Not Applicable.
Not Applicable.
This invention refers in general to an integral assembly (a “perf assembly”) of a plurality of perforating guns (“guns”) containing a plurality of shape charges (“charges”). This perf assembly is used in perforation of wells. This invention is particularly directed to a new electro-mechanical assembly for connecting a series of guns to allow reliable assembly and reliable sequential firing of the guns during the perforation process of production wells. This process of well perforation consists of the perforation of the metallic casing of a well, of isolating the cement surrounding the casing, and of the layers of rock in the producing formation by means of explosives housed within perforating guns; achieving, through bore holes produced by a plurality of charges, a connection between the depths of the producing zone and the interior of the well. While this invention is generally found in the petroleum production industry, it may be equally applied to other environments where perforation of well casing into the surrounding environment is necessary, such as water wells.
The perforation of producing wells is realized by lowering into the well a perf assembly comprised of a plurality of guns each containing a plurality of charges. A firing wire, coupled with the casing as a ground, carries an electrical signal through the well bore to connect with each gun and allow firing of the detonators. The detonators may be fired through independently addressable switches or through a series of pressure switches and diodes which isolate each gun until the desired firing event.
One method of independently firing the guns is to use individually addressable detonators such as those described in U.S. Pat. Nos. 8,091,477 and 8,230,788. Another method of independently firing the guns is to connect each gun through a pressure sensitive switch which grounds the detonator of each gun until the pressure of the previous gun's firing triggers the switch to an active state. Further, diodes are used to cause each gun to require a polarity reversal from the signal which fired the previous gun. This prevents the signal from propagating throughout the assembly as the blasts set each pressure switch.
This method requires a continuous electrical signal to run the length of the perf assembly. However, wires are often twisted, broken, or can pull loose during the assembly process during the act of screwing the subs together. This results in the assembly having to be deconstructed and repaired. Additionally, weakened wires may pass initial test during construction only to fail during the process of lowering the assembly to depth, or due to vibrations of early charges in the sequence.
The preferred method is to fire the farthest/lowest gun first. Then, sequentially fire each gun back toward the well opening. This is because the explosion/pressure/debris from one gun's firing can possibly damage neighboring guns. Wires can break or connectors can loosen during shockwave vibrations, or by blast force. With pressure switches, any damage requires retrieval of the perf assembly for correction, as the rest of the assembly is now non-fireable. Addressable switches allow a damaged section to be skipped, but still result in unfired guns. Unfired guns are highly undesirable, as they are hazardous to bring to the surface due to the dangers of handling explosives which are not known to be in a safe condition or state.
To fulfill the operation so briefly described above, while simultaneously respecting existing norms for the manipulation of explosives, highly capable operators are required to arm and assemble the guns and the wellhead, stripping the ends of connecting wires and joining them by twisting the exposed portions of the wire together and covering the joint with adhesive electrical tape, resulting in an ‘artisanal’ activity requiring extreme caution.
It should be noted that petroleum production and exploration activities are generally located in areas with hostile climatic conditions for the operators; work hours are assigned in accordance to the needs of the operation and may include nighttime and daytime hours, with extreme cold or heat, rain or wind, darkness or sunlight. Hours are controlled by working against the clock and by penalizing setbacks; to that respect, it is absolutely necessary that the strictest safety norms be followed while handling explosive material; all of these factors together contribute to an increased likelihood that operators may commit errors while wiring or assembling the guns into a perf assembly to be introduced into the well. Further, even if the operators do everything correctly, the actions required to connect the pipe sections that make up the perf assembly may still produce a costly mistake.
From the above facts, there exists an obvious need to simplify the operation of arming and joining the guns into a perf assembly. There is also a need to ensure that the firing of one gun does not introduce faults into the remaining portions of the perf assembly preventing the required firing sequence. The object of this invention deals with the means to perform the electromechanical connection of the gun assembly.
Facing the current state of the techniques on the subject, an improved assembly for use in petroleum producing wells is proposed where a rigid end plate design aligns insulated contact pins, which couple with pressure switches to carry the pressure from one charge through the end plates to set the pressure switch of the next gun, while protecting the next gun from damaging debris of the explosion.
Currently in the industry a plastic insulating bottom end cap attaches to the charge carrier, and approximately centers it within the body. The bottom end cap has a central hole through which passes a wire carrying the electrical firing signal. A second wire connects to a grounding pin affixed to the plastic end cap which is routed to brush against the gun body to establish a ground.
The distal end of the charge carrier has a different plastic insulating end cap, called a top cap, which attaches to the charge carrier, and approximately centers it within the gun body. The top end cap has a screw with a wire lug attached to the distal end of the signal wire passing from the bottom end cap. The screw passes through the top end cap to contact the pressure switch for the next gun. The wire lug is a common breaking point if the wire does not absorb the twisting of the assembly process.
The innovation includes replacing the traditional plastic end caps on each charge carrier with an improved design which is more robust and reliable in the assembly of multiple guns into a single perf assembly. The improved gun end cap comprises the majority of the improvements which form the basis of this invention.
The improved gun end caps, in the preferred embodiment, are machined from aluminum and comprise a through hole in the center. A guiding pin extends laterally and runs from outer face to the inner face of the end cap, being beveled on the inner edge to facilitate assembly. The guiding pin engages a slot in the gun body to align the charges. The inner face has an edge extending from the inner face and, a charge carrier mating surface which engages the inner diameter of the charge carrier and is secured thereto.
At least one secondary guide point extends from the end cap to force the guiding pin into the slot; to ensure grounding contact between the end cap and the gun body; center the end cap within the gun body; and reduce friction between the end cap/gun body interface during assembly by reducing the contact surfaces. In one embodiment, a single guiding point is position counter to the guide pin and is substantially wider than the guide pin to prevent it from mistakenly being assembled into the slot.
In the preferred embodiment, two secondary guiding points extend from the end cap edges approximately one hundred and twenty degrees (120°) apart from the principle guide pin. In addition to ensuring contact with the gun body for grounding of the electrical signal, the guide pin and guide points ensure centering of the contact pin within the gun body so that proper alignment with the subs is achieved.
The through hole in the center of the bottom end cap may remain open for wires to pass through for connection to the detonator as with the plastic end cap system, however there is no need for the grounding pin, as the wire may be attached directly to the face of the end cap via a screw. Since the aluminum is conductive, it grounds to the gun body. The signal wire passes through the gun body to attach to a contact pin.
The through hole in the center of the top end cap has a contact pin biased outward via a spring, and retained by a locking nut. In the preferred embodiment, the pin is aluminum and is coated in an insulating plastic to isolate it electrically from the end cap, allowing it to conduct the electrical signal from the wire to the plunger of the pressure switch which contacts the pin's recessed external end. The spring biases the pin to project outward from the outer side, and allows it to compress inward during the assembly process as the subs are joined, and to account for minor variances in length of the components during manufacturing. The outward force of the spring ensures the pin remains in electrical contact with the next gun's pressure switch, but without exerting enough force to engage said pressure switch.
The pin is secured by a locking nut on the inner side of the end cap, which sits in a hex shaped recess on the inner surface of the end cap. This hex shaped recess eliminates the need for tooling when the device is assembled. Further, the matching nut and end cap recess ensures blast pressure does not escape around the pin, but instead it acts on the pin to shift it outwardly to engage the pressure switch of the next gun. One skilled in the art would appreciate that other shapes would accomplish the same task as the hex nut and recess employed herein.
Where addressable switches are employed, a pressure switch may be replaced with a conducting axial rod with insulating sheath, as found in a traditional firing head or top sub. This axial rod is housed in a Tandem Sub and extends the signal from one gun to the next by mating with the pins in each end cap. The pins in the end cap mate via contact which allows the pins of the axial rod to sit in the recessed ends of the pins, and is secured by pressure from the spring.
The following is a detailed description of exemplary embodiments to illustrate the principles of the invention. The embodiments are provided to illustrate aspects of the innovation, but the invention is not limited to any embodiment. As those skilled in the art will appreciate, the scope of the invention encompasses numerous alternatives, modifications, and equivalent; it is limited only by the appended claims.
In relation to
One skilled in the art would be aware with the composition of drill strings which comprises one or more of the following: drill pipe, subs, drill collars, stabilizers, shock absorbers, tools, reamers, bits, and other in-hole equipment. One skilled in the art would be aware the overwhelming majority of these items utilize Rotary Shouldered Threaded Connections which are commonly referred to as “pin and box” connections. One skilled in the art would appreciate that the male (externally threaded) version is commonly referred to as a “pin” or “pin fitting”, and the female (internally threaded) version is commonly referred to as a “box” or “box fitting”, and they are generally manufactured to specifications developed and approved by the American Petroleum Institute, which includes internal and external diameters, wall thicknesses, upset dimensions, nominal size, weight, and grade as well as tool joint type, to ensure joint mating of similar products manufactured by different companies. All references to drill pipe, subs, collars, bits, etc. are referred to in conformity with API usage unless otherwise specifically designated herein.
One can see in the interior of the carrier (13) that the shaped charges (16) are shown set in radial fashion, that is to say, perpendicular to the gun wall, to the carrier, and, when the guns are within the well, to the well casing. In the illustration, six shape charges are illustrated, but the actual number and orientation vary.
The shaped charges are explosives set in such a manner that they concentrate the force of the explosion outward, generating a jet of gas (plasma) at high pressure and temperature, that pulls the metal from the interior of the charge and projects it outward until it arrives at the well formation; with this action the charges produce a perforating effect that is variable in proportion to the potency of the charges.
In each intermediate joint or intermediate sub or tandem sub (4) one can see the pressure activated changeover switch (17), from which wires extend to the rest of the assembly. When the detonator is activated, a detonation is propagated by way of a “fuse”—or detonating cord (19)—to each of the shaped charges in the carrier (13) that burst in simultaneous fashion within the corresponding gun (3). Although not described in detail herein, the internal details of the assembly are protected by a watertight seal, otherwise the liquids present in the well would enter into the interior of the gun causing problems with the electric and/or ballistic systems.
In
In
In
The end plate (14) is a tubular piece of plastic with peripheral skirt, bearing a groove (25) that allows it to adapt and center the carrier (13) within the tolerances set by the perforating gun tube provider. The end plate (14) possesses a central tubular portion (26) for mounting the retractable contact pin (21), which contains a screw that connects the fire line (F) to the next device.
In
The end cap has a through hole for receiving the insulated contact pin (500). On the inner face (410) there is a void for receiving the nut which secures the contact pin. This void, hex shaped in the preferred embodiment (480), should match the shape of the nut so as to prevent blast pressure from escaping around it easily. The outer face (420) has a round void (490) for receiving a spring (540) and the pin (517). The spring (540) urges the contact pin (500) outward from the outer surface (420), but the pin (500) is retained by the nut (550) secured to the threads (530) at the inner surface (410).
The pin is coated in an insulating coating (520) which allows the fire signal wire (F) connected to the pin's (500) contact head (513) to pass the electrical signal through the pin body (510) to the pin base (517) where it contacts the next component in the assembly (100, not shown) without grounding against the end cap (400) which is in contact with the gun body casing (12, not shown).
In this embodiment, two secondary guide points (470) extend from the end cap edges approximately one hundred and twenty degrees (120°) apart from the principle guide pin (460). In addition to ensuring contact with the gun body for grounding of the electrical signal, the guide pin (460) and guide points (470) ensure centering of the contact pin (500) within the gun body so that proper alignment with the subs is achieved.
A single secondary guide point (470′) extends from the end cap edge to force the guide pin (460) into the slot: to ensure grounding contact, align the charges, and center the end cap within the gun body; and reduce the friction between the end cap/gun body during assembly by reducing the contact surfaces. In this embodiment, the single guide point (470′) is positioned counter to the guide pin (460) and is substantially wider than the guide pin (460) to prevent it from mistakenly being assembled into the alignment slot of the gun body.
The diagrams in accordance with exemplary embodiments of the present invention are provided as examples and should not be construed to limit other embodiments within the scope of the invention. For instance, heights, widths, and thicknesses may not be to scale and should not be construed to limit the invention to the particular proportions illustrated. Additionally, some elements illustrated in the singularity may actually be implemented in a plurality. Some element illustrated in the plurality could actually vary in count. Some elements illustrated in one form could actually vary in detail. Such specific information is not provided to limit the invention.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/031047 | 5/15/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/186611 | 11/24/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20030047358 | Bonkowski | Mar 2003 | A1 |
20040216866 | Barlow | Nov 2004 | A1 |
20130118342 | Tassaroli | May 2013 | A1 |
20150337635 | Langford | Nov 2015 | A1 |
20170211363 | Bradley | Jul 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20180119529 A1 | May 2018 | US |