This application is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/CN2017/086943, filed Jun. 02, 2017, which claims priority to Chinese Patent Application No. 201610839774.2, filed Sep. 21, 2016, the contents of which are incorporated by reference in the entirety.
The present invention relates to display technology, particularly, to an apparatus for enhancing brightness uniformity of a displayed image, a display apparatus having the same, and a method for displaying image.
Liquid crystal display (LCD) panel has found a wide variety of applications. Typically, a liquid crystal display panel includes a counter substrate and an array substrate facing each other. Thin film transistors, gate lines, data lines, pixel electrodes, common electrodes, and common electrode signal lines are disposed on the array substrate and counter substrate. Between the two substrates, a liquid crystal material is injected to form a liquid crystal layer.
In one aspect, the present invention provides an apparatus for enhancing brightness uniformity of displayed image, comprising a data receiver configured to receive a frame of image data comprising a plurality of sub-pixels respectively having a plurality of initial grayscale values; a processor configured to convert the frame of image data, which is divided into a first portion and a second portion based on that each sub-pixel in the first portion has an initial grayscale value smaller than that of each subpixel in the second portion, into N frames of image data; wherein each sub-pixel in the first portion is provided with a first grayscale value in K of the N frames of image data and a second grayscale value in N-K of the N frames of image data; and each sub-pixel in the second portion is retained with its initial grayscale value in each of the N frames of image data, wherein N is an integer no smaller than 2 and K varies from 1 to N−1.
Optionally, the apparatus further comprises a display panel configured to display a frame of image based on each of the N frames of image data according to a frame refreshing frequency.
Optionally, the display panel is configured to provide a grayscale image based on each of the plurality of initial grayscale values that is smaller than the threshold voltage value, a maximum brightness value of the grayscale image being measured by a camera; and the processor is configured to deduce a set of gamma curve data comprising a set of gamma-corrected brightness values corresponding to a set of grayscale values, the first grayscale value and the second grayscale value being two adjacent grayscale values corresponding to two gamma-corrected brightness values in the set of gamma curve data.
Optionally, the processor is configured to select the first grayscale value, the second grayscale value, and a value of K so that a difference between a modified brightness value for sub-pixels in the first portion having a particular initial grayscale value and a superposition value of the two gamma-corrected brightness values respectively weighted with a first ratio of K/N and a second ratio of (N-K)/N is minimal.
Optionally, the modified brightness value is equal to a maximum value among all sub-pixels corresponding to the particular initial grayscale value, multiplied by a factor.
Optionally, the processor is configured to select a first value smaller than 1 as the factor to obtain a first value of the modified brightness value used in a first iteration of converting the frame of image data to the N frames of image data; and the display panel is configured to display a frame of image based on each of the N frames of image data which is subjected to a determination whether a brightness uniformity of the displayed frame of image meets a threshold uniformity.
Optionally, the processor is configured to select a second value larger than the first value but still smaller than 1 as the factor to obtain a second value of the modified brightness value used in a second iteration of converting the frame of image data to the N frames of image data until the brightness uniformity of the displayed frame of image based on each of the N frames of images meets the threshold uniformity; and determine that the second value of the modified brightness value to be corresponding to the particular initial grayscale value.
Optionally, N is selected to be equal to or smaller than 4.
Optionally, the frame refreshing frequency is N×60 Hz.
In another aspect, the present invention provides a display apparatus comprising the apparatus for enhancing brightness uniformity of displayed image described herein.
In another aspect, the present invention provides a method for displaying image using a display panel, the method comprising receiving a frame of image data comprising a plurality of sub-pixels respectively having a plurality of initial grayscale values; and converting the frame of image data, which is divided into a first portion and a second portion based on that each sub-pixel in the first portion has an initial grayscale value smaller than that of each subpixel in the second portion, into N frames of image data; wherein each sub-pixel in the first portion is provided with a first grayscale value in K of the N frames of image data and a second grayscale value in N-K of the N frames of image data; and each sub-pixel in the second portion is retained with its initial grayscale value in each of the N frames of image data, wherein N is an integer no smaller than 2 and K varies from 1 to N−1.
Optionally, the method further comprises displaying each of the N frames of images respectively based on the N frames of image data according to a frame refreshing frequency.
Optionally, the method comprises displaying a grayscale image of each of the initial grayscale values that are smaller than the threshold grayscale value to measure a corresponding maximum brightness value and to deduce a set of gamma curve data comprising a set of gamma-corrected brightness values corresponding to a set of grayscale values.
Optionally, the first grayscale value and the second grayscale value are two adjacent grayscale values corresponding to two gamma-corrected brightness values in the set of gamma curve data.
Optionally, the first grayscale value, the second grayscale value, and a value of K are selected so that a difference between a modified brightness value for all sub-pixels in the first portion having a particular initial grayscale value and a superposition value of the two gamma-corrected brightness values respectively weighted with a first ratio of K/N and a second ratio of (N-K)/N is minimal.
Optionally, converting the frame of image data comprises determining the modified brightness value to be equal to a maximum brightness value among all sub-pixels corresponding to the particular initial grayscale value multiplied by a factor.
Optionally, converting the frame of image data further comprises selecting the factor smaller than 1 to calculate a first value of the modified brightness value used in a first iteration of converting the frame of image data to the N frames of image data; displaying an image based on each of the N frames of image data; and determining whether a brightness uniformity of the displayed image meets a threshold uniformity.
Optionally, converting the frame of image data further comprises increasing the factor to calculate a second value of the modified brightness value used in a second iteration of converting the frame of image data to the N frames of image data until the brightness uniformity of the displayed image based on each of the N frames of images meets the threshold uniformity; and determining that the second value of the modified brightness value to be corresponding to the particular initial grayscale value.
Optionally, N is selected to be equal to or smaller than 4.
Optionally, the frame refreshing frequency is N×60 Hz.
The following drawings are merely examples for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present invention.
The disclosure will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of some embodiments are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
Typically, the LCD panel includes a display region and a peripheral region surrounding the display region. The display region selectively allows light to pass under a control of electrical field thereof to achieve image display. The peripheral region does not allow light to pass and is mainly used to lay peripheral electrical circuits and apply sealing material around the frame to seal the liquid crystal material in the display area.
A general drawback of the LCD display panel is its brightness non-uniformity in the displayed images in regions having relatively low brightness. In these regions, the displayed images do not truly reflect information of original field images, potentially misleading a user especially for medical and military applications.
Accordingly, the present invention provides, inter alia, an apparatus for enhancing brightness uniformity for a displayed image, a display apparatus having the same, and a method for displaying image that substantially obviate one or more of the problems due to limitations and disadvantages of the related art. In one aspect, the present disclosure provides a method of displaying image on a display panel.
In some embodiments, for each frame of image data, converting the frame of image data to the N frames of image data is based on a grayscale correspondence relationship between the initial grayscale values and one or more converted grayscale values. Optionally, for any one initial grayscale value in the first portion that is smaller than the threshold grayscale value, the one initial grayscale value is converted to a first grayscale value in K frames of the N frames of image data and a second grayscale value in remaining (N-K) frames of the N frames of image data. For any initial grayscale value in the second portion that is equal to or larger than the threshold grayscale value, it retains its initial grayscale value in each of the N frames of image data. In other words, the correspondence relationship for grayscale value conversion for the first portion of initial grayscale values is expressed as that the one initial grayscale value corresponds to K numbers of first grayscale value and (N-K) numbers of second grayscale values. The grayscale value conversion is only utilized in the first portion for enhancing uniformity of image in regions with relatively low brightness that is most sensitive to human eyes. Here, N is an artificially selected integer number. For example N=4. K simply varies from 1 to N−1.
After the grayscale value conversion, a new image based on each of the N frames of image data according to an appropriate frame refreshing frequency is displayed. Utilizing the visual suspension effect of the human eye, the N frames of image data are scanned with a frame refreshing frequency of N times of a nominal frame refreshing frequency to produce N frames of images with more finely divided brightness levels that are indistinguishable by human eyes. The brightness uniformity of the images displayed using this method is substantially enhanced for sub-pixels with relative low brightness values. The enhanced image is able to capture true field image information more accurately.
In some embodiments, for specifically determining the first grayscale level, the second grayscale level, and a value of K (under a certain selected value of N) that satisfies the grayscale correspondence relationship, the present disclosure shows a method as illustrated in
Referring to
where Ix represents a gamma-corrected brightness value corresponding to a grayscale value of x in the gamma curve data; Iy is a gamma-corrected brightness value corresponding to a grayscale value of y in the gamma curve data; and Ixy(K) represents a superposition brightness value of K frames of image of grayscale value x and N-K frames of image of grayscale value y. In an embodiment, the grayscale value x and the grayscale value y are any two adjacent grayscale values. For example, x=5, and y=6. Optionally, the grayscale value x and the grayscale value y are not adjacent but two grayscale values very close to each other. In general, for each pair of grayscale values x and y, a set of K brightness values Ixy(K) can be correspondingly generated using the formula (1) to be included as part of the grayscale-dividing data base. Note, this grayscale-dividing data base is generated only necessarily for those initial grayscale values smaller than a threshold grayscale value as the method is intended to enhance image uniformity of images at relative low-brightness region with smaller grayscale values. Typically the threshold grayscale value is selected to be 17. In other words, the image data conversion mentioned above only is executed for grayscale values from 0 to 16. Optionally, threshold grayscale value can be larger than 17 in various applications. H man eyes are not sensitive to the brightness non-uniformity in the displayed image with higher brightness produced by image data with grayscale values of 17 and above. Increasing the threshold value merely increase volume of data processing without effectively enhancing the low-brightness uniformity of the image.
The threshold grayscale value may be any appropriate value. Optionally, the threshold grayscale value is a value in a range of approximately 5 to approximately 30, e.g., approximately 10 to approximately 30, approximately 10 to approximately 25, approximately 15 to approximately 20, and so on. Optionally, the threshold grayscale value is 15, 16, 17, 18, 19, or 20.
Referring to
Referring to
Referring to
Based on the detection brightness value, the first grayscale value, the second grayscale value, and the value of K can be deduced. Then, the method includes using the first grayscale value, the second grayscale value, and K value to convert the particular initial grayscale value to the first grayscale value in K of the N frames and the second grayscale value in (N-K) of the N frames. This grayscale conversion or grayscale dividing will be done for every sub-pixel with initial grayscale value smaller than the threshold value. Optionally, for every sub-pixel with initial grayscale value equal to or larger than the threshold value, the conversion is to directly copy its initial grayscale value to each of the N frames.
Referring to
In general, the image brightness uniformity is relatively poorer at lower brightness region. Optionally, for implementing the method, the threshold grayscale value is selected to be 17. In other words, the grayscale conversion is mainly performed for initial grayscale values in a range of 0 to 16. Optionally, a specific implementation of the method can set the threshold grayscale value greater than 17. Human eyes are not sensitive to non-uniformity of high-brightness image. Larger threshold value would require larger volume of data processing load.
Because of vision suspension effect of human eyes, when a displayed image disappears, human eyes can still keep the image for a period of time. Optionally, in an implementation of the method disclosed herein, the displayed image based on each of the N frames of image data with a frame refreshing frequency of N×60 Hz to keep the display effect of the image after one frame of image data is converted into N frames of image data.
In the implementation of the method, a larger N means a higher frame refreshing frequency is needed for generating every new frame of image data to preserve the display effect of the image. Higher frame refreshing frequency demands more advanced display technology for the display panel. Optionally, N is less than or equal to 4.
Optionally, the factor used in a first iteration of converting the frame of image data into N frames of image data is selected to be 0.8. Of course other value is possible.
An example of implementing the method of displaying a grayscale image on a display panel is shown below. The method includes establishing a grayscale correspondence relationship for the display panel to perform image data conversion and display a grayscale image based on each of the N converted frames of image data. The method includes the following steps executed for a specific initial grayscale value:
1). A data receiver receives a frame of image data and a display panel displays a grayscale image based on at least the frame of image data having a plurality of initial grayscale values at respective a plurality of sub-pixels. An image collector CCD camera is used to obtain an initial brightness value of the grayscale image based on each initial grayscale value to generate a set of gamma curve data. At the same time, for each initial grayscale value that is smaller than a threshold grayscale value, a maximum initial brightness value of all sub-pixels having the same initial grayscale value is measured. For example, a first maximum initial brightness value is obtained for all sub-pixels associated with an initial grayscale value of 0, a second maximum initial brightness value is obtained for all sub-pixels associated with an initial grayscale value of 1, and so on for the initial grayscale value of 16, assuming that the threshold grayscale value is 17.
2). A grayscale-dividing data base is established based on the set of gamma curve data associated with the display panel. In particular, each brightness value Ixy(K) of the grayscale-dividing data base is equal to a superposition brightness value of a first brightness value Ix corresponding to a first grayscale value x and a second brightness value Iy corresponding to a second grayscale value y of the gamma curve data respectively weighted by K/N and (N-K)/N as shown in the formula (1). Optionally, the first grayscale value and the second grayscale value are two adjacent grayscale values in the gamma curve data. Optionally, the first grayscale value and the second grayscale value are next nearest neighbors, or other possible arrangements relative to each other.
For example, in the gamma curve data a first brightness value 1 corresponds to the first grayscale value 5 and a second brightness value 2 corresponds to the second grayscale value 6. If N=4, the grayscale-dividing data base at least includes following data:
3). For each grayscale image based on an initial grayscale value smaller than the threshold grayscale value, a modified brightness value is selected as the maximum initial brightness value among the sub-pixels having the same initial grayscale value (obtained in step 1) multiplied by a factor. Optionally, the factor is a positive constant smaller than 1 (e.g., 0.8).
4). The grayscale-dividing data base is searched through to find a supposition brightness value Ixy(K) (referred in step 2) that is closest to the modified brightness value (selected in step 3). The superposition brightness value is used as a detection brightness value corresponding to the initial grayscale value referred in step 1) and step 3).
5). The detection brightness value, which is just the superposition brightness value Ixy(K) corresponding to a grayscale image of K frames of the first grayscale value x and (N−K) frames of the second grayscale value y, is then used to establish a grayscale correspondence relationship between each initial grayscale value and K numbers of a corresponding first grayscale value and (N-K) numbers of a corresponding second grayscale value.
6). By applying the grayscale correspondence relationship for the initial grayscale value that is smaller than the threshold value, a grayscale image data corresponding to one frame of the initial grayscale value is converted to K frames of grayscale image data with the first grayscale value and (N-K) frames of grayscale image data with the second grayscale value.
7). For all initial grayscale values in a full frame of image, step 1) to 7) can be performed for those initial grayscale values smaller than the threshold grayscale value while no changes is applied to those initial grayscale values equal to or greater than the threshold grayscale value for completing the conversion of a full frame of image data. A detection display panel is used as the display panel for displaying N frames of grayscale image per each grayscale value that is smaller than the threshold grayscale value, including K frames of grayscale image of the first grayscale value and (N-K) frames of grayscale image of the second grayscale value. All the N frames of grayscale image are displayed according to a frame refreshing frequency equal to N×60 Hz to take advantage of vision suspension of human eyes. The brightness uniformity of each of the N frames of grayscale image is tested to determine whether a threshold uniformity is met.
8). If the threshold uniformity is not met, the factor that is used to multiply the maximum initial brightness value is increased to another constant (optionally still smaller than 1, e.g., 0.9) to set a second value for the modified brightness value. Then, the method is reiterated from the step 4) to the step 8) for each grayscale value until the threshold uniformity is met.
9). The last value of the modified brightness value after the threshold uniformity is met is determined to be the target brightness value corresponding to the initial grayscale value.
For example, for grayscale value of 0, the factor is selected to be 0.8, the grayscale value of 0 is converted accordingly. The resulting grayscale image after the conversion yields a brightness uniformity for the grayscale value of 0 that may be determined to have met a threshold uniformity in just one iteration operation. Then the target brightness value for the grayscale value of 0 is just the modified brightness value equal to the maximum initial brightness value multiplied by 0.8. The iteration is done for the grayscale value of 0. While, for grayscale value of 1 and the factor firstly is also selected to be 0.8, but the threshold uniformity for the grayscale value of 1 is not met in a resulting grayscale image after the conversion in the first iteration operation. Then the factor can be increased to 0.9 to start a second iteration operation, and may be repeated in more iteration operations until the brightness uniformity for the grayscale value of 1 meets the threshold uniformity. Then the target brightness value corresponding to the grayscale value of 1 is just the last modified brightness value equal to the maximum initial brightness value multiplied by the last factor.
In another aspect, the present disclosure provides an apparatus for enhancing brightness uniformity of a displayed image.
In some embodiments, the apparatus further includes a display panel 3 configured to display a frame of image based on each of the N frames of image data according to a frame refreshing frequency, e.g., N×60 Hz.
Optionally, the first grayscale value and the second grayscale value referred to above are two adjacent grayscale values corresponding to two gamma-corrected brightness values in a set of gamma curve data of the display panel, although other pair of grayscale values other than two adjacent ones can be possible alternatives.
Optionally, the processor 2 is configured to select the first grayscale value, the second grayscale value, and a value of K so that a difference between a modified brightness value for sub-pixels in the first portion having a same initial grayscale value and a superposition value of the two gamma-corrected brightness values respectively weighted with a first ratio of K/N and a second ratio of (N-K)/N is minimal.
Optionally, the modified brightness value is equal to a maximum brightness value among all sub-pixels corresponding to the same initial grayscale value, multiplied by a factor of a constant smaller than 1 and greater than zero.
Optionally, the processor 2 is configured to select a first value smaller than 1 and greater than zero as the factor and to perform a first iteration of converting the frame of image data to the N frames of image data. The display panel 3 is configured to display a frame of image based on each of the N frames of image data which is subjected to a determination whether a brightness uniformity of the same grayscale value meets a threshold uniformity.
Optionally, the processor 2 is configured to select a second value larger than the first value but still smaller than 1 as the factor and to perform a second iteration of converting the frame of image data to the N frames of image data until the brightness uniformity of the same grayscale value based on each of the N frames of images meets the threshold uniformity to determine that the last modified brightness value corresponds to the particular initial grayscale value.
In yet another aspect, the present disclosure provides a display apparatus including the apparatus for enhancing brightness uniformity of a displayed image described herein. The display apparatus can one of the following products, but not limited to, including smart phone, tablet computer, television, flat panel display, notebook computer, digital frame, navigator, and any product containing an image display function.
The foregoing description of the embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defmed by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. Therefore, the term “the invention”, “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is limited only by the spirit and scope of the appended claims. Moreover, these claims may refer to use “first”, “second”, etc. following with noun or element. Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. Any advantages and benefits described may not apply to all embodiments of the invention. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the present invention as defmed by the following claims. Moreover, no element and component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0839774 | Sep 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/086943 | 6/2/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/054093 | 3/29/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20040160392 | Kim | Aug 2004 | A1 |
20060232601 | Kimura et al. | Oct 2006 | A1 |
20090289968 | Yoshida | Nov 2009 | A1 |
20130201223 | Li | Aug 2013 | A1 |
20130321480 | Kim | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
1848220 | Oct 2006 | CN |
101777314 | Jul 2010 | CN |
103247259 | Aug 2013 | CN |
Entry |
---|
International Search Report & Written Opinion dated Sep. 2, 2017, regarding PCT/CN2017/086943. |
Number | Date | Country | |
---|---|---|---|
20190130853 A1 | May 2019 | US |