1. Technical Field
The present disclosure relates generally to an apparatus for generating and maintaining an environment around a wound to enhance healing of the wound. In particular, the disclosure relates to an apparatus including a fluid system for providing a fluid to the wound and dressing for providing a pressure to the fluid.
2. Background of Related Art
The body's natural wound healing process is a complex series of events beginning at the moment of injury. Initially the body reacts by delivering proteins and other factors to the wound through the blood stream to minimize the damage. Blood clots to prevent blood loss while cells engulf bacteria and debris to carry it away from the wound site. Next, the body begins to repair itself in a stage of healing often referred to as the “proliferate” phase. This phase is characterized by the deposition granulation tissue in the wound bed. Granulation tissue provides a base structure over which cells may migrate inwardly from the periphery to close the wound. Finally the process ends as collagen gives strength to new tissue over time often forming a scar.
Throughout the healing process, the body has a natural tendency to break down dead tissue and debris, thereby cleaning the wound and allowing new cells to form. This natural process is often referred to as autolytic debridement. One technique for promoting autolytic debridement, and wound healing generally, involves the application of a pressure to a wound. The application of both positive and negative pressures to a wound has proven effective in closing and healing the wound by promoting blood flow to the area, stimulating the formation of granulation tissue and the migration of healthy tissue over the wound by the natural process. Also, reduced pressures may assist in removing fluids exuding from the wound, which may inhibit bacterial growth. These techniques have proven effective for chronic or non-healing wounds, but have also been used for other purposes such as post-operative wound care.
The application of pressure to a wound may be facilitated by an apparatus permitting the environment around the wound to be controlled. Accordingly, an apparatus defining a reservoir around a wound where a pressure may be controlled may prove beneficial.
The present disclosure describes an apparatus for enhancing healing of a wound. The apparatus includes a wound dressing configured for placement over the wound to define a reservoir over the wound in which a wound contact fluid may be maintained by forming a substantially fluid-tight seal around the wound. An elastic bladder member defined by or within the wound dressing is expandable to exert a pressure on the wound contact fluid within the reservoir. A fluid system is in fluid communication with the reservoir for selectively delivering the wound contact fluid to the reservoir, and a pressure system is in fluid communication with the bladder member for delivering a compressed liquid or gas to the bladder member to effect expansion in the bladder member.
The elastic bladder member may be coupled to a substantially inelastic backing layer and the backing layer may be coupled to a body attachment layer for contacting the skin around the wound. Expansion of the bladder member may then effect a tension in backing layer to the draw the skin around the wound inwardly. The elastic bladder member may be coupled to the substantially inelastic backing layer by an inner adhesive ring nested within an outer adhesive ring. The inner adhesive ring may encircle a fluid communication portal providing fluid communication between the reservoir and the fluid system.
Alternatively, the elastic bladder member may be coupled to an elastic backing layer and the backing layer may be coupled to a reinforcement layer providing bilateral stiffness to the dressing. The reinforcement layer may comprise a mesh formed from polyethylene terephthalate fibers, and the backing layer may be constructed from urethane.
The wound contact fluid may comprise a medicament to promote wound healing such as a debridement agent, an antimicrobial agent, polyhexamethylene biguanide, an antibiotic, a growth factor or an analgesic. The fluid system may comprise a syringe repeatably detachable from the apparatus.
According to another aspect of the disclosure, a wound dressing for enhancing healing of a wound includes a substantially elastic backing layer configured for placement over a wound to define a reservoir over the wound in which a wound contact fluid may be maintained by forming a substantially fluid-tight seal around the wound. A reinforcement layer is adhered to the backing layer for providing a bilateral stiffness to the wound dressing and extends to a peripheral region of the backing layer. An elastic bladder member defined by or within the wound dressing is expandable to exert a pressure on the wound contact fluid within the reservoir. The elastic bladder member includes a fluid communication port therethrough to permit introduction of the wound contact fluid to the wound. The backing layer may be coupled to a portal member, which includes a central bore to permit introduction of the wound contact fluid and a distinct interior distribution ring to permit introduction to a compressible liquid or gas to a pressure application zone of the bladder member.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the detailed description of the embodiments given below, serve to explain the principles of the disclosure.
The attached figures illustrate exemplary embodiments of the present disclosure and are referenced to describe the embodiments depicted therein. Hereinafter, the disclosure will be described in detail by explaining the figures wherein like reference numerals represent like parts throughout the several views.
Referring initially to
The wound dressing 12 is a composite dressing formed from the lamination or juxtaposition of several distinct layers. First, a release paper 26 is positioned at a distal or wound facing side of the dressing 12. The release paper 26 is configured to protect the dressing 12 prior to the application of the dressing 12 to the wound “w,” and may be removed from the dressing 12 and discarded just before the dressing 12 is applied. Release paper 26 need not be constructed of paper, but may be formed from any suitable material including polyurethane, metallic foils, polyolefins and polyesters.
Positioned on a proximal side of the release paper 26 is a body attachment layer 28. The body attachment layer 28 includes a central opening 30 extending laterally beyond the perimeter of the wound “w” such that a body attachment adhesive 32 may contact the healthy skin “s” to form a seal around the wound “w.” To form an appropriate seal, body attachment adhesive 32 may be constructed from a medical-grade, pressure-sensitive adhesive adapted to provide a fluid-tight and bacteria-tight seal around a peripheral region of the dressing 12. In this manner, wound contact fluids 34 (see
Positioned within the central opening 30 of the body attachment layer 28 is a bladder member 36. Alternatively, bladder member 36 can be positioned upon body attachment layer 28 to cover or traverse central opening 30. Bladder member 36 is constructed of an elastically deformable elastomer or similar material, and includes a fluid communication portal 38 extending through a central region. An upper surface of the bladder member 36 includes nested rings 40, 42 of a permanent adhesive thereon. An inner ring 40 encircles the fluid communication portal 38 in the central region while outer ring 42 extends to a periphery of the bladder member 36. A pressure application zone 44 is defined between the two nested rings 40, 42.
Disposed over the bladder member 36 is a backing layer 48. Backing layer 48 is substantially inelastic relative to the bladder member 36 and may be constructed from a flexible polymeric membrane. For example, backing layer 48 may comprise a polyurethane film having a thickness from about 0.8 mils to about 1.0 mil. A membrane that provides a sufficient moisture vapor transmission rate (MVTR) is a transparent membrane sold under the trade name POLYSKIN®II offered by Tyco Healthcare Group LP (d/b/a Covidien). Other materials which may be suitable for use in a backing layer include the thin films marketed under the names TEGADERM™ by 3M of St. Paul, Minn. and OPSITE™ by Smith and Nephew PLC of London, UK.
The backing layer 48 adheres to the bladder member 36 due to contact with the nested adhesive rings 40, 42. A fluid hole 50 extends through backing layer 48 in general alignment with the fluid communication portal 38 of the bladder member 36. A pair of pressure supply holes 52 flank the fluid hole 50 such that the pressure supply holes 52 communicate with the pressure application zone 44 of the bladder member 36. The inner adhesive ring 40 extends between the fluid hole 50 and the pressure supply holes 52 such that the fluid hole 50 and the pressure supply holes 52 are fluidly distinct. The backing layer 48 also adheres to the body attachment layer 28 such that the dressing 12 may form a reservoir 14 over the wound “w.”
Portal member 20 adheres to an upper surface of the backing layer 48 in a substantially fluid tight manner. A suitable adhesive 56 is disposed about a perimeter of on an underside of the portal member 20 to facilitate this connection. Alternatively, an adhesive may be disposed on the upper surface of the backing layer 48, or other fluid tight arrangements may be appropriate. Portal member 20 includes a hollow central bore 58, which provides fluid communication between the fluid hole 50 and the fluid conduit 22 leading to the fluid system 16. Portal member 20 also includes a distinct interior air distribution ring 60, which provides fluid communication between the pressure supply holes 52 and the fluid conduit 24 leading to the pressure system 18. Portal member 20 may include check valves (not shown) within the central bore 58 and the distribution ring 60 for retaining fluids within the reservoir 14 and pressure application zone 44.
The fluid system 16 is in fluid communication with the reservoir 14 as described above. Fluid system 16 serves to evacuate the reservoir 14 and also to supply the reservoir 14 with wound contact fluid 34. The wound contact fluid 34 is generally a low viscosity fluid such that it may conform to the particular geometry of the wound “w,” and may adapt as the geometry of the wound “w” changes during healing. The wound contact fluid 34 may include a beneficial agent such as a medicament to promote wound healing. Medicaments include, for example, antimicrobial agents, polyhexamethylene biguanide, growth factors, antibiotics, analgesics, and the like. Suitable medicaments also include debridement agents such as chemical compounds or enzymes that intimately surround and infiltrate necrotic tissue.
Fluid system 16 comprises a syringe 64 to deliver the wound contact fluid 34. Syringe 64 may be repeatably removable and connectable to the apparatus 10 through a standard luer connection, for example. Syringe 64 may therefore be connected to the apparatus 10 in an empty state to evacuate the reservoir 14, and may then be disconnected so that it may be filled with wound contact fluid 34. Once filled with wound contact fluid 34, syringe 64 may be reattached to the apparatus as shown to deliver the wound contact fluid 34 to the reservoir 14. Alternatively, the fluid system 16 may comprise multiple syringes, a reversible electric pump, or a similar mechanism to manage the contents of the reservoir 14. A collection canister 64 is selectively coupled to fluid conduit 22 to receive any wound exudates or debris during evacuation of the reservoir 14. Collection canister 64 is removable such that wound contact fluid 34 need not flow into or through the canister 64 as the wound contact fluid 34 is delivered to the reservoir 14.
The pressure system 18 is in fluid communication with the pressure application zone 44 of the bladder member 36. A pressure source 66 is coupled to the pressure application zone 44 through fluid conduit 24, a valve 68, and portal member 20 such that the pressure source 66 may selectively supply a pressurized liquid or gas, air for example, to the pressure application zone 44. Pressure source 26 may be configured to provide the pressurized liquid or gas in a continuous or intermittent fashion.
In use, wound therapy apparatus 10 may be used to apply a pressure to the wound “w” as depicted in
As used in this manner, dressing 12 may also serve to promote closure of the wound “w.” Bladder member 36 may stretch to accommodate the application of pressure to the pressure application zone 44. Since the backing layer 48 is substantially inelastic relative to the bladder member 36, reactionary forces in the backing layer may exert an inwardly directed force on the margins of the wound “w” as indicated by arrows “C.”
Referring now to
Disposed between upper bladder member 136B and backing layer 148 is a reinforcement layer 162 providing a bilateral stiffness to the dressing 112. Reinforcement layer 162 may overlap body attachment layer 128 at an outer edge of the dressing 112 such that reactionary forces generated in the dressing 112 may be directed to the skin “s” surrounding the wound “w.” Reinforcement layer 162 may be affixed to backing layer 148 with a light coat of an adhesive 170 applied to the appropriate side of the reinforcement layer 162 or the backing layer 148. Reinforcement layer 162 may be also be affixed to upper bladder member 136B with a light coat of an adhesive 170 applied to the appropriate side of the reinforcement layer 162 or the upper bladder member 136B.
The reinforcement layer 162 may comprise a mesh of polyethylene terephtalate (PET) fibers, which offer good liquid resistance making it suitable for use in a moist wound environment. PET fibers may be used to form woven or non-woven reinforcements having large pore sizes. Some PET reinforcement manufacturing methods provide for interlinking the fiber junctions to yield a mesh that is flexible in multiple directions and also does not unravel when cut. PET reinforcements thus manufactured tend to have a high shear stiffness that may be useful in reinforcing backing layer 148 and providing a bilateral stiffness to dressing 112. One exemplary material, which may be suitable for incorporation into reinforcement layer 162, is sold under the trademark Sontara® by DuPont. Alternatively, reinforcement layer 162 may be formed from another reinforcement or mesh structure having suitable shear stiffness. Examples of suitable structures include extruded thermoplastic netting and apertured films. Suitable materials for use in such alternate structures include PET, polyethylene, nylon and polypropylene. Additionally, woven structures may be used for reinforcement layer 162. Acceptable woven materials may include cotton gauze, woven acetate and nylon.
Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
The present invention claims the benefit of and priority to U.S. provisional patent application Ser. No. 61/076,753 filed on Jun. 30, 2008, disclosure of which may be referred to herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3081771 | Lee | Mar 1963 | A |
3367332 | Groves | Feb 1968 | A |
3486504 | Austin, Jr. | Dec 1969 | A |
3572340 | Lloyd et al. | Mar 1971 | A |
3712298 | Snowdon et al. | Jan 1973 | A |
3809086 | Schachet et al. | May 1974 | A |
3874387 | Barbieri | Apr 1975 | A |
4080970 | Miller | Mar 1978 | A |
4112947 | Nehring | Sep 1978 | A |
4112949 | Rosenthal et al. | Sep 1978 | A |
4136696 | Nehring | Jan 1979 | A |
4202331 | Yale | May 1980 | A |
4224945 | Cohen | Sep 1980 | A |
4266545 | Moss | May 1981 | A |
4382441 | Svedman | May 1983 | A |
4524064 | Nambu | Jun 1985 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4738257 | Meyer et al. | Apr 1988 | A |
4743232 | Kruger | May 1988 | A |
4969880 | Zamierowski | Nov 1990 | A |
4990137 | Graham | Feb 1991 | A |
4997438 | Nipper | Mar 1991 | A |
5071409 | Rosenberg | Dec 1991 | A |
5100395 | Rosenberg | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5106629 | Cartmell et al. | Apr 1992 | A |
5141503 | Sewell, Jr. | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5160322 | Scheremet et al. | Nov 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5178157 | Fanlo | Jan 1993 | A |
5195977 | Pollitt | Mar 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5263922 | Sova et al. | Nov 1993 | A |
D364679 | Heaton et al. | Nov 1995 | S |
5484427 | Gibbons | Jan 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5536233 | Khouri | Jul 1996 | A |
5549584 | Gross | Aug 1996 | A |
5588958 | Cunningham et al. | Dec 1996 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5701917 | Khouri | Dec 1997 | A |
5733305 | Fleischmann | Mar 1998 | A |
5779657 | Daneshvar | Jul 1998 | A |
5840049 | Tumey et al. | Nov 1998 | A |
5911222 | Lawrence et al. | Jun 1999 | A |
5944703 | Dixon et al. | Aug 1999 | A |
6010524 | Fleischmann | Jan 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6117111 | Fleischmann | Sep 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
D434150 | Tumey et al. | Nov 2000 | S |
6142982 | Hunt et al. | Nov 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6203563 | Fernandez | Mar 2001 | B1 |
6261276 | Reitsma | Jul 2001 | B1 |
6325788 | McKay | Dec 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6348423 | Griffiths et al. | Feb 2002 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6406447 | Thrash et al. | Jun 2002 | B1 |
6420622 | Johnston et al. | Jul 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6500112 | Khouri | Dec 2002 | B1 |
D469175 | Hall et al. | Jan 2003 | S |
D469176 | Hall et al. | Jan 2003 | S |
6520982 | Boynton et al. | Feb 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
D475134 | Randolph | May 2003 | S |
6557704 | Randolph | May 2003 | B1 |
D478659 | Hall et al. | Aug 2003 | S |
6607495 | Skalak et al. | Aug 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6648862 | Watson | Nov 2003 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6695824 | Howard et al. | Feb 2004 | B2 |
D488558 | Hall | Apr 2004 | S |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6755807 | Risk, Jr. et al. | Jun 2004 | B2 |
6764462 | Risk, Jr. et al. | Jul 2004 | B2 |
6767334 | Randolph | Jul 2004 | B1 |
6800074 | Henley et al. | Oct 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6824533 | Risk, Jr. et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6855860 | Ruszczak et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6887228 | McKay | May 2005 | B2 |
6887263 | Bleam et al. | May 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6942633 | Odland | Sep 2005 | B2 |
6942634 | Odland | Sep 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6960181 | Stevens | Nov 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
6994702 | Johnson | Feb 2006 | B1 |
7022113 | Lockwood et al. | Apr 2006 | B2 |
7037254 | O'Connor et al. | May 2006 | B2 |
7052167 | Vanderschuit | May 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7077832 | Fleischmann | Jul 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7117869 | Heaton et al. | Oct 2006 | B2 |
7128719 | Rosenberg | Oct 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7144390 | Hannigan et al. | Dec 2006 | B1 |
7169151 | Lytinas | Jan 2007 | B1 |
7182758 | McCraw | Feb 2007 | B2 |
7195624 | Lockwood et al. | Mar 2007 | B2 |
7198046 | Argenta et al. | Apr 2007 | B1 |
7214202 | Vogel et al. | May 2007 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
D544092 | Lewis | Jun 2007 | S |
7273054 | Heaton et al. | Sep 2007 | B2 |
7276051 | Henley et al. | Oct 2007 | B1 |
7279612 | Heaton et al. | Oct 2007 | B1 |
7316672 | Hunt et al. | Jan 2008 | B1 |
D565177 | Locke et al. | Mar 2008 | S |
7338482 | Lockwood et al. | Mar 2008 | B2 |
7351250 | Zamierowski | Apr 2008 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7381211 | Zamierowski | Jun 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7396345 | Knighton et al. | Jul 2008 | B2 |
7410495 | Zamierowski | Aug 2008 | B2 |
7413570 | Zamierowski | Aug 2008 | B2 |
7413571 | Zamierowski | Aug 2008 | B2 |
7422576 | Boynton et al. | Sep 2008 | B2 |
20010031943 | Urie | Oct 2001 | A1 |
20010043943 | Coffey | Nov 2001 | A1 |
20020016577 | Ohmstede | Feb 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020151836 | Burden | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20030078532 | Ruszczak et al. | Apr 2003 | A1 |
20030093041 | Risk, Jr. et al. | May 2003 | A1 |
20030208149 | Coffey | Nov 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030212359 | Butler | Nov 2003 | A1 |
20030219469 | Johnson et al. | Nov 2003 | A1 |
20040006319 | Lina et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040039415 | Zamierowski | Feb 2004 | A1 |
20040064111 | Lockwood et al. | Apr 2004 | A1 |
20040064132 | Boehringer | Apr 2004 | A1 |
20040073151 | Weston | Apr 2004 | A1 |
20040093026 | Weidenhagen et al. | May 2004 | A1 |
20040113309 | Thompson et al. | Jun 2004 | A1 |
20040122434 | Argenta et al. | Jun 2004 | A1 |
20040167482 | Watson | Aug 2004 | A1 |
20040193218 | Butler | Sep 2004 | A1 |
20040241213 | Bray | Dec 2004 | A1 |
20040243073 | Lockwood et al. | Dec 2004 | A1 |
20040249353 | Risk, Jr. et al. | Dec 2004 | A1 |
20040260230 | Randolph | Dec 2004 | A1 |
20050004534 | Lockwood et al. | Jan 2005 | A1 |
20050010153 | Lockwood et al. | Jan 2005 | A1 |
20050020955 | Sanders et al. | Jan 2005 | A1 |
20050070835 | Joshi | Mar 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050085795 | Lockwood et al. | Apr 2005 | A1 |
20050090787 | Risk, Jr. et al. | Apr 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050147562 | Hunter et al. | Jul 2005 | A1 |
20050177190 | Zamierowski | Aug 2005 | A1 |
20050182445 | Zamierowski | Aug 2005 | A1 |
20050222527 | Miller et al. | Oct 2005 | A1 |
20050222544 | Weston | Oct 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20060015087 | Risk, Jr. et al. | Jan 2006 | A1 |
20060025727 | Boehringer et al. | Feb 2006 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060039742 | Cable, Jr. et al. | Feb 2006 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060100586 | Karpowicz et al. | May 2006 | A1 |
20060100594 | Adams et al. | May 2006 | A1 |
20060116620 | Oyaski | Jun 2006 | A1 |
20060149170 | Boynton et al. | Jul 2006 | A1 |
20070005028 | Risk, Jr. et al. | Jan 2007 | A1 |
20070014837 | Johnson et al. | Jan 2007 | A1 |
20070016152 | Karpowicz | Jan 2007 | A1 |
20070021697 | Ginther et al. | Jan 2007 | A1 |
20070027414 | Hoffmann et al. | Feb 2007 | A1 |
20070032754 | Walsh | Feb 2007 | A1 |
20070032755 | Walsh | Feb 2007 | A1 |
20070032778 | Heaton et al. | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070066946 | Haggstrom et al. | Mar 2007 | A1 |
20070078366 | Haggstrom et al. | Apr 2007 | A1 |
20070167927 | Hunt et al. | Jul 2007 | A1 |
20070179460 | Adahan | Aug 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070233022 | Henley et al. | Oct 2007 | A1 |
20080071235 | Locke et al. | Mar 2008 | A1 |
20080200857 | Lawhorn | Aug 2008 | A1 |
20080200906 | Sanders et al. | Aug 2008 | A1 |
20080208147 | Argenta et al. | Aug 2008 | A1 |
20080234641 | Locke et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
41 11 122 | Apr 1993 | DE |
295 04 378 | Oct 1995 | DE |
0 020 662 | Jul 1984 | EP |
0 358 302 | Mar 1990 | EP |
1088589 | Apr 2001 | EP |
1219311 | Jul 2002 | EP |
0 853 950 | Oct 2002 | EP |
1 549 756 | Mar 1977 | GB |
2 195 255 | Apr 1988 | GB |
2 235 877 | Mar 1991 | GB |
2307180 | May 1997 | GB |
2329127 | Mar 1999 | GB |
2336546 | Oct 1999 | GB |
2344531 | Jun 2000 | GB |
2 415 908 | Jan 2006 | GB |
1762940 | Jan 1989 | SU |
8001139 | Jun 1980 | WO |
8002182 | Oct 1980 | WO |
8401904 | May 1984 | WO |
8905133 | Jun 1989 | WO |
9011795 | Oct 1990 | WO |
9219313 | Nov 1992 | WO |
9309727 | May 1993 | WO |
9420041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9605873 | Feb 1996 | WO |
0021586 | Apr 2000 | WO |
03005943 | Jan 2003 | WO |
03018098 | Mar 2003 | WO |
03030966 | Apr 2003 | WO |
03057070 | Jul 2003 | WO |
03057307 | Jul 2003 | WO |
03057307 | Jul 2003 | WO |
03045492 | Aug 2003 | WO |
03086232 | Oct 2003 | WO |
03092620 | Nov 2003 | WO |
03101508 | Dec 2003 | WO |
2004018020 | Mar 2004 | WO |
2005009488 | Feb 2005 | WO |
2006105892 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090326487 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61076753 | Jun 2008 | US |