1. Technical Field
The present invention relates to apparatus for enhancing the dynamic range of shockline-based sampling receivers.
2. Related Art
Two problems that arise in high frequency Vector Network Analyzers (VNA) that can affect the accuracy of measurements are intermodulation-product generation, created by the down-converters (which may include samplers), and inadequate channel to channel isolation that can limit the VNA's dynamic range. Use of shock-line based samplers in VNA receivers improves performance in both of these (among other) categories but these performance items are still an issue. One example of the use of shockline samplers in a VNA and how they may be further enhanced to increase isolation is described in U.S. Pat. No. 7,088,111 entitled “Enhanced Isolation Between Sampling Channels In A Vector Network Analyzer,” by K. Noujeim.
Shockline-based samplers, whether used in a VNA or other receivers to achieve very high frequency operation, have been the subject of other patents and numerous articles. For example, shockline devices for use in samplers are also described in the following: U.S. Pat. No. 6,894,581, entitled “Monolithic nonlinear transmission lines and circuits and sampling circuits with reduced shock-wave-to-surface-wave coupling,” by K. Noujeim; U.S. Pat. No. 5,014,018 entitled “Nonlinear transmission line for generation of picosecond electrical transients,” to Rodwell, et al.; and U.S. Pat. No. 7,170,362 entitled “Ultrafast sampler with non-parallel shockline,” to Agoston, et al.
In operation, a VNA sources a sweeping RF signal that can be applied to a device under test (DUT) 180 at ports 182, 184, or both. The DUT causes a transmission signal or reflection signal that is received by one of samplers 161-164 of the VNA. Each sampler is gated by the LO pulses generated by the NLTLs 151-154. An intermediate frequency (IF) signal comprising a series of sampled data is then created and transmitted from each sampler as IF1, IF2, IF3 and IF4 is illustrated in
As shown in
A pulse forming network differentiates shocks generated by the shocklines to create electrical pulses forming LO signals that gate a Schottky-based sampler. But the sampler is well known for generating spurious products that result when an RF signal undergoes partial reflection at the sampler's RF port. In a VNA context, these spurious products emerge from the sampler's RF port and make their way to the device under test (DUT) to create measurement errors. The rich harmonic content of a narrow sampling pulse mixes in the diodes of the sampler with these RF signals to generate spurious products. These products proceed through paths in the measurement system and can re-convert to the system IF in another VNA port's receiver. This could lead to an unrealistic measurement due to the conversion of these spurious products creating an IF similar to that produced by the intended signals.
Previous techniques for improving isolation between channels include the use of isolating devices in the sampler's RF path. This could, however, be very expensive in a broadband system and could worsen the overall dynamic range of the system by introducing additional non-idealities, such as noise or compression. In addition, the use of the RF amplifiers could require additional RF-LO isolation in the LO chain itself. In the configuration of
While adding additional components as shown in
Another technique to increase channel isolation includes the sequential turn-off of the samplers. The sequential turn off allows samplers not being used for that particular measurement to be disabled so they are not generating spurious products. This solution may require additional sampler power supply ports to accomplish the turn off and may reduce available intermediate frequency (IF) bandwidth due to loading.
In another similar technique to increase isolation, the LO power could be turned on and off to remove the LO from channels not in use. This would again prevent spurious signals from being generated in paths not being used. But this technique can be complicated since high power levels at high frequencies are often involved in the LO which cannot be readily switched on and off. There may also be the thermal-transient and power stability issues in trying to turn rapidly off and on LO power as would happen in a high-speed measurement system.
According to embodiments of the present invention, a technique is provided to enhance the dynamic range of shockline-based sampling receivers without experiencing the generation of spurious responses and the reduction in channel-to-channel isolation as in previous systems.
The technique includes applying a bias voltage to the NLTL of each shocklines in a multi-channel system. The DC bias voltage applied to the NLTL provides direct control over the falling-edge shockline compression, and thus the insertion loss and overall RF bandwidth of the sampler. By measuring the shockline output and providing feedback, the bias voltage can be dynamically adjusted to alter the bandwidth of the NLTL sampling system and hence modify spurious generation and isolation behavior.
In one embodiment the bias voltage is selectable between a reverse-bias or negative voltage and a forward bias or positive voltage. The forward bias voltage is applied to turn off shocklines in channels that are not operating in order to reduce spurious generation and improve channel-to-channel isolation. In the limit of a strong forward or positive bias voltage, the incoming LO and its harmonics experience large ohmic losses along the shockline preventing gating pulses from forming. This accomplishes the same effect as turning off the sampler or the LO in one channel without the problems associated with prior-art approaches (i.e., transient problems are reduced and possible IF bandwidths are not affected). A reverse bias voltage is applied to turn on desired shocklines. In the reverse-bias or negative bias mode, the shockline diodes are typically in a reactive region, and falling edge compression can be reduced to improve overall performance.
In one embodiment in the reverse-bias operation mode, an automatic bias loop can be used to set the reverse or negative bias voltage level to restrict shockline operation to the reactive region of the shockline diodes and thus optimize conversion frequency. A processor, such as a DSP or an FPGA, can be connected to measure the output of the shockline sampler and provide a feedback signal to the bias circuit to assure the shockline is operating in its reactive region.
Further details of the present invention are explained with the help of the attached drawings in which:
Embodiments of the present invention in
A forward bias voltage can be applied in one embodiment to the biasing circuitry to effectively turn off unwanted channels without experiencing the effects of prior art systems. When strong forward bias is applied, the incoming LO and its harmonics may experience large ohmic losses along the shockline preventing gating pulses from forming. This provides a similar effect to turning off the sampler or the LO without the above mentioned problems associated with those methods, and results in enhanced channel-to-channel isolation and reduced spurious generation (which can affect dynamic range). Additionally, NLTL insertion loss is maximized in the presence of strong forward bias; this improves RF-to-LO isolation between channels. Also, spurious products appearing at the RF port of the sampler are suppressed.
When reverse bias is applied, the shockline is turned on to operate normally. By controlling the amount of shockline bias voltage, shockline operation can be restricted to the reactive region of the diodes, optimizing conversion efficiency. In one embodiment, an automatic bias loop may be used to restrict shockline operation to the reactive region of the diodes and thus optimize conversion efficiency. When operating in the reactive region, the fall time of the pulses produced by the shockline are minimized yielding the smallest pulse width, highest harmonic content, and widest sampler bandwidth.
At intermediate reverse-bias level settings, falling edge compression of the pulses produced by the shockline is reduced. This reduces the RF bandwidth of the sampler and reduces the harmonic content of the pulses which may lead to spurious signals. Additionally, NLTL insertion loss is increased, improving RF-to-LO isolation, and the generation of spurious products at the RF ports of the samplers is reduced. The bias level may be varied based on a feedback control signal. In one embodiment, a lookup table may be utilized by a controller to determine the appropriate bias level based on the control signal. In one embodiment, the bias level may be adjusted automatically by the controller based on other received signals, including harmonic and spurious signal levels fed back from the channel.
The control signal to the bias circuit can be received from a processing device such as a DSP or an FPGA. The processing device is connected to the shockline or sampler to measure its output and adjust bias level accordingly. The key abilities of the control signal and bias voltage system is to be able to source bipolar voltages (to get in all required regimes), accept control signals from a host to determine the required mode of operations, and, optionally, a current-sense capability for optimizing the reverse-bias mode and to prevent damage in the forward-bias modes. The bias can be adjusted automatically based on a received harmonic or spurious level output of the sampler. Relative to the prior art in improving dynamic range, the addition of dynamic shockline bias can reduce the number and complexity of isolation devices, and can thus lead to reduced system cost.
Controlling the edge allows a specific bandwidth differentiator in the pulse forming network that can further enhance channel-to-channel isolation. The ability to dynamically change the edge for different signals provides for even more versatility.
For operation of the VNA, concurrent to the generation of the pulse signal by the shockline for measuring a signal, a frequency sweeping RF signal is applied to the device under test (DUT) 320 to create the signal to be measured. In the embodiment shown, the frequency sweeping RF signal may be applied at ports 322, 324, or both. A DUT connected to one or more of the ports then creates a transmission signal or a reflected signal from the RF signal to be measured. The transmission signal or reflection signal is received by one of samplers 312-318. For example, for an RF signal applied to the DUT through port 322, the sampler 314 coupled to Test Channel A receives the DUT signal to be measured, while the sampler 316 coupled to Test Channel B receives another DUT signal. Each sampler used to measure the DUT signal is driven by the LO pulses generated from the shockwaves of the NLTLs 304-310. An intermediate frequency (IF) signal that carries the sampled data is then generated and transmitted from each sampler as IF1, IF2, IF3 and IF4 is illustrated in
Due to RF-to-STROBE port coupling in typical samplers, a portion of the received signal power propagates through the sampler and associated non-linear transmission line, such as along path 334. Like systems of the prior art, VNAs incorporating embodiments of the present invention may include stages of isolation elements to minimize signal leakage between channels. These isolation elements may include amplifiers 342-348, isolators 334-340, and band pass filters 350-356. Additional isolation elements, such as amplifiers, may also be added in the RF path. Use of the isolation elements in conjunction with the dynamic shockline-biasing apparatus may, however, reduce the number and complexity of isolations elements needed in the VNAs to achieve sufficient isolation, unlike with prior art devices.
As the forward current of the shockline diodes increased in this scenario, the spurious-related problem decreased until the result was indistinguishable from the no-LO case that is further shown in
Although the present invention has been described above with particularity, this was merely to teach one of ordinary skill in the art how to make and use the invention. Many modifications will fall within the scope of the invention, as that scope is defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4956568 | Su et al. | Sep 1990 | A |
5352994 | Black et al. | Oct 1994 | A |
5574374 | Thompson et al. | Nov 1996 | A |
5789994 | Case et al. | Aug 1998 | A |
6219417 | Zhou | Apr 2001 | B1 |
6320480 | Kintis et al. | Nov 2001 | B1 |
6331786 | Whitworth et al. | Dec 2001 | B1 |
6396338 | Huang et al. | May 2002 | B1 |
6577677 | Hara | Jun 2003 | B1 |
7423470 | Gunyan et al. | Sep 2008 | B2 |
20020074982 | Mizuhara et al. | Jun 2002 | A1 |
20020126769 | Jett et al. | Sep 2002 | A1 |
20020145484 | Agoston et al. | Oct 2002 | A1 |
20040222800 | Noujeim | Nov 2004 | A1 |
20040251983 | Hsu et al. | Dec 2004 | A1 |
20060133599 | Pagnanelli | Jun 2006 | A1 |
20060197626 | Ehlers et al. | Sep 2006 | A1 |
20070273454 | Pepper | Nov 2007 | A1 |
20070273457 | Mizutani | Nov 2007 | A1 |
20070273458 | Pepper et al. | Nov 2007 | A1 |
20080246551 | Noujeim | Oct 2008 | A1 |
20090115545 | Lan et al. | May 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100330944 A1 | Dec 2010 | US |