The field of the invention relates generally to a filtration method and system for removing particulate matter from a gas turbine air intake, and more particularly, to a filtration method and system that includes filter elements and electrostatic electrodes for removing particles from the gas turbine air intake.
Fabric and paper filtration are common techniques for separating out particulate matter in an air stream. Fabric and paper filtration are often accomplished in a device known as a baghouse. Known baghouses include a housing that has an inlet for receiving dirty, particulate-containing air and an outlet through which clean air leaves the baghouse. The interior of the housing is divided by a tube sheet into a dirty air or upstream plenum and a clean air or downstream plenum, with the dirty air plenum in fluid communication with the inlet and the clean air plenum in fluid communication with the outlet. The tube sheet typically includes a number of apertures and supports a number of filter elements with each filter element covering one of the apertures.
Known filter elements can include a support structure and a fabric or paper filter media. The support structure, which is also called a core, typically has a cylindrical shape and is hollow. The walls of the support structure may be similar to a screen or a cage, or may simply include a number of perforations, so that a fluid can pass through the support structure. The support structure has at least one end that is open and that is capable of being coupled to the tube sheet at an aperture. The support structure extends from the tube sheet into the dirty air plenum. There are several types of fabric and paper filter media. A “bag” filter media is flexible and/or pliable and is shaped like a bag. A cartridge filter media is relatively rigid and pleated. The filter media is mounted around the exterior or outer portion of the support structure.
During use, as particulate matter accumulates or cakes on the filters, the flow rate of the air is reduced and the pressure drop across the filters increases. To restore the desired flow rate, a reverse pressure pulse or other mechanical energy, for example, physically shaking or acoustic energy, is applied to the filters, or other mechanical energy. The reverse pressure pulse separates the particulate matter from the filter media, which then falls to the lower portion of the dirty air plenum.
Also, in a marine environment water and/or salt aerosols can cause excessive cake build-up on the filters, and can also deleteriously affect the operation of a gas turbine used for marine applications, for example, powering a ship. These water and/or salt aerosols can cause chemical corrosion of the component parts of the gas turbine.
In one aspect, an inlet air treatment system for a gas turbine is provided. The inlet air treatment system includes an air plenum, a moisture removal system positioned inside the air plenum, and an air filtration system positioned inside the air plenum and located downstream from the moisture removal system. The moisture removal system includes a plurality of S-shaped vanes mounted inside the air plenum, and a mesh structure mounted inside said air plenum downstream from the plurality of S-shaped vanes. The S-shaped vanes define a serpentine flow path. The air filtration system includes a plurality of filter elements mounted inside the air plenum, with each filter element including a support structure. The air filtration system also includes a plurality of electrodes positioned proximate the plurality of filter elements, where the electrodes are coupled to a power source which supplies a voltage to the electrodes. The voltage is sufficient to establish an electrostatic field between the electrodes and the filter elements, and at the same time, the predetermined voltage is sufficient to produce a corona discharge from the electrodes.
In another embodiment, a gas turbine apparatus is provided that includes a compressor, an air inlet coupled to the compressor, a combustor coupled to the compressor, a turbine coupled to the combustor, an exhaust duct coupled to the turbine, an air plenum coupled to the air inlet, and an air treatment system positioned in said air plenum, the air treatment system includes a moisture removal system positioned inside the air plenum, and an air filtration system positioned inside the air plenum and located downstream from the moisture removal system. The moisture removal system includes a plurality of S-shaped vanes mounted inside the air plenum, and a mesh structure mounted inside said air plenum downstream from the plurality of S-shaped vanes. The S-shaped vanes define a serpentine flow path. The air filtration system includes a plurality of filter elements mounted inside the air plenum, with each filter element including a support structure. The air filtration system also includes a plurality of electrodes positioned proximate the plurality of filter elements, where the electrodes are coupled to a power source which supplies a voltage to the electrodes. The voltage is sufficient to establish an electrostatic field between the electrodes and the filter elements, and at the same time, the voltage is sufficient to produce a corona discharge from the electrodes.
In operation, air flows into engine inlet 16 through compressor 22 and is compressed. Compressed air is then channeled to combustor 24 where it is mixed with fuel and ignited. Airflow from combustor 24 drives rotating turbines 26 and 28 and exits gas turbine engine 12 through exhaust nozzle 32.
Referring also to
Moisture removal system 42 has a first stage 46 and a second stage 48. First stage 46 includes a plurality of S-shaped vanes 50 positioned in plenum 40 to define a serpentine flow path 52. Vanes 50 include a plurality of openings 54 extending therethrough (shown in
Air filtration system 44 includes a plurality of filter elements 72 mounted inside air plenum 40 upstream from air inlet 30 of engine inlet portion 16. Each filter element 72 is mounted on a tube sheet 74. Tube sheet 74 separates a dirty air side 76 of plenum 40 from a clean air side 77 of air plenum 40. Each filter element 72 includes a grounded, electrically conductive support element 78 positioned inside filter element 72. Filter elements 72 can be any suitable filter type, for example, cartridge filters, including pleated cartridge filters, bag filters, and the like. A plurality of discharging electrodes 80 are positioned substantially parallel to filter elements 72 and are interspersed among filter elements 72. In an alternate embodiment, shown in
Electrodes 80 polarize incoming dust with a negative charge prior to reaching filter element 72. When the like polarity dust reaches fabric element 72, a more porous dust cake is developed. This increased permeability results from the like charged particles repulsing one another. In this manner, filter element 72 operates at a system pressure drop of about one fourth to one third that experienced in a known pulse jet collector operating at a four to one air-to-cloth ratio. A third collection chamber 84 is located below filter elements 72 to collect blow down from cleaning of filter elements 72.
The application of an electrical field to the incoming dust also provides increased collection efficiency compared to a conventional pulse jet fabric filter. Dust on filter element 72 causes additional dust to hover over the charged layer. This prevents fine dust from blinding filter element 72, a common cause of system pressure drop increases.
To obtain the collection efficiency and pressure drop benefits shown in
Electrodes 80 maintain charge on the dust layer collected at the fabric barrier of filter elements 72. As a result, there is no reliance on reduced dust burden to accomplish high air-to-cloth ratios. In addition, the particle size distribution reaching filter element 72 represents the cross section of the inlet distribution. These two conditions of the above described air filtration system 44 provides for increased efficiency and long term operation. Particularly, air filtration system described above meets the requirements of the industry standard ARAMCO 200 hour air filtration system test. This 200 hour test procedure is described in the Saudi Aramco Materials System Specification 32-SAMSS-008, titled INLET AIR FILTRATION SYSTEMS FOR COMBUSTION GAS TURBINES, issued Oct. 26, 2005, Apendix II, phase 2.
Moisture removal system 42 removes water and/or salt aerosols which prevents excessive cake build-up on filter elements 72 thereby increasing the efficiency of air filtration system 44. In addition, removal of water and/or salt aerosols facilitates the prevention of chemical corrosion of the component parts of gas turbine engine assembly 10.
Exemplary embodiments of air treatment system 41 are described above in detail. Air treatment system 41 is not limited to the specific embodiments described herein, but rather, components of the system may be utilized independently and separately from other components described herein. Also, the above-described system can be implemented and utilized in connection with many other apparatus besides gas turbines.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3425189 | Haselmayer | Feb 1969 | A |
4251234 | Chang | Feb 1981 | A |
4354858 | Kumar et al. | Oct 1982 | A |
4544383 | Haselmaker | Oct 1985 | A |
5024681 | Chang | Jun 1991 | A |
5156658 | Riehl | Oct 1992 | A |
5158580 | Chang | Oct 1992 | A |
5217511 | Plaks et al. | Jun 1993 | A |
5938818 | Miller | Aug 1999 | A |
5961693 | Altman et al. | Oct 1999 | A |
6152988 | Plaks et al. | Nov 2000 | A |
6235090 | Bernstein et al. | May 2001 | B1 |
6514315 | Chang | Feb 2003 | B1 |
6544317 | Miller | Apr 2003 | B2 |
6602328 | Doi et al. | Aug 2003 | B2 |
6766636 | Shingu et al. | Jul 2004 | B2 |
6869467 | Scheuch | Mar 2005 | B2 |
6964698 | Davis et al. | Nov 2005 | B1 |
6986803 | Richards | Jan 2006 | B1 |
7022166 | Gittler | Apr 2006 | B2 |
20030159585 | Gittler | Aug 2003 | A1 |
20030177901 | Krigmont | Sep 2003 | A1 |
20040025690 | Krigmont | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
4112453 | Oct 1992 | DE |