Apparatus for eliminating slack and vibrations in the chain of a chain drive

Information

  • Patent Grant
  • 11982352
  • Patent Number
    11,982,352
  • Date Filed
    Thursday, October 22, 2020
    4 years ago
  • Date Issued
    Tuesday, May 14, 2024
    8 months ago
  • Inventors
    • Perinchery; Narayanankutty Pramod
  • Original Assignees
  • Examiners
    • Mansen; Michael R
    • Dias; Raveen J
    Agents
    • Dennemeyer & Associates LLC
Abstract
The present disclosure discloses an apparatus (100) for eliminating slack and vibrations of the chain (400) comprising a piston-cylinder arrangement. A first piston (10) is configured to be displaced inside the cylinder (20) of the piston-cylinder arrangement and a second piston (30) is configured to be displaced inside a cavity (40) defined inside the first piston (10) with the axis of the cavity (40) being coaxial with the axis (A) of the cylinder. A lubricating oil passage (50) defined to pass through the first piston (10), the second piston (30) and the cylinder (20) of the piston cylinder arrangement. The apparatus facilitates reduction in vibrations, slack elimination and automatic lubrication of the chain drive.
Description
FIELD

The present disclosure relates to the field of chain drives and particularly to a slack and vibration eliminating apparatus used with chain drives.


BACKGROUND

The background information herein below relates to the present disclosure but is not necessarily prior art.


Chain tensioner devices facilitate eliminating chain slack arising in chain drives. Chain slack is a result of prolonged usage of chain drives. The links of the chain drives elongate in length with due course of usage time of the chain drives. The slack in the chain drives gives rise to unwanted vibrations and thus results in noisy operation of the chain drives. Conventional devices for eliminating chain slack and vibrations typically have a pre-tensioned spring that facilitates eliminating slack and prevent vibrations and noisy operation. However, the stiffness of the spring needs to be adjusted every time to eliminate such slack. This requires periodic servicing procedure. Moreover, the chain drives need to be lubricated frequently which again requires periodic maintenance scheduling. Additionally, adjusting chain drive slack requires human skill, as spring characteristics for a particular application is distinct.


A need was therefore felt for an apparatus for eliminating slack and vibrations in a chain drive that would overcome the aforementioned issues.


Objects


Some of the objects of the present disclosure, which at least one embodiment herein satisfies, are as follows:


An object of the present disclosure is to provide an apparatus for eliminating slack and vibrations in a chain drive that eliminates periodic maintenance and servicing.


Another object of the present disclosure is to provide an apparatus for eliminating slack and vibrations in a chain drive that eliminates the requirement of skilled labour.


Still another object of the present disclosure is to provide an apparatus for eliminating slack and vibrations in a chain drive that delivers optimum chain drive performance.


Other objects and advantages of the present disclosure will be more apparent from the following description, which is not intended to limit the scope of the present disclosure.


SUMMARY

The present disclosure discloses an apparatus for eliminating slack and vibrations of a chain comprising a piston-cylinder arrangement. A first piston is configured to be displaced inside the cylinder of the piston-cylinder arrangement and a second piston is configured to be displaced inside a cavity defined inside the first piston with the axis of the cavity being coaxial with the axis of the cylinder. A lubricating oil passage defined to pass through the first piston, the second piston and the cylinder of the piston cylinder arrangement. The apparatus facilitates reduction in vibrations, slack elimination and automatic lubrication of the chain drive.


A first end 50a of the lubricating oil passage is configured to be in fluid communication with the chain drive and a second end 50b of the lubricating oil passage is configured to be in fluid communication with a lubricating oil reservoir.


In a preferred embodiment, a grease port is provided on one end of the cylinder, the grease port is configured to be in fluid communication with the first piston.


The apparatus is provided with a pressure sensor on the cylinder to sense the pressure of grease inside the cylinder.


The apparatus is provided with a metering valve attached on one end of the lubricating oil passage.


The first piston is configured to be displaced by pressure of grease flowing through the grease port.


The second piston is configured to be displaced by the pressure of silicon oil contained in the cavity.


A sprocket wheel is configured to be attached to the second piston on one end, and configured to in contact with the chain drive on the other end.





BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWING

The apparatus for eliminating slack and vibrations in a chain drive of the present disclosure will now be described with the help of the accompanying drawing, in which:



FIG. 1 shows a schematic of an apparatus for eliminating slack and vibrations in a chain drive, in accordance with prior art;



FIG. 2 shows an isometric view of an apparatus for eliminating slack and vibrations in a chain drive, in accordance with an embodiment of the present disclosure;



FIG. 3 shows a sectional view of FIG. 2 at an instant when the lubricating oil passage is closed for supply of lubricating oil to a chain drive; and FIG. 4 shows a sectional view of FIG. 2 at an instant when the lubricating oil passage is open for supply of lubricating oil to a chain drive.





LIST OF REFERENCE NUMERALS






    • 1000— chain drive

    • A— longitudinal axis


    • 10—first piston


    • 20—cylinder


    • 30— second piston


    • 40—cavity


    • 50— lubricating oil passage


    • 50
      a— first end of lubrication oil passage


    • 50
      b— second end of lubrication oil passage


    • 52—metering valve


    • 60—lubricating oil reservoir


    • 70— grease port


    • 72—pressure sensor


    • 74—grease dispenser


    • 76—pump


    • 80′, 80— sprocket wheel


    • 100, 100′— apparatus


    • 100
      a— first end


    • 100
      b— second end


    • 200, 200′— drive sprocket


    • 300, 300′— driven sprocket


    • 400, 400′— chain





DETAILED DESCRIPTION

Embodiments, of the present disclosure, will now be described with reference to the accompanying drawing.


Embodiments are provided so as to thoroughly and fully convey the scope of the present disclosure to the person skilled in the art. Numerous details are set forth, relating to specific components, and methods, to provide a complete understanding of embodiments of the present disclosure. It will be apparent to the person skilled in the art that the details provided in the embodiments should not be construed to limit the scope of the present disclosure. In some embodiments, well-known processes, well-known apparatus structures, and well-known techniques are not described in detail.


The terminology used, in the present disclosure, is only for the purpose of explaining a particular embodiment and such terminology shall not be considered to limit the scope of the present disclosure. As used in the present disclosure, the forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly suggests otherwise. The terms “comprises”, “comprising”, “including” and “having” are open-ended transitional phrases and therefore specify the presence of stated features, elements, modules, units and/or components, but do not forbid the presence or addition of one or more other features, elements, components, and/or groups thereof. The particular order of steps disclosed in the method and process of the present disclosure is not to be construed as necessarily requiring their performance as described or illustrated. It is also to be understood that additional or alternative steps may be employed.


When an element is referred to as being “mounted on”, “engaged to”, “connected to” or “coupled to” another element, it may be directly on, engaged, connected or coupled to the other element. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed elements.


Terms such as “inner”, “outer”, “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used in the present disclosure to describe relationships between different elements as depicted from the figures.



FIG. 1 shows a chain drive 1000′, in accordance with prior art, with an apparatus 100′ having a sprocket wheel 80′ for eliminating slack and tension in the chain 400′ configured to run between a drive sprocket 200′ and driven sprocket 300′. The apparatus 100′ comprises a spring which needs to be adjusted periodically to change stiffness of the spring, thereby eliminating the slack in the chain 400′.


Referring to FIG. 2-4, an apparatus (100) for eliminating slack and vibrations in a chain drive 1000 is shown in accordance with an embodiment of the present disclosure. The apparatus 100 has a first end 100a and a second end 100b. The apparatus 100 comprises a piston cylinder arrangement with a first piston 10 configured to slide inside a cylinder 20 along the cylinder longitudinal axis A. The first piston 10 is configured to be acted upon by the pressure of a first fluid. In a preferred embodiment, the first fluid is grease. The second piston 30 is configured to slide inside a cavity 40 defined inside the first piston 10. The second piston 30 is configured to be acted upon by the pressure of a second fluid. In a preferred embodiment, the second fluid is silicone oil. The cavity 40 is oriented along an axis that coincides with the longitudinal axis A of the cylinder 20. The cavity 40 contains silicone oil and is configured to be in fluid communication with the second piston 30. Thus, the first piston 10 and the second piston 30 are both configured to be displaced along the longitudinal axis A of the cylinder 20. A lubricating oil passage 50 is provided into the apparatus 100. The lubricating oil passage 50 is defined to pass through the first piston 10, the second piston 30, and the cylinder 20. The lubricating oil passage 50 forms an L-shape. The first end 50a of the lubricating oil passage 50 terminates at an area where the first piston 10 and a sprocket wheel 80 are configured to interact. The second end 50b of the lubricating oil passage 50 terminates on the outside surface of the cylinder 10. Since the first piston 10 and the cylinder 20 have relative motion configured with respect to each other, the section of the lubricating oil passage 50 on the cylinder 10 misaligns with the section of the lubricating oil passage 50 at an instant during operation of the apparatus 100. This ensures an intermittent supply of lubricating oil to the sprocket wheel 80. The second end 50b is configured to be coupled with a lubricating oil reservoir 60 where the lubricating oil to be supplied to the chain drive. A metering valve 52 is coupled on the second end 50b of the lubricating oil passage 50 which facilitates measuring the amount of the lubricating oil consumed from the lubricating oil reservoir 60. A grease port 70 is provided on one end of the cylinder 20 which facilitates pressurized grease supply contained inside a grease dispenser 74. A pressure sensor 72 is provided on the cylinder 20 to sense the pressure of grease inside the cylinder 20. The first piston 10 is configured to be in fluid communication with the grease coming through the grease port 70. To prevent leaking of the silicone oil contained inside the cavity 40, seals are provided between the second piston 30 and the first piston 10.


In another embodiment, the apparatus 100 is configured on a plurality of chain drives (1000) simulataneously. This is achieved by installing the apparatus 100 in a centralized manner, thereby facilitating slack elimination and vibration damping as well as lubrication to a plurality of chain 400.


The working of the apparatus will now be explained with the help of FIGS. 2-4. A chain drive 1000 is shown in FIG. 2. A drive sprocket 200 and a driven sprocket 300 is placed at a desired distance apart from each other. The drive sprocket 200 and the driven sprocket 300 are connected by a chain 400 for transmission of power. The apparatus 100 is assembled on the slack side of chain 400. The slack in the chain 400 is removed by pressurizing the cylinder 20 with the grease from the grease port 70. Thus the initial tension in the chain 400 is maintained at a desired level. The second piston 30 is forced towards the second end 100b of the apparatus 100. Typically, a displacement of 10 mm is applied to the second piston 30 towards the second end 100b. This compresses the silicone oil inside the cavity 40 towards the second end 100b. Silicone oil is selected as the fluid inside the cavity 40 due to its excellent compressibility characteristics.


When the chain drive 1000 starts working, thrust forces act on the sprocket wheel 80 connected to the second piston 30, thereby pushing the second piston 30 from the first end 100a to the second end 100b. This results in the compression of the silicone oil inside the cylinder 20 between the first piston 10 and the second piston 30. When the chain 400 attains constant speed after sustaining the initial accelerations and decelerations due to starting of the chain drive 1000, the thrust incident on the second piston 30 reduces. Then, the silicone oil exerts force on the second piston 30 from the second end 100b to the first end 100a, thereby pushing the chain 400 into a mean position over the drive sprocket 200 as well as the driven sprocket 300. Thus vibrations are minimized with the help of the reciprocating second piston inside the first piston 10. FIG. 3 shows the instant at which the lubricating oil passage 50 is blocked, while FIG. 4 shows the instant at which the lubricating oil passage 50 transfers the lubricating oil from the lubricating oil reservoir 60 to the sprocket wheel 80. As shown in FIG. 4, the section of the lubricating oil passage 50 on the cylinder 20 aligns with the section of the lubricating oil passage 50 on the second piston 30. As the second piston 30 reciprocates inside the first piston 10, intermittent supply of lubricating oil takes place, which eliminates the need of frequent manual intervention for the same purpose. As the sprocket wheel 80 is configured to be meshed with the chain 400 of the chain drive 1000, lubricating oil is transferred from the apparatus 100 to the chain 400 of the chain drive 1000.


With prolonged usage of the chain drive 1000, the slack in the chain 400 of the chain drive 1000 increases and there arises a need for the first piston 10 to be displaced towards the first end 100a from the second end 100b. This is needed to eliminate slack and to ensure the desired tension in the chain 400 of the chain drive 1000. This is accomplished by pumping the grease through the grease port 70 towards the second end 100b of the apparatus 100. The pressure sensor 72 constantly senses pressure of the grease present inside the cylinder 20 exerted on the first piston 10. Slacking of the chain 400 causes reduction in pressure of the grease contained inside the cylinder 20. The pressure sensor 72 signals a pump 76 mounted in the grease reservoir to increase pressure of the grease at a desired level inside the cylinder 20. The desired pressure level of the grease inside the cylinder 20 is calibrated for the tension in the chain 400 of the chain drive 1000. Thus, slack in the chain 400 of the chain drive 1000 is eliminated and optimum tension is achieved, thereby reducing unnecessary vibrations which are detrimental to the longevity of the chain drive 1000.


The foregoing description of the embodiments has been provided for purposes of illustration and not intended to limit the scope of the present disclosure. Individual components of a particular embodiment are generally not limited to that particular embodiment, but, are interchangeable. Such variations are not to be regarded as a departure from the present disclosure, and all such modifications are considered to be within the scope of the present disclosure.


Technical Advancements


The present disclosure described herein above has several technical advantages including, but not limited to, the realization of an apparatus for eliminating slack and vibrations of the chain of a chain drive that:

    • eliminates frequent maintenance and servicing of the chain drive;
    • eliminates requirement of skilled labour; and
    • increases chain drive performance by eliminating unnecessary vibrations.


The foregoing disclosure has been described with reference to the accompanying embodiments which do not limit the scope and ambit of the disclosure. The description provided is purely by way of example and illustration.


The embodiments herein and the various features and advantageous details thereof are explained with reference to the non-limiting embodiments in the following description. Descriptions of well-known components and processing techniques are omitted so as to not unnecessarily obscure the embodiments herein.


The foregoing description of the specific embodiments so fully reveal the general nature of the embodiments herein that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments herein can be practiced with modification within the spirit and scope of the embodiments as described herein.


While considerable emphasis has been placed herein on the components and component parts of the preferred embodiments, it will be appreciated that many embodiments can be made and that many changes can be made in the preferred embodiments without departing from the principles of the disclosure. These and other changes in the preferred embodiment as well as other embodiments of the disclosure will be apparent to those skilled in the art from the disclosure herein, whereby it is to be distinctly understood that the foregoing descriptive matter is to be interpreted merely as illustrative of the disclosure and not as a limitation.

Claims
  • 1. An apparatus (100) for eliminating slack and vibrations of a chain (400) of a chain drive (1000), the apparatus (100) being configured to transfer the chain slack and vibrations through a sprocket wheel (80) connected to the chain (400), the apparatus (100) comprising: a piston-cylinder arrangement;a first piston (10), a cylinder (20) in which said first piston (10) is configured to reciprocate, said cylinder (20) configured to be filled with a first fluid, a grease port (70) defined in said cylinder (20) for introducing and dispensing said first fluid into said cylinder (20) or therefrom, a pump (76) in fluid communication with said grease port (70), a pressure sensor (72) fitted inside said cylinder (20) to sense pressure of said first fluid in said cylinder (20), said pressure sensor (72) configured to be in communication with said pump (76), said grease port (70) configured to enable operation of said pump (76) when said pressure sensor (72) senses a reduced pressure in said cylinder (20) in response to a slackening of the chain (400), and thereby reduction in pressure exerted by said first piston (10) on said first fluid inside said cylinder (20);a second piston (30) configured to reciprocate in a cavity (40) defined inside said first piston (10), said second piston (30) connected to said sprocket wheel (80) at one end (100a), a second compressible fluid filled in said cavity (40), arrangement of said second piston (30) is configured such that the vibrations received by said second piston (30) are damped by said second compressible fluid.
  • 2. The apparatus (100) as claimed in claim 1, wherein a lubricating oil passage (50) is drilled through said second piston (30) and said cylinder (20), a first end (50a) of said lubricating oil passage (50) terminates at an engagement point with said sprocket wheel (80), and a second end (50b) of said lubricating oil passage (50) connected to a lubricating oil reservoir (60) for supplying lubricant to said engagement point.
  • 3. The apparatus (100) as claimed in claim 2, wherein said lubricating oil passage (50) is L-shaped.
  • 4. The apparatus (100) as claimed in claim 2, wherein a metering valve (52) is provided on one end of the lubricating oil passage (50).
  • 5. The apparatus (100) as claimed in claim 1, wherein said compressible second fluid is silicone oil.
  • 6. The apparatus (100) as claimed in claim 1, wherein said apparatus (100) is configured on a plurality of chain drives (1000) simultaneously.
  • 7. The apparatus (100) as claimed in claim 1, wherein the orientation of a longitudinal axis (A) of said first piston (10), said second piston (30) and said (cylinder 20) with respect to said chain (400) is variable.
Priority Claims (1)
Number Date Country Kind
202041024165 Jun 2020 IN national
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2020/059929 10/22/2020 WO
Publishing Document Publishing Date Country Kind
WO2021/250459 12/16/2021 WO A
US Referenced Citations (85)
Number Name Date Kind
3008772 Helsel, Sr. Nov 1961 A
3647270 Althaus Mar 1972 A
4040305 Cadic Aug 1977 A
4284192 Taylor Aug 1981 A
4527462 Okabe Jul 1985 A
4533341 Yokota Aug 1985 A
4539001 Okabe Sep 1985 A
4674996 Anno Jun 1987 A
4681376 Riml Jul 1987 A
4695268 Kodama Sep 1987 A
4940447 Kawashima Jul 1990 A
5065709 Ito Nov 1991 A
5246247 Runkel Sep 1993 A
5482262 Hayakawa Jan 1996 A
5586952 Izutsu Dec 1996 A
5637047 Schulze Jun 1997 A
5653651 Kawashima Aug 1997 A
5851058 Humbek Dec 1998 A
5913742 Nakamura Jun 1999 A
5961410 Yamamoto Oct 1999 A
5967920 Dembosky Oct 1999 A
5967923 Petri Oct 1999 A
6045471 Suzuki Apr 2000 A
6106424 Kratz Aug 2000 A
6155942 Ullein Dec 2000 A
6193623 Koch Feb 2001 B1
6244982 Merelli Jun 2001 B1
6471611 Hotta Oct 2002 B1
6602154 Guichard Aug 2003 B1
6609987 Beardmore Aug 2003 B1
6945889 Markley Sep 2005 B2
7033295 Garbagnati Apr 2006 B2
8062157 Geibel Nov 2011 B2
9133916 Hofmann Sep 2015 B2
9464697 Antchak Oct 2016 B2
9581216 Parizek Feb 2017 B2
10107369 Kurematsu Oct 2018 B2
10982737 Kurematsu Apr 2021 B2
20010003279 Brandl Jun 2001 A1
20010007840 Nakakubo Jul 2001 A1
20010007841 Nakakubo Jul 2001 A1
20020098932 Hashimoto Jul 2002 A1
20020142871 Namie Oct 2002 A1
20030171179 Okuda Sep 2003 A1
20030228948 Garbagnati Dec 2003 A1
20040087399 Hayakawa May 2004 A1
20040092348 Hashimoto May 2004 A1
20040092350 Hashimoto May 2004 A1
20050064969 Tomita Mar 2005 A1
20070032323 Yoshida Feb 2007 A1
20070270259 Koch Nov 2007 A1
20070287562 Assel Dec 2007 A1
20080015069 Kroon Jan 2008 A1
20080064546 Ullein Mar 2008 A1
20080248906 Ullein Oct 2008 A1
20080287232 Botez Nov 2008 A1
20090111627 Geibel Apr 2009 A1
20090111628 Poiret Apr 2009 A1
20100087284 Norimatsu Apr 2010 A1
20110003657 Reinhart Jan 2011 A1
20110012045 Schaefer Jan 2011 A1
20120202629 O'Shea Aug 2012 A1
20140057748 Satomura Feb 2014 A1
20140187369 Todd Jul 2014 A1
20140309882 Antchak Oct 2014 A1
20150024887 Oh Jan 2015 A1
20150211594 Parizek Jul 2015 A1
20150226345 Hartmann Aug 2015 A1
20150330482 Todd Nov 2015 A1
20160033016 Todd Feb 2016 A1
20160348765 Ishikawa Dec 2016 A1
20170138443 Kurematsu May 2017 A1
20170175858 Ryeland Jun 2017 A1
20170356529 Simmons Dec 2017 A1
20170363181 Freemantle Dec 2017 A1
20170370447 Freemantle Dec 2017 A1
20180017142 Mochizuki Jan 2018 A1
20180066734 Morimoto Mar 2018 A1
20180259044 Ness Sep 2018 A1
20180306281 Morimoto Oct 2018 A1
20180363739 Hartmann Dec 2018 A1
20190376583 Guillot Dec 2019 A1
20200011401 Kurematsu Jan 2020 A1
20200018383 Lu Jan 2020 A1
20200182270 Ludwick Jun 2020 A1
Foreign Referenced Citations (8)
Number Date Country
209959815 Jan 2020 CN
108223725 Feb 2020 CN
102014211516 Jan 2016 DE
102015209558 Jan 2016 DE
1158287 Nov 2001 EP
H0893866 Apr 1996 JP
950014630 Jun 1995 KR
WO-2004031614 Apr 2004 WO
Non-Patent Literature Citations (1)
Entry
Search Report for International Application No. PCT/IB2020/059929 dated Dec. 10, 2020.
Related Publications (1)
Number Date Country
20230258246 A1 Aug 2023 US