 1-4
, each conduit portion
13
a-
13
z
includes a plurality of spaced apart apertures
17
that extend through a wall
18
of the conduit portion along a length “L.” Apertures
17
are located on the downstream side
19
of the conduit portions with respect to the direction of continuous web travel “D” when the conduit portions
13
a-
13
z
are placed adjacent a continuous moving web
34
in an electrochemical treatment operation. Additionally apertures
17
extend through conduit wall
18
at a location that will position the spaced apart apertures immediately adjacent the work surface or treatment interface
20
along the continuous web
34
being electrochemically treated. Such close proximity to the web surface provides means for delivering a flow of fresh electrolyte
35
from the supply end of the feed line
11
to the treatment interface
20
. Apertures
17
may comprise any convenient or suitable size or shape, for example they may be round, rectangular, triangular, or a singular elongated slot that extends along the length “L” of the conduit portions
13
a-
13
z.
Additionally, although the conduit portion shown in
FIG. 4
shows a round tube section, the conduit portion may comprise a rectangular or other suitable cross-section shape without departing from the scope of this invention.
Referring now to
FIG. 5
, the drawings shows a cross-section taken through an elongated bumper strip
21
a.
Bumper strip
21
a
is manufactured having a length equal to or greater than the width of a continuous web that will be treated in a preselected electrochemical treatment line for which the bumper strip is designed. The bumper strip includes a connection end
22
having any suitable means for attachment to an electrode in electrochemical treatment operation, for example a bolt, clamp or socket arrangement, and a slick contact surface
23
shaped to receive, support, and maintain a continuous web moving at high speed in a pass-line position through a electrochemical treatment operation. The slick contact surface
23
includes a chamfer
24
along one of the edges defining the slick contact surface
23
, the chamfer intended to receive incoming high-speed continuous web. Chamfer
24
provides a sliding surface that smoothly receives incoming web irregularities such as web weld joints or defects that may appear along the continuous web.
FIG. 6
, illustrates a second elongated bumper strip embodiment
21
b.
Bumper strip
21
b
is also manufactured having a length equal to or greater than the width of a continuous web being treated in a preselected electrochemical treatment line. The bumper strip includes a connection end
22
having any suitable means for attachment to an electrode in electrochemical treatment operation, for example a bolt, clamp or socket arrangement, and a contact end
23
shaped to receive, support, and maintain a continuous web moving at high speed in a pass-line position through a electrochemical treatment operation. The slick contact surface
23
includes a rounded chamfer
25
along one of the edges defining the slick contact surface
23
, the chamfer intended to receive incoming high-speed continuous web. The rounded edge
25
provides means for web weld joints, or any other irregularity that may appear along the continuous web, to smoothly travel or pass over the slick contact surface
23
of the bumper strip.
It is well known within the state-of-the-art that the closer electrodes are positioned with respect to the work interface, the faster the rate of electrochemical treatment. It is also well known that any physical contact with the work interface during treatment, for example, plating, or anodizing may damage the surface of the finish product. Applicant's earlier patents overcome such problems by providing resilient wiper blades that gently touch and yield under strip pressure to prevent marking or damaging the product surface as the resilient wiper blades remove the composite barrier layer from the work interface. However, in some actual production operations, such resilient wiper blades may incur problems. For example, even though the soft touch provided by the resilient wiper blades successfully removes the composite barrier layer in a continuous horizontal plating operation without marring the product surface, as strip gage is increased the heavier strip causes unwanted flexing in the resilient wiper blades and allows the strip product to fall outside its pass-line through the electrolyte solution adjacent the plating electrodes. In such instances the strip product can arc against the electrodes creating various problems for the operators including damaged and lost product. Similarly, sudden jerks or jars caused by welding the lead end of a new coil of web material to the tail end of a finished coil in a continuous high speed line can generate shock waves or undulations (flutter or wobble) along the continuous web. In both horizontal and vertical electrochemical treatment operations, such flutter can also cause unwanted flexing in the resilient wiper blades and allow the strip product to fall outside its pass-line through the electrolyte solution and arc against the electrodes. Such arcing will also cause product damage.
In an effort to overcome such problems, research was directed to providing a rigid bumper system that will not flex under such loading conditions and continue to maintain a continuous web in its pass-line without marking or damaging the web surface. Various materials were tested to develop the flexible wiper blades disclosed in the earlier work shown in above mentioned patents incorporated herein by reference, and to develop the bumper strips and conduits disclosed in this work. For example, the earlier research work ruled out HYPALON® as a material for manufacturing the bumper devices of the present invention. During earlier research, it was discovered that when immersed in certain electrolyte compositions, HYPALON bumper devices attract ions and form dendrites or barnacles along the bumper surface; the barnacles scratching and damaging the finished surface of the electrochemically treated substrate moving at high speed through the treatment line. Similar tests conducted with bumper devices manufactured from polypropylene materials produced the same dendrite growth results. It was discovered that such dendrite growth is always dependent upon a particular material used to manufacture the bumper device in combination with the electrolyte composition, e.g. the metal being plated. However, tests conducted with bumper devices manufactured from a non-polar material failed to produce any dendrite or barnacle growth irrespective of the electrolyte chemistry.
Therefore, it was discovered that if the bumper devices shown in
FIGS. 1-6
, or any variation thereof, are manufactured using a non-polar, ultra high molecular weight polymer material, having a slick surface with a dry relative coefficient of sliding friction to rolled steel of about 0.30 or lower, all of the aforementioned problems are overcome. One such exemplary ultra high weight molecular weight material that may be used to manufacture the bumper devices of the present invention is a polymer product manufactured under the name Gar-Dur® by Garland Manufacturing Co. located in Saco, Me. However, it should be understood that any rigid, non-polar, slick surfaced material that will not mar or damage the product surface can be used to manufacture the present bumper devices without departing from the scope of this invention.
Additionally, and of primary importance, it was unexpectedly discovered that when resilient wiper blades are replaced with rigid bumper devices of the present invention in a continuous electrochemical treatment operation, line speed can be increased because the electrochemical reaction occurs at a faster rate. The mechanism for the improved reaction rate is not fully understood, however, production records in actual continuous electroplating operations located in San Paulo, Brazil, where resilient wiper blades were replaced with the rigid bumper devices of the present invention, show a 20% or greater improvement in plating rate speed over the plating rate achieved using resilient wiper blades.
Referring now to
FIG. 7
of the drawings, a horizontal, continuous electrochemical treatment system
30
comprising a tank
31
having a feed side roll
32
, an exit side roll
33
, and sinker rolls
35
for immersing a continuous web product
34
being electrochemically treated in an electrolyte solution
38
. Either the feed side roll
32
or the exit side roll
33
, or both, may be a contact roll that delivers an electrical charge to the continuous web product
34
. A plurality of electrodes
36
a-
36
z
are positioned at spaced apart locations along the top surface
34
T of the continuous web, and similarly, a plurality of electrodes
37
a-
37
z
are positioned at spaced apart locations along the bottom surface
34
B of the continuous web to electrochemically treat both surfaces of the continuous web
34
as it moves at high speed in a pass-line “X” through the electrolyte solution
38
. Pass-line “X” is located between the top and bottom electrodes
36
a-
36
z
and
37
a-
37
z
respectively. Electrodes
36
a-
36
z
and
37
a-
37
z
are positioned closely adjacent their respective web surfaces
34
T and
34
B to approach the work interface as close as possible without causing arcing between the continuous web and the electrodes. By way of illustration, applicant's two earlier patents, incorporated herein by reference, teach a preferred electrode to web surface distance of between ⅛-⅝ of an inch, shown herein as a treatment distance “TD” in FIG.
9
.
Each electrode
36
a-
36
z
and
37
a-
37
z
is shown including at least two elongated bumper strips
21
a
or
21
b
that extend at least across the full width of their respective electrodes. The bumper strips that are positioned along the periphery of the electrodes may be attached to the electrodes using bolts, screws, rivets, or any other suitable fastening means including bonding, without departing from the scope of this invention. Such fastening means are shown as
39
in
FIG. 9
, and they attach the outer most bumper strips to the periphery of the electrodes, for example electrode
36
a
and electrode
37
a.
The bumper strips that are positioned inboard of the periphery e.g. along the upstream and/or downstream sides of the electrodes, may be attached thereto using any convenient fastener device such as a sockets clamps, or brackets shown as
40
in
FIG. 9
, without departing from this invention. Referring again to
FIG. 7
, the outside and inside bumper strips are respectively fastened to the spaced apart electrodes either the fastener or socket arrangements shown in FIG.
9
. Additionally, bumper strips
21
a
or
21
b
are positioned along the web surfaces
34
T and
34
B in a spaced apart arrangement whereby the top and bottom bumper strips are not located directly opposite one another. This prevents binding or pinching the continuous web between the bumper strips. Each bumper strip is aligned to place the chamfer edge
24
or
25
upstream with respect to the direction of web travel “D” to receive the incoming high-speed web. Each bumper strip is manufactured from a rigid, non-polar, ultra high molecular weight polymer material having a slick surface. In the preferred embodiment, the slick surface has a dry relative coefficient of sliding friction to rolled steel of about 0.30, with a preferred surface slickness comprising a dry relative coefficient of sliding friction to rolled steel of about 0.15 or less. The slick surface enables operators to place the contact surfaces
23
, shown in
FIGS. 5 and 6
, against the top and bottom surfaces
34
T and
34
B of the continuous web, that is moving at high speed through the electrolyte solution, without marring or damaging the work interface during the electrochemical treatment process. Additionally, even though the bumper strips
21
a
or
21
b
are shown as straight elongated slat like members, they may be manufactured to include all the shapes and embodiments of the wiper blades disclosed in the prior patents incorporated herein.
Referring now to
FIG. 8
, the drawing shows an alternate electrochemical treatment system comprising bumper strips
21
a
or
21
b
in combination with conduits
10
a,
10
b,
or
10
c
shown in
FIGS. 1-3
. In this arrangement, bumper strips
21
a
or
21
b
are attached to electrodes
36
a-
36
z
and electrodes
37
a-
37
z
in a manner similar to the one disclosed in FIG.
7
. The conduit portions
13
b-
13
y
are positioned within the space
41
provided between the spaced apart electrodes, and each conduit portion
13
a-
13
z
is positioned to place its slick outside surface against a corresponding surface,
34
T or
34
B of the continuous web moving at high speed along its pass-line through the electrolyte solution
38
contained in tank
31
.
Referring to
FIG. 9
, an enlarged portion of the embodiment shown in
FIG. 8
, a bottom conduit
10
B includes a feed side
11
having an attachment end
12
fastened to a supply line
41
attached to a supply of fresh electrolyte (not shown) suitable for use in a specific electrochemical treatment operation. The fresh electrolyte is fed to bottom conduit
10
B under a positive pressure that is provided by pumps, gravity, or other means in combination with, or in the absence of, a control valve system (not shown). Similarly, the top conduit bumper
10
T includes a feed side
11
having an attachment end
12
fastened to the supply line
41
. As more clearly shown in this enlarged view, the outboard bumper strips
21
a
or
21
b
are fastened to the electrodes using fasteners
39
such as bolts or screws, and the inboard bumper strips
21
a
or
21
b
are attached to the electrodes using a socket arrangement
40
. Again, such fastening devices are only exemplary and any fastening arrangement may be used to attach bumper strips
21
a
or
21
b
to the electrodes
36
a-
36
z
and
37
a-
37
z.
In the
FIG. 8-9
embodiment, each bumper strip is positioned to extend across the width of the continuous web
34
with the slick contact surface
23
(
FIGS. 5 and 6
) of each bumper strip
21
a
or
21
b
contacting its respective work interface surface
34
T or
34
B and with the chamfer
24
or
25
located on the upstream side of the strip
21
a
or
21
b
. Each conduit portion
13
a-
13
z
is positioned to extend across the width of the continuous web
34
with its apertures
17
located immediately adjacent its respective treatment interface surface
34
T or
34
B. The apertures are located on the downstream side
19
of the conduit portions with respect to the direction of web travel “D,” and the slick outside surface of wall
18
is positioned against each respective interface surface
34
T or
34
B.
During an electrochemical treatment process, as the continuous web
34
moves at high speed through the electrolyte solution between electrodes
36
a-
36
z
and
37
a-
37
z,
the composite barrier, represented by the bubbles
42
, forms along the treatment interface. As heretofore mentioned, the composite barrier comprises the combination of hydrogen bubbles, a micro-ion depletion layer, and a thermal barrier. The rigid ultra high molecular weight bumper devices
21
a
or
21
b
and
13
a-
13
z
that are positioned against the continuous web surface
34
T or
34
B dislodge the composite barrier from the treatment interface, as shown at
43
, thereby creating an inflow of fresh electrolyte
44
to the treatment interface. Additionally the conduit portions
13
a-
13
z
of the top and bottom conduit bumpers
10
T and
10
B provide a continuous, pressurized flow of fresh electrolyte to the treatment interface to supplement the hydraulic electrolyte inflow created by the bumper devices
21
a
or
21
b
and
13
a-
13
z.
Referring now to
FIG. 10
showing a system
45
for electrochemically treating one side of a continuous web
34
, the system comprises an electrolyte solution
38
contained in tank
31
having rolls
35
to immerse the web in the electrolyte. Similar to
FIG. 7
, either the feed side roll
32
or the exit side roll
33
, or both, may be a contact roll that delivers an electrical charge to the continuous web product
34
. A plurality of bottom electrodes
47
a-
47
z
are positioned at spaced apart locations along the bottom surface
34
B of the continuous web. Each electrode includes a notch extending across its surface adjacent web
34
and the notch is shaped to receive brackets
48
. Brackets
48
fasten conduit portions selected from the group
13
a-
13
z
to the electrode surface at a position whereby a portion of the outside wall
18
is in contact with treatment interface
34
B. As heretofore described, apertures
17
are located adjacent the treatment interface and on the downstream side of the conduit portions and fresh electrolyte
38
is delivered to the bottom conduit bumper
10
B through supply line
41
. As clearly shown in the drawing figure, certain selected conduit portions extend across the electrodes
47
a-
47
z
while other selected conduit portions of the group
13
a-
13
z
extend across the web within the openings
49
provided between the spaced apart electrodes. Although this arrangement shows an alternating one to one pattern with respect to conduit portions within the openings
49
and conduit portions fasten to the electrodes, any arrangement may be used, including two or more conduit portion attached to a single electrode, to satisfy electrolyte demand for a particular treatment line.
FIG. 11
is an alternate embodiment of the electrochemical treatment system
45
shown in FIG.
10
. However, in this instance, the system includes a top conduit arrangement
10
T in combination with the bottom conduit arrangement
10
B. Conduit
10
T includes a plurality of conduit portions
13
a-
13
z
positioned within the openings and fastened to extend across the spaced apart top electrodes
46
a-
46
z.
The spaced apart top electrodes
46
a-
46
z
include the notches and brackets
59
as described in FIG.
10
and conduit
10
T is attached to the fresh electrolyte supply through line
41
. In similar manner, conduit
10
B includes a plurality of conduit portions
13
a-
13
z
positioned within the openings and fastened to extend across the spaced apart top electrodes
47
a-
47
z.
The spaced apart top electrodes
47
a-
47
z
include the notches and brackets
59
and conduit
10
B is attached to the fresh electrolyte supply through line
41
. As stated before, the spaced apart arrangement of the conduit portions can be changed to meet the needs of a particular electrochemical treatment operation.
Referring to
FIG. 12
, a vertical electrochemical treatment system
50
A for treating a single side of a continuous web
34
is shown comprising an entry roll
51
, exit roll
52
, and looper rolls
53
immersed in electrolyte solution
38
. Again, either the entry roll
51
or the exit roll
52
, or both, may be a contact roll that delivers an electrical charge to the continuous web substrate
34
. The continuous web
34
runs through the electrolyte solution in a series of up and down passes as it follows the looper roll arrangement in the treatment tank (not shown). Electrodes
56
a-
56
z
are inserted into alternating open spaces
55
to provide a series of successive work interface surfaces
58
a-
58
z
along one side of the continuous web. Each electrode
56
a-
56
z
includes a plurality of notches extending across the electrode surface adjacent web
34
and the notches are shaped to receive brackets
59
. Brackets
59
fasten the conduit portions
13
a-
13
z
of each conduit
10
a,
10
b,
or
10
c
to the electrode surface at a position whereby a portion of the slick outside wall surface
18
of each conduit portion
13
a-
13
z
is positioned against its respective work interface
58
a-
58
z.
As heretofore described and shown as
17
in
FIG. 4
, apertures are located adjacent the interface surface on the downstream side of the conduit portions, and fresh electrolyte
38
is discharged from apertures
17
via the conduit attached to the electrolyte solution supply (not shown). Each electrode
56
a-
56
z
includes a conduit bumper
10
a,
10
b,
or
10
c
extending along its first interface side
60
and a conduit
10
a,
10
b,
or
10
c
extending along its second interface side
61
opposite the first interface side. This conduit arrangement provides means for removing the composite barrier layer that forms along the work interface surfaces. By way of illustration
56
b
has an electrode surface
60
adjacent interface
58
a
and a electrode surface
61
adjacent interface
58
b.
As web
34
slides across the slick outside surface of each conduit portion
13
a-
13
z
fastened to the electrode surfaces
60
and
61
, the composite barrier layer is continuously wiped from the work interface surfaces
58
a
and
58
b
while the conduit portions
13
a-
13
z
simultaneously deliver fresh electrolyte to the respective work interface surfaces via the electrolyte solution supply (not shown). This process of wiping away the composite barrier layer and replenishing electrolyte is repeated at each treatment cell
56
a-
56
z
along the looped pass-line of the continuous web
34
moving through the electrolyte solution
38
. A regulated drain is provided to maintain a constant electrolyte solution level within the treatment tank. It should be understood that the conduit arrangement shown in
FIG. 12
may be used in combination with bumper strips
21
a
or
21
b
as heretofore disclosed, without departing from the scope of this invention.
FIG. 13
shows a second vertical electrochemical treatment system
50
B for treating two sides of a continuous web
34
moving through an electrolyte solution
38
. System
50
B comprises an entry roll
51
that may be a contact roll, an exit roll
52
that may be a contact roll, and looper rolls immersed in the electrolyte solution
38
. The continuous web
34
runs through the electrolyte solution in a series of up and down passes as it follows the looper roll arrangement in the treatment tank (not shown). Electrode
56
a
is positioned adjacent a first work interface
59
a
along a first surface of continuous web
34
, and electrode
56
z
is positioned adjacent a last work interface
59
z
along the first surface of the continuous web. The remaining electrodes
56
b-
56
y
are position within loop openings
55
created by the web pass-line along looper rolls
53
. For example, electrode
56
b
is positioned within opening
55
between work interface
58
a
and work interface
58
b
extending along a second surface of the continuous web
34
, electrode
56
c
is positioned within opening
55
between work interface surfaces
59
b
and
59
c,
and so on. Any one of the electrodes
56
a-
56
z
may be inserted or removed from the openings
55
to apply different electrochemical treatment results to opposite first and second surfaces of the continuous web
34
.
Each electrode
56
a-
56
z
includes a plurality of notches extending across the electrode surface adjacent web
34
, and the notches are shaped to receive brackets
59
. Brackets
59
fasten the conduit portions
13
a-
13
z
of conduit
10
a,
10
b,
or
10
c
to the electrode surface at a position that places the slick outside surface of each conduit portion
13
a-
13
z
against its corresponding work interface surface
58
a-
58
z
or
59
a-
59
z.
As heretofore described and shown in
FIG. 4
, apertures
17
are located adjacent the treatment interface on the downstream side of the conduit portions, and fresh electrolyte
38
is delivered to the conduit
10
a,
10
b,
or
10
c
through line
41
attached to an electrolyte supply.
Each electrode includes a conduit bumper
10
a,
10
b,
or
10
c
extending along its first interface side
60
and a conduit bumper
10
a,
10
b,
or
10
c
extending along its second interface side
61
opposite the first interface side as shown at electrodes
56
b
and
56
c.
This conduit arrangement provides means for removing the composite barrier layer that forms along the work interface surfaces. By way of illustration
56
b
has an electrode surface
60
adjacent interface
58
a
and an electrode surface
61
adjacent interface
58
b
. As web
34
slides across the slick outside surface of each conduit portion
13
a-
13
z
fastened to the electrode surfaces
60
and
61
, the composite barrier layer is continuously wiped from the work interface surfaces
58
a
and
58
b
while the conduit portions
13
a-
13
z
simultaneously deliver fresh electrolyte to the respective work interface surfaces via the electrolyte solution supply (not shown). This process of wiping away the composite barrier layer and replenishing electrolyte is repeated at each treatment cell
56
a-
56
z
along the looped pass-line of the continuous web
34
moving through the electrolyte solution
38
. A regulated drain (not shown) is provided to maintain a constant electrolyte solution level within the treatment tank. It should be understood that the conduit arrangement shown in
FIG. 12
may be used in combination with bumper strips
21
a
or
21
b
as heretofore disclosed, without departing from the scope of this invention.
FIG. 14
taken along the lines
14
—
14
of
FIG. 13
shows an exemplary arrangement for conduits
65
and
70
attached to adjacent treatment cells
56
b
and
56
c
shown in FIG.
13
. The conduits
65
and
70
are off-set with respect to each other at locations along the length of the web surfaces
58
b
and
59
b
that prevent binding or pinching the continuous web
34
between the spaced apart conduit portions
13
a-
13
z
positioned along opposite surfaces
58
b
and
59
b
of web
34
, FIG.
13
. Various conduit arrangements may be used to prevent pinching the continuous web without departing from the scope of this invention, however, in this example, conduit bumper
65
includes a feed line
66
having a connection end
67
for attachment to a fresh electrolyte supply (not shown), a capped end
68
opposite connection end
67
and a plurality of conduit portions
69
a-
69
z
that are spaced apart along the length of the continuous web
34
by return sections
70
that extend between adjacent conduit portions
69
a-
69
z.
As shown in
FIG. 13
, conduit portions
69
a-
69
z
extend across the surface
61
of electrode
56
b
and are attached thereto by brackets as heretofore described. Return sections
70
are positioned outboard from the continuous web edges
80
and
81
and extend between adjacent conduit portions
69
a-
69
z
in an alternating pattern along opposite sides of the continuous web
34
to provide a continuous serpentine conduit extending along a length of the work interface surface
58
b
with the spaced apart conduit portions extending across the width and contacting the interface surface. The connecting return sections
70
are outboard from the web edges
80
and
81
and therefore do not contact the web surface.
In a similar manner, conduit bumper
71
includes a feed line
72
having a connection end
73
for attachment to the fresh electrolyte supply, a capped end
74
opposite connection end
73
, and a plurality of conduit portions
75
a-
75
z
that are spaced apart by return sections
76
extending between adjacent conduit portions
75
a-
75
z.
Conduit portions
75
a-
75
z
extend across the surface
60
of electrode
56
c
(
FIG. 13
) and are attached thereto by brackets as heretofore disclosed, or by any other suitable fastening means known in the art. Return sections
76
are positioned outboard from the continuous web edges
80
and
81
and extend between adjacent conduit portions
75
a-
75
z
in an alternating pattern, along the web side opposite conduit
65
, to provide a continuous serpentine conduit along a length of web surface
59
b
with the spaced apart conduit portions
75
a-
75
z
extending across the width and contacting the surface of the work interface
59
b.
The connecting return sections
76
are outboard from the web edges and therefore not contacting the work interface surface. Conduit
71
is located adjacent the continuous web surface opposite conduit bumper
65
, and is offset so that the conduit portions
75
a-
75
z
do not lineup with respective conduit portions
69
a-
69
z
on the opposite side of web
34
. By positioning the conduit portions
65
and
70
in such a staggered or off-set spaced apart arrangement along opposite sides of continuous web
34
, the continuous web will not be pinched or squeezed between the conduit portions as the continuous web travels at high speed through the electrolyte solution contained in the electrochemical treatment tank.
The drawing figures show generic electrodes for the purpose of illustrating that the present invention is not limited to a particular electrode design. However, it is recognized that in certain instances perforated electrodes, for example as disclosed in U.S. Pat. No. 5,476,578, are a preferred electrode design to facilitate a forced hydraulic flow of fresh electrolyte to the electrochemical treatment interface. Referring to
FIG. 15
of the drawings, a continuous electrochemical treatment line similar to
FIG. 9
is shown comprising a plurality of perforated electrodes
90
and
91
spaced apart along opposite sides of a continuous substrate immersed in an electrolytic bath
38
contained in a treatment tank
31
. As heretofore disclosed, conduits
10
a,
10
b,
and/or
10
c
deliver fresh electrolyte to the treatment interface at various locations along either one or both sides of the substrate. The conduit portions
13
extend across and engage the surface of the substrate with their slick surface portion
18
as described above, and the contact dislodges the composite barrier
42
along the upstream side of the conduit portions
13
as the continuous moves at high speed in the direction shown by arrow “D”. This creates a partial vacuum on the downstream side
19
of each conduit portion
13
that is filled with fresh electrolyte
44
delivered from the conduit apertures
17
. In a similar manner, each bumper strip
21
extends across and engages the surfaces of the substrate with its slick surface
23
as described above and dislodges the composite barrier
42
along the upstream side of the strip. This creates a partial vacuum on the downstream side
19
of each bumper strip
21
. The pressure differential between the electrolyte bath
38
and the partial vacuum portions
19
creates a forced hydraulic flow of fresh electrolyte
44
from the electrolyte bath
38
, through the apertures or perforations
92
in the electrodes
90
and
91
, and into the partial vacuum portions
19
. This forced hydraulic flow delivers a continuous supply of fresh electrolyte to the electrochemical treatment interface.
As heretofore mentioned, use of the improved rigid, ultra high molecular weight polymer bumper devices at a continuous electroplating operation located in San Paulo, Brazil has resulted in improved plating speed by about a 20% or more increase in the deposition rate. However, it should be understood that use of the rigid, ultra high molecular weight polymer bumper devices of the present invention is not limited to electroplating operations as demonstrated by the following examples.
EXAMPLE 1
Electroplating
Referring to exemplary
FIG. 7
, bumper strips
21
a
or
21
b
extend outward from electrode(s) or soluble anode(s)
36
a-
36
z
and
37
a-
37
z
having a positive charge, with the slick contact surfaces of the bumper strips (shown at
23
in
FIGS. 5 and 6
) positioned along pass-line “X” and contacting the continuous web or cathode
34
having a negative charge, delivered by an energy source. The continuous web is moving at high speed through the electrolyte solution
38
, the ions, contained within tank
31
in a continuous electroplating line. In an electroplating operation, the higher metal, the anodes(s) loses electrons and becomes ions in the electrolyte solution. The electrolyte solution completes the electrochemical circuit to carry the current (electrons) from the anode(s) to the cathode where the metallic ions in solution pick up electrons and are electrochemically deposited onto the surface of the continuous web (the cathode) as an elemental metal coating. It should be understood that in such electroplating operations, the bumper strips
21
a
or
21
b
can be replaced by, or used in combination with, the conduit
10
a,
10
b,
or
10
c
of the present invention.
EXAMPLE 2
Anodizing
Referring again to exemplary
FIG. 7
, bumper strips
21
a
or
21
b
extend outward from negatively charged electrodes
36
a-
36
z
and
37
a-
37
z,
the cathode(s) with the slick bumper strip contact surfaces
23
positioned along pass-line “X” and in contact with continuous web
34
(anode) that has received a positive charged from an energy source, the web moving at high speed through electrolyte solution
38
(the ions) contained within tank
31
in a continuous anodizing line. In anodizing, the transformation, or oxidation, of the metallic anode surface to an oxide forms an anodized coating on surface of continuous web
34
. It should be understood that in such anodizing operations, the bumper strips
21
a
or
21
b
can be replaced by, or used in combination with, the conduit
10
a,
10
b,
or
10
c
of the present invention.
EXAMPLE 3
Bipolar cleaning
Referring again to the exemplary
FIG. 7
, bumper strips
21
a
or
21
b
extend outward from electrodes
36
a-
36
z
and electrodes
37
a-
37
z
with the slick bumper strip contact surfaces
23
positioned along pass-line “X” and in contact with continuous web
34
moving at high speed through a soap solution
38
(Sodium Hydroxide or the like) contained within a tank
30
in a continuous electrochemical cleaning line. The electrodes are arranged in alternating pairs of positive and negative electrodes that are spaced apart along the length of pass-line “X” with the last pair of electrodes
36
z
and
37
z
at the discharge end of the tank, having a negative charge. For example, in
FIG. 7
, the first pair of electrodes
36
a
and
37
a
have a positive charge, the second pair of electrodes
36
b
and
37
b
have a negative charge, the third pair of electrodes
36
c
and
37
c
have a positive charge and so on, with the last pair of electrodes
36
z
and
37
z
having a negative charge. In such electrochemical cleaning operations the continuous web does not receive an electrical charge from an outside energy source. Following a selected single portion of the continuous web as it moves along pass-line “X” between alternating pairs of positive and negative charged electrodes, when the selected web portion passes between positive charged electrodes
36
a
and
37
a,
the web portion becomes negatively charged and evolves hydrogen gas from the strip. When the selected web portion passes between negative charged electrodes, for example
36
b
and
37
b,
the web portion becomes positive and evolves oxygen, thereby driving dirt from the surface of the selected web portion toward the negative charged pair of electrodes. Such electrochemical cleaning operations are accompanied by a strong agitation of the soap solution which prevents the released dirt from contacting and coating the negative electrodes, the agitation causing the dirt to float to the bath surface where it is either skimmed off or filtered off via a drain system. The last pair of electrodes
36
z
and
37
z
have a negative charge to provide one last cleansing action that further drives any remaining dirt from the web just before it exits the soap solution
38
. It should be understood that in such cleaning operations, the bumper strips
21
a
or
21
b
can be replaced by, or used in combination with, the conduit
10
a,
10
b,
or
10
c
of the present invention.
EXAMPLE 4
Bipolar Pickling
Referring again to the exemplary
FIG. 7
, bumper strips
21
a
or
21
b
extend outward from electrodes
36
a-
36
z
and electrodes
37
a-
37
z
with the slick bumper strip contact surfaces
23
positioned along pass-line “X” and in contact with continuous web
34
moving at high speed through a pickle liquor
38
(Hydrochloric acid, sulfuric acid, or the like) contained within tank
31
in a continuous electrochemical pickling line. On the entry side of tank
31
, the electrodes, for example electrodes
36
a
to about
36
e
or higher and electrodes
37
a
to about
37
e
or higher have a positive charge, and the continuous web has a negative charge and thereby evolves hydrogen from the strip surface. On the exit end of tank
31
, the electrodes, for example electrodes starting from about
36
v
or lower to
36
z
and electrodes starting from about
37
v
or lower to
37
z,
have a negative charge and the continuous web
34
is positive which causes oxygen to evolve from the strip surface. It should be understood that in such pickling operations, the bumper strips
21
a
or
21
b
can be replaced by, or used in combination with, the conduit
10
a,
10
b,
or
10
c
of the present invention.
It should be understood the although Examples 1-4 disclose electrochemical process for treating two sides of a continuous web, the apparatus may be adapted to electrochemically treat only one side of a continuous web without departing from the scope of this invention. And furthermore, while this invention has been described as having a preferred embodiment, it is understood that it is capable of further modifications, uses, and/or adaptations of the invention, following the general principle of the invention and including such departures from the present disclosure as have come within known or customary practice in the art to which the invention pertains, and as may be applied to the central features hereinbefore set forth, and fall within the scope of the invention of the limits of the appended claims. For example, the exemplary electrodes
36
a-
36
z
and
37
a-
37
z
shown in
FIGS. 7-11
, may comprise anode basket arrangements similar to the basket arrangements disclosed in U.S. Pat. No. 5,938,899, and it should be understood that such anode baskets may be manufactured using either conductive or non-conductive material. It should also be understood that this invention is not limited to any particular electrode configuration and can comprise any suitable electrode arrangement, for example, the electrodes shown in U.S. Pat. No. 4,476,578, without departing from the scope of this invention. Additionally, even though the bumper devices of the present invention are shown comprising elongated strips and conduits, such bumper devices may be manufactured to any suitable shape, for example a chevron shape as shown in
FIG. 14
or a honeycomb shape shown in FIG. 37 of U.S. Pat. No. 4,476,578, without departing from the scope of this invention.
Claims
- 1. Apparatus in a continuous electrochemical treating line for treating at least one surface of a continuous web moving through an electrolyte solution contained within a tank comprising:a) at least one electrode extending across and positioned adjacent said at least one surface of the continuous web; and b) at least two rigid non-flexible and non-conductive bumper devices extending across said at least one surface of the continuous web, each bumper device contacting said at least one surface of the continuous web at spaced apart locations to prevent the continuous web from contacting said at least one electrode.
- 2. The invention recited in claim 1 wherein the continuous electrochemical treating line is a horizontal coating line, said bumper device is a bumper strip, and said at least one electrode includes:a) a first rigid non-flexible and non-conductive bumper strip attached to an upstream end of said at least one electrode and extending in an outward direction therefrom, said first bumper strip having a slick contact surface positioned against said at least one surface of the continuous web, and b) a second rigid non-flexible and non-conductive bumper strip attached to a downstream end of said at least one electrode and extending in an outward direction therefrom, said second bumper strip having a slick contact surface positioned against said at least one surface of the continuous web.
- 3. The invention recited in claim 2 comprising:a) at least a third rigid non-flexible and non-conductive bumper strip attached to said at least one electrode and extending in an outward direction therefrom at a location between said first bumper strip and said second bumper strip, said at least a third bumper strip having a slick contact surface positioned against said at least one surface of the continuous web.
- 4. The invention recited in claim 2 comprising:a) an arrangement of electrodes positioned adjacent said at least one surface of the continuous web, said arrangement of electrodes spaced apart along a length of said continuous web, each said electrode extending across said at least one surface of the continuous web, at least one electrode including; b) a first rigid non-flexible and non-conductive bumper strip attached to an upstream side of said at least one electrode and extending in an outward direction therefrom, said first bumper strip having a slick contact surface positioned against said at least one surface of the continuous web; and c) a second rigid non-flexible and non-conductive bumper strip attached to a downstream side of said at least one electrode and extending in an outward direction therefrom, said second bumper strip having a slick contact surface positioned against said at least one surface of the continuous web.
- 5. The invention recited in claim 4 wherein said at least one electrode further include:a) at least a third rigid non-flexible and non-conductive bumper strip attached to said at least one electrode at a location between said first bumper strip and said second bumper strips and extending in an outward direction therefrom, said at least a third bumper strip having a slick contact surface positioned against said at least one surface of the continuous web.
- 6. The invention recited in claim 4 wherein said arrangement of electrodes comprises:a) a plurality of top electrodes spaced apart along said length of the continuous web, each said top electrode extending across a top surface of the continuous web, at least one top electrode including; i) said first rigid non-flexible and non-conductive bumper strip extending in a downward direction therefrom to engage said slick contact surface against said top surface of the continuous web; and ii) said second rigid non-flexible and non-conductive bumper strip extending in a downward direction therefrom to engage said slick contact surface against said top surface of the continuous web.
- 7. The invention recited in claim 6 including:a) said at least a third rigid non-flexible and non-conductive bumper strip extending in a downward direction therefrom to engage said slick contact surface against said top surface of the continuous web.
- 8. The invention recited in claim 4 wherein said arrangement of electrodes comprises:a) a plurality of bottom electrodes spaced apart along said length of the continuous web, each said bottom electrode extending across a bottom surface of the continuous web, at least one bottom electrode including; i) said first rigid non-flexible and non-conductive bumper strip extending in an upward direction therefrom to engage said slick contact surface against said bottom surface of the continuous web; and ii) said second rigid non-flexible and non-conductive bumper strip extending in an upward direction therefrom to engage said slick contact surface against said bottom surface of the continuous web.
- 9. The invention recited in claim 8 including:a) said at least a third rigid non-flexible and non-conductive bumper strip extending in an upward direction therefrom to engage said slick contact surface against said bottom surface of the continuous web.
- 10. The invention recited in claim 1 wherein said bumper device is a conduit attached to a feed stream that provides a supply of electrolyte solution to the tank, said conduit comprising:a) at least one conduit portion extending across said at least one surface of the continuous web, said at least one conduit portion having a wall including; i) a slick outside surface positioned to contact said at least one surface of the continuous web; and ii) a plurality of spaced apart apertures extending through said wall at a location proximate said at least one surface of the continuous web to deliver electrolyte solution from said feed stream to said at least one surface of the continuous web.
- 11. The invention recited in claim 10 wherein said at least one conduit is shaped to extend in a serpentine path across said at least one surface to provide a plurality of said conduit portions spaced apart along a length of the continuous web, each said conduit portion including said plurality of spaced apart apertures to deliver electrolyte solution from said feed stream to said at least one surface of the continuous web.
- 12. The invention recited in claim 11 wherein the continuous electrochemical treating line is a horizontal line and said spaced apart conduit portions are located within spaces provided between electrodes that are spaced apart along a length of the continuous web.
- 13. The invention recited in claim 12 including a second bumper device comprising:a) at least one said bumper strip attached to at least one of the spaced apart electrodes.
- 14. The invention recited in claim 12 comprising:a) a top conduit having spaced apart top conduit portions extending across a top surface of the continuous web within spaces provided between top electrodes that are spaced apart along a length of the continuous web, and b) a bottom conduit having spaced apart bottom conduit portions extending across a bottom surface of the continuous web within spaces provided between bottom electrodes that are spaced apart along a length of the continuous web.
- 15. The invention recited in claim 14 including a second bumper device comprising a bumper strip, said apparatus including:a) at least one said bumper strip attached to at least one of the top electrodes spaced apart along the length of said top surface of the continuous web.
- 16. The invention recited in claim 15 including:a) at least one said bumper strip attached to at least one of the bottom electrodes spaced apart along the length of said bottom surface of the continuous web.
- 17. The invention recited in claim 16 wherein top bumper strips attached to the top electrodes are positioned at different locations along said length of the continuous web from said bottom bumper strips attached to the bottom electrodes to prevent pinching the continuous web between the top and bottom bumper strips.
- 18. The invention recited in claim 12 wherein:a) said electrodes comprise an arrangement of top electrodes positioned adjacent a top surface of the continuous web, said top electrodes spaced apart along a length of said continuous web, each said top electrode extending across said top surface of the continuous web, said conduit portions located within spaces provided between said spaced apart top electrodes.
- 19. The invention recited in claim 12 wherein:a) said electrodes comprise an arrangement of bottom electrodes positioned adjacent a bottom surface of the continuous web, said bottom electrodes spaced apart along a length of said continuous web, each said bottom electrode extending across said bottom surface of the continuous web, said conduit portions located within spaces provided between said spaced apart bottom electrodes.
- 20. The invention recited in claim 18 wherein:a) said electrodes comprise an arrangement of bottom electrodes positioned adjacent a bottom surface of the continuous web, said bottom electrodes spaced apart along a length of said continuous web, each said bottom electrode extending across said bottom surface of the continuous web, said conduit portions located within spaces provided between said spaced apart bottom electrodes.
- 21. The invention recited in claim 20 comprising:a) a first rigid non-conductive bumper strip attached to an upstream side of at least one top electrode and having a slick contact surface positioned against said top surface of the continuous web; and b) a second rigid non-conductive bumper strip attached to a downstream side of said at least one top electrode and having a slick contact surface positioned against said top surface of the continuous web.
- 22. The invention recited in claim 21 comprising:a) at least a third rigid non-conductive bumper strip attached to said at least one top electrode at a location between said first bumper strip and said second bumper strip and having a slick contact surface positioned against said top surface of the continuous web.
- 23. The invention recited in claim 20 comprising:a) a first rigid non-conductive bumper strip attached to an upstream side of at least one bottom electrode and having a slick contact surface positioned against said bottom surface of the continuous web; and b) a second rigid non-conductive bumper strip attached to a downstream side of said at least bottom electrode and having a slick contact surface positioned against said bottom surface of the continuous web.
- 24. The invention recited in claim 23 comprising:a) at least a third rigid non-conductive bumper strip attached to said at least one bottom electrode at a location between said first bumper strip and said second bumper strip and having a slick contact surface positioned against the bottom surface of the continuous web.
- 25. The invention recited in claim 22 comprising:a) a first rigid non-conductive bumper strip attached to an upstream side of at least one bottom electrode and having a slick contact surface positioned against said bottom surface of the continuous web; and b) a second rigid non-conductive bumper strip attached to a downstream side of said at least bottom electrode and having a slick contact surface positioned against said bottom surface of the continuous web.
- 26. The invention recited in claim 25 comprising:a) at least a third rigid non-conductive bumper strip attached to said at least one bottom electrode at a location between said first bumper strip and said second bumper strip and having a slick contact surface positioned against the bottom surface of the continuous web.
- 27. The invention recited in claim 16 wherein top bumper strips attached to the top electrodes are positioned at different locations along said length of the continuous web from said bottom bumper strips attached to the bottom electrodes to prevent pinching the continuous web between the top and bottom bumper strips.
- 28. The invention recited in claim 10 wherein the continuous electrochemical treating line is a vertical and the continuous web makes at least one downward pass and at least one upward pass through the electrolyte solution, the apparatus comprising:a) said at least one electrode positioned between at least one downward moving surface and at least one upward moving surface of the continuous web moving through the electrolyte solution, said at least one electrode extending across a width of the continuous web; b) a first conduit having a at least one of conduit portion extending across said width of the continuous web adjacent said at least one downward moving surface; c) a second conduit having at least one conduit portion extending across said width of the continuous web adjacent said at least one upward moving surface; and d) a plurality of spaced apart apertures extending through each said conduit portion, said apertures positioned proximate a corresponding surface of the moving continuous web to deliver electrolyte solution from said feed stream to said corresponding surface of the continuous web.
- 29. The invention recited in claim 28 wherein said first conduit and said second conduit is serpentine shaped to provide a plurality of spaced apart conduit portions that extend across said width of the continuous web moving through the electrolyte solution, each said conduit portion including said plurality of spaced apart apertures to deliver electrolyte solution from said feed stream to said corresponding surface of the continuous web.
- 30. The invention recited in claim 29 including at least one bumper strip attached to said at least one electrode.
- 31. The invention recited in claim 30 wherein said conduit portions and said bumper strips adjacent said downward moving web surface are positioned at different at different locations along said at least one electrode than said conduit portions and bumper strips adjacent said upward moving web surface to prevent pinching the continuous moving web between conduit sections bumper strips.
- 32. A bumper device for supporting and maintaining a continuous web in a pass-line through an electrolyte solution in a continuous electrochemical treatment operation, said bumper device comprising:a) a rigid non-conductive elongated strip, said elongated strip including; i) an attachment end; and ii) a slick contact surface opposite said attachment end; and iii) a chamfer along one of the edges defining said slick contact surface thereof.
- 33. The invention recited in claim 32 wherein said chamfer is a radius.
- 34. A bumper device for supporting and maintaining a continuous web in a pass-line through an electrolyte solution in a continuous electrochemical treatment operation, said bumper device comprising:a) a rigid non-conductive conduit including; b) an inlet end including means for attachment to a feed stream; c) at least one conduit portion having a slick contact surface and aligned in a non-parallel direction to said inlet end; and d) a plurality of apertures spaced apart along a length of said at least one conduit portion, each aperture extending through a wall thereof to provide a feed stream discharge opening.
- 35. The invention recited in claim 34 wherein said bumper device is serpentine shaped to provide a plurality of parallel said non-parallel conduit portions spaced apart along a length of said bumper device.
- 36. The invention recited in claim 1 or 2-9 or 10-31 or 32-33 or 34-35 wherein each said rigid non-conductive bumper device is manufactured from a material having a relative coefficient of sliding friction to rolled steel of about 0.15 or lower to provide said slick contact surface.
- 37. The invention recited in claim 36 wherein each said rigid non-conductive bumper device is manufactured from a plastic material.
- 38. The invention recited in claim 36 wherein each said rigid non-conductive bumper device is manufactured from an ultra high molecular weight polymer.
- 39. The invention recited in claim 38 wherein said ultra high molecular weight polymer material is non-polar.
- 40. The invention recited in claim 38 wherein said ultra high molecular weight polymer material is polyethylene.
US Referenced Citations (8)