Apparatus for fluid purification

Abstract
The present invention generally relates to devices able to purify fluids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof. Liquids or other fluids to be purified enter the purification device and, under the influence of an electric field, are treated to produce an ion-depleted liquid. Species from the entering liquids are collected to produce an ion-concentrated liquid. Increasing the exterior pressure on the device may reduce the pressure difference between the interior of the device and the exterior, which may reduce manufacturing costs or simplify construction.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to devices able to purify fluids electrically and, more particularly, to such devices contained within pressure vessels, as well as to methods of manufacture and use thereof.


2. Description of the Related Art


Devices able to purify fluids using electrical fields are commonly used to treat water and other liquids containing dissolved ionic species. Two types of devices are electro dialysis devices and electrodeionization devices. Within these devices are concentrating and diluting compartments, separated by anion and cation selective membranes. An applied electric field causes dissolved ions to migrate through the membranes, resulting in the liquid of the diluting compartment being depleted of ions while the liquid in the concentrating compartment is enriched with the transferred ions. Typically, the liquid in the diluting compartment is desired (the “product” liquid), while the liquid in the concentrating compartment is discarded (the “reject” liquid). In electrodeionization, the diluting and concentration compartments may also contain ion exchange resins. The ion exchange resin may act as a path for ion transfer, and also may serve as an increased conductivity bridge between the membranes for movement of ions.


Electrodeionization devices include “plate-and-frame” electrodeionization devices such as those disclosed by, for example, in U.S. Pat. No. 4,931,160 by Giuffrida, in U.S. Pat. No. 4,956,071 by Giuffrida et al., and in U.S. Pat. No. 5,316,637 by Ganzi et al. Electrodeionization devices having other geometries have been disclosed by, for example, in U.S. Pat. No. 5,292,422 by Liang et al., in U.S. Pat. No. 5,376,253 by Richen et al., and in U.S. Pat. No. 6,190,528 by Li et al.


SUMMARY OF THE INVENTION

This invention relates to devices able to purify liquids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof.


In one aspect, the present invention provides a fluid purification system. In one set of embodiments, the system comprises an electrical purification apparatus and a pressure vessel surrounding the electrical purification apparatus. The apparatus is constructed and arranged to produce a non-radial flow therein. In one embodiment, the electrical purification apparatus comprises an electrode ionization device.


In another set of embodiments, the system comprises an electrical purification apparatus secured within a pressure vessel. The electrical purification apparatus comprises an ion exchange compartment comprising parallel sub-compartments.


In another aspect, the present invention provides a method. In one set of embodiments, the method is a method of purifying a fluid. The method comprises the steps of providing an electrical purification apparatus, pressurizing the apparatus, and passing the liquid to be purified through the apparatus. The electrical purification apparatus is constructed and arranged to produce a non-radial flow therein. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.


In another set of embodiments, the present invention provides a method of facilitating purification of a liquid. The method comprises the steps of providing an electrical purification apparatus constructed and arranged to produce a non-radial flow therein, and securing the apparatus in a pressure vessel.


In another set of embodiments, the present invention provides a method of purifying a liquid. The method comprises the steps of providing an electrical purification apparatus, securing the apparatus within a pressure vessel, and passing the liquid to be purified through the apparatus. The electrical purification apparatus is constructed and arranged to produce a non-radial flow therein.


In another aspect, the present invention provides a system for purifying a liquid. The system, in one set of embodiments, comprises a pressure vessel, an electrical purification apparatus secured within the pressure vessel, a point of entry fluidly connected to the apparatus, and a point of use fluidly connected to the apparatus. The electrical purification apparatus is constructed and arranged to produce a non-radial flow therein. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.


In another aspect, the present invention provides method of facilitating purification of a liquid. The method comprises the steps of providing a pressure vessel fluidly connectable to a point of entry, providing an electrical purification apparatus constructed and arranged to produce a non-radial flow therein, positioning the apparatus within the pressure vessel, and providing a point of use fluidly connectable to the apparatus. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.


In another aspect, the present invention provides a system for purifying a liquid. The system comprises an electrical purification apparatus comprising an ion exchange compartment, and a substantially cylindrical pressure vessel surrounding the apparatus. The electrical purification apparatus is constructed and arranged to produce a non-radial flow therein. The ion exchange compartment is constructed and arranged to produce a constant liquid velocity therein. In one embodiment, the electrical purification apparatus comprises an electrodeionization device.


In another aspect, the present invention provides an endblock. The endblock comprises an endplate constructed and arranged to be secured to a pressure vessel, and an insulating material attached to the endplate. The insulating material electrically insulates the endplate from an interior of the pressure vessel.


Other advantages, novel features, and objects of the invention will become apparent from the following detailed description of non-limiting embodiments of the invention when considered in conjunction with the accompanying drawings, which are schematic and which are not intended to be drawn to scale. In the figures, each identical or nearly identical component that is illustrated in various figures typically is represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention. In cases where the present specification and a document incorporated by reference include conflicting disclosure, the present specification shall control.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred, non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings in which:



FIG. 1 is a schematic diagram of a system for purifying a liquid according to one embodiment of the present invention;



FIG. 2 is an exploded perspective view of one embodiment of the present invention;



FIG. 3 is a schematic diagram of one embodiment of the present invention, illustrating a pressure vessel containing an electrical purification apparatus with one inlet;



FIG. 4 is a schematic diagram of one embodiment of the present invention, illustrating a pressure vessel containing an electrical purification apparatus with two inlets;



FIG. 5 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus attached to a wall of a pressure vessel using a flange;



FIG. 6 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus affixed to a sidewall of a pressure vessel;



FIG. 7 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus affixed to a head of a pressure vessel; and



FIG. 8 is a schematic diagram of one embodiment of the present invention, illustrating an electrical purification apparatus contained entirely within a pressure vessel.





DETAILED DESCRIPTION

The present invention relates to devices able to purify fluids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof. Liquids or other fluids to be purified enter the purification device and, under the influence of an electric field, are treated to produce an ion-depleted liquid. Species from the entering liquids are collected to produce an ion-concentrated liquid. Increasing the exterior pressure on the device may reduce the pressure difference between the interior of the device and the exterior, which may reduce manufacturing costs or simplify construction.



FIG. 1 illustrates a system for purifying a liquid according to one embodiment of the invention. The system 105 comprises an electrical purification apparatus 100, positioned within a pressure vessel 110. Pressure vessel 110 may be pressurized or filled using any suitable technique, for example, by filling or partially filling the pressure vessel interior with a fluid or a solid material. In the particular embodiment illustrated in FIG. 1, a fluid 120 originating from a point of entry 160 through inlet 130 enters apparatus 100 from within pressure vessel 110. During normal operation, apparatus 100 may concentrate ions within certain compartments of the apparatus by the application of an electric field, which may promote the migration of ions through ion exchange membranes. This procedure results in an ion-concentrated liquid 140 and an ion depleted liquid 150. Ion-concentrated liquid 140 and ion-depleted liquid 150 leave the apparatus through outlets 145 and 155, respectively. Ion-depleted liquid 150 may be transferred to a point of use 170. Fluid 135 entering pressure vessel 110 may be an organic compound, an aqueous solution, or water, such as fresh water, salt water, or wastewater, for example, from a water treatment plant, or a manufacturing facility. The water may also be water from a reservoir, a holding tank, or the ocean. In some embodiments, the ion-depleted liquid may be purified water, such as water comprising less than 1 ppm, less than 500 ppb, less than 100 ppb, less than 50 ppb, less than 10 ppb, less than 5 ppb, or less than 1 ppb of contaminant. The contaminant may be, for example, an ion difficult to remove from water, such as Mg2 or Ca2+. In another embodiment, the ion-depleted liquid may be ultra-high purity water, for example, water with a resistivity of greater than 18 megohm-cm.


As used herein, an “electrical purification apparatus” is an apparatus that can purify a fluid containing dissolved ionic species by applying an electrical potential to influence ion transport within the fluid. Examples of an electrical purification apparatus include an electrodialysis device and an electrodeionization device. The terms “electrodialysis” and “electrodeionization” are given their ordinary definitions as used in the art. An electrodialysis device typically has several fluid compartments that are used to dilute or concentrate ions and other dissolved contaminants. In an electrodeionization device, an electrically active media is additionally used within one or more fluid compartments to collect and discharge ionizable species, or to facilitate the transport of ions by ionic or electronic substitution mechanisms. Electrodeionization devices can include media which can permanent or temporary charge, and can operate to cause electrochemical reactions designed to achieve or enhance performance.


Point of entry 160 may be any unit operation producing a fluid or operating on a fluid, such as, but not limited to, ultrafiltration, nanofiltration, sedimentation, distillation, humidification, reverse osmosis, dialysis, an electrodeionization apparatus, or an electrodialysis apparatus. The point of entry may also be a reactor in some embodiments, where a fluid is generated, or a heat exchanging system, where a fluid is used for heating or cooling operations. In certain embodiments, the point of entry may also be a reservoir of liquid, such as a storage vessel, a tank, or an outdoor holding pond, or, in the case of water, the point of entry may also be a natural or artificial body of water, such as a lake, a river, a canal, or an ocean. Between point of entry 160 and pressure vessel 110 may be any number of additional operations that may operate on the fluid, for example, a reverse osmosis device or a reservoir.


Point of use 170 may be any location in which a liquid is desired. For example, the point of use may be a spigot, a reservoir, or a unit operation in which a liquid is needed, such as may be found in a cooling system, a refrigeration system, or a manufacturing plant. The liquid from point of use 170 may also be used in equipment that purifies or stores the liquid, for example, in bottles or a tank. Point of use 170 may also be in a chemical plant, a city, or a building such as a house or an apartment complex, or it may be a discharge to the natural environment. Between pressure vessel 110 and point of use 170 may be any number of additional operations or distribution networks, for example, an ultrafiltration device, a reservoir, or a water distribution system.


It should be understood that the systems and methods of the present invention may be used in connection with any system where the purification of a liquid or liquids may be desired. Consequently, the system as illustrated in FIG. 1 may be modified as needed for a particular process. For example, additional inlets or outlets may be added to the pressure vessel or the electrical purification apparatus; pumps, reservoirs, valves, stirrers, surge tanks, sensors, or control elements may be added to the system to control liquid flow; or additional process units such as filtration or reverse osmosis units may be added to the system to further purify the liquid, without departing from the scope of the invention.



FIG. 2 illustrates an exploded diagram of another embodiment of the invention. In the embodiment shown in this figure, the pressure vessel 200 is shown as a cylinder that surrounds electrical purification apparatus 100. Electrical purification apparatus 100 is also illustrated in FIG. 2 in an exploded view.


Although pressure vessel 200 as depicted in FIG. 2 is a cylinder that is only slightly larger than electrical purification apparatus 100, in other embodiments, pressure vessel 200 may have other shapes, and is not limited to the size of apparatus 100. For example, pressure vessel 200 may be spherical, or it may be cylindrical, for example, with hemispherical ends as depicted in FIG. 1, elliptically-shaped heads, or flat ends. The pressure vessel may also be a line or a pipe, for example, a pipe that fluidly connects at least two unit operations. As used herein, a “pressure vessel” is any vessel that can withstand pressures above or below atmospheric pressure, such as pressures greater than or less than about 2 pounds per square inch (psi) from atmospheric pressure, pressures greater than or less than about 10 psi from atmospheric pressure, or pressures greater than or less than about 14 psi from atmospheric pressure. In some cases, the pressure vessel may be able to withstand even greater pressures. The pressure vessel may be made of any material capable of withstanding these pressures, such as a metal or a plastic. Metals, such as stainless steel or aluminum, may be used to construct vessels in some embodiments, because such metals may be able to withstand larger forces. However, in other embodiments, polymeric materials such as polypropylene, polysulfone, polyethylene, polyvinyl chloride, chlorinated polyvinyl chloride, fiberglass reinforced plastic (“FRP”) (for example filament-wound reinforced plastic vinyl polyester composite), or a polyolefin may be used, due to their inert or nonconducting nature, such as when liquid contamination is a primary concern, or when the fluid entering the pressure vessel is chemically reactive, for example, an acid or ultra-high purity water. Other polymers may be used as well. In some embodiments, pressure vessel 200 may be made out of a first material lined with a second material. The first material may be any material able to withstand pressure, such as a metal or a plastic. The second material lining the vessel may be, for example, inert to liquids or gases within the pressure vessel. For example, the pressure vessel may be made out of stainless steel with a coating of a polymer such as polytetrafluoroethylene. Pressure vessel 200 may have additional functions, such as, but not limited to, enabling mixing or settling operations, facilitating chemical reactions, performing reverse osmosis, or having electrically insulating properties. Additional components, such as, but not limited to, relief valves, vacuum breakers or sensors, such as, for example, measuring conductivity, temperature, pressure, composition, or pH, may also be present on or within the pressure vessel, depending on the application.


In one set of embodiments, electrical purification apparatus 100 includes ion exchange compartments 210, separated by ion selective membranes 220. Each end of electrical purification apparatus 100 may have an electrode 230 and an endblock 240. Optionally, when assembled, a series of tie rods 250 may run through the apparatus. However, other suitable methods may be used to secure apparatus 100 in other embodiments, such as flanges, welds, retaining rings, retaining pins, or adhesives.


Ion exchange compartments 210 may have the same size or different sizes. In FIG. 2, the cross-section of ion exchange compartments 210 are depicted as being circular; however, other cross-sections are also within the scope of the present invention, for example, a rectangle, or a polygon such as a pentagon or a hexagon. In particular, the shapes of the ion exchange compartments or chambers are not determined by the shape or size of pressure vessel 200. Ion exchange compartments 210 may each have any number of inlets and outlets (not shown). In some embodiments, an alternating series of concentrating and diluting compartments are used; however, other arrangements, such as a series of two diluting compartments adjacent to two concentrating compartments, may also be used. The materials forming the ion exchange compartments may be any suitable material, such as, but not limited to, a polymeric material, for example, polyvinyl chloride, chlorinated polyvinyl chloride, polypropylene, polysulfone, polyethylene, a polyolefin, or a glass-reinforced plastic or polymer, such as glass-reinforced polypropylene. Ion exchange compartments 210 each may have any number of inlets or outlets (not shown) to allow liquid to flow through the compartment. In some embodiments, the inlets and outlets. may be located on the periphery of ion compartments 210, to minimize stagnant liquid flow or “dead” volumes.


Ion exchange membranes 220 may allow the species of one charge to pass through but may generally restrict the motion of species carrying the opposite charge. For example, membranes that generally allow passage of cations (positive ions) over anions (negative ions) are cation membranes; membranes that generally allow passage of anions over cations are anion membranes. The ion exchange membranes may comprise, for example, an ion exchange powder, a polyethylene powder binder, and a glycerin lubricant. The ion exchange powder may be, for example, a cation exchange powder such as PUROLITE™ C-100IP sodium resonium powder, available from the Purolite Company (Bala Cynwyd, Pa.); or an anion exchange powder such as PUROLITE™ A-430IP cholestyramine powder, available from the Purolite Company (Bala Cynwyd, Pa.). The membranes may be formed by any suitable technique, for example, by mixing the raw materials, and forming and extruding the pellets made from the materials into composite sheets. Other types of membranes, such as neutral membranes, size-exclusion membranes, or membranes that are imeable to specific ions can be used within the electrical purification apparatus in some embodiments of the invention. In one set of embodiments, an alternating series of cation and anion membranes separated by ion exchange membranes 210 are used; however, other arrangements, including those that use other types of membranes, such as size-exclusion membranes, may also be used in other embodiments.


The same liquid may be passed through both ion exchange compartments, or one liquid may be passed through one compartment and a different liquid passed through the other. Straps, baffles, walls, ribs, or other components may be used to direct liquid flow within each ion exchange compartment. In one embodiment, depicted in FIG. 2, straps 270 may be arranged to produce a series of parallel sub-compartments 260 within each ion exchange compartment 210, resulting in a net non-radial flow 275, where the net or uniform liquid flow is the average or bulk flow direction of the liquid, ignoring the perturbations to liquid flow caused by the presence of resin within sub-compartments 260. In some embodiments, sub-compartments 260 may be designed such that the width, height, or cross-sectional area of each flow channel does not vary substantially, for example, to cause a uniform liquid flow velocity profile throughout the compartment, which may allow more uniform mixing within the compartment, or more uniform transfer rates through the compartment to occur. Sub-compartments 260 within ion exchange compartment 210 do not necessarily have to be parallel to each other, and they may have other shapes besides the rounded rectangles illustrated in FIG. 2, for example, but not limited to, square, circles, rectangles, triangles, ovals, or hexagons. In other embodiments, straps 270 may be arranged to produce a zigzag flow of liquid through the compartment to extend the path length of liquid flow within the compartment, or straps 270 may not be present at all. Other non-radial flows 275 within sub-compartments 260 are also contemplated. For example, sub-compartments 260 may be arranged within ion exchange compartment 210 to form a triangular or a square array of sub-compartments, so that liquid flow within each sub-compartment 260 is not directed towards the center of ion exchange compartment 210. As used herein, “radial” refers to fluid flow that ultimately converges to or starts from the center, or close to the center, of the ion exchange compartment.


Non-radial flows within an ion exchange compartment may reduce the pressure or shear forces applied to the ion exchange membranes or the straps or baffles within the ion exchange compartment, compared to radial liquid flows, such as those described, for example, by Liang et al. in U.S. Pat. No. 5,292,422, the teachings of which are hereby incorporated by reference in their entirety. Non-radial flows may thus, it is believed, extend the lifetimes of the ion exchange membranes, or allow the ion exchange compartment to be constructed out of lighter or less expensive materials. The use of non-radial flows within the ion exchange compartments may also allow construction of the ion exchange compartments to be easier or simpler. Non-radial flows within the ion exchange compartment may also allow uniform liquid flow velocity profiles within the compartment, which may result in more even or more predictable ion exchange, more rapid mixing, or shorter liquid residence times, for example, compared to radial liquid flows. Ion exchange compartments with non-radial flows may also be simpler to manufacture, because fewer internal straps or baffles may be required to produce the non-radial flow, and inlets and outlets may be positioned at the periphery of the ion exchange compartment instead of the center, resulting in easier and simpler access. Inlets and outlets positioned at the periphery of the ion exchange compartments may also simplify the loading and replacement of any ion exchange resins that may be present within the compartment, for example, in electrodeionization devices. Lesser amounts of piping and other fluid connections may be required for each ion exchange compartment, which may simplify construction in some cases.


During operation, an electric field is applied to the ion exchange compartments electromelectrodes 230, which may create a potential gradient that causes ions to migrate from the diluting compartments into the concentrating compartments. The electric field may be applied perpendicularly to liquid flow 275. The electric field may be uniformly applied across ion exchange compartments 210, resulting in a uniform, substantially constant electric field density across ion exchange compartments 210; or the electric field may be nonuniformly applied, resulting in a nonuniform current density. The electric field may also be applied as a gradient, for example, increasing or decreasing across electrical purification apparatus 100 or along liquid flow 275. The electric field may also be applied at a slight or sharp angle to the liquid flow. Anyone of the electrodes 230 may be used as a cathode or an anode. In some embodiments of the invention, the polarity of the electrodes may occasionally be reversed during operation, reversing the position of the cathode and the anode. The electrodes may be made out of any material suitable for applying the electric field. The electrodes may be used, for example, for extended periods of time without significant corrosion. Examples of materials include platinum, titanium or stainless steel. The electrodes may also be coated in some embodiments, for example, with platinum, ruthenium oxide or iridium oxide.


In one set of embodiments, the electrical purification apparatus is an electrodeionization device. In these embodiments, one or both of ion exchange compartments 210 may be filled with a resin (not shown). The resin may be a cation, anion, or inert resin, and may be present as spherical beads or other discrete particles. The resin may also be present in other geometries as well, such as powder, fibers, mats, or extruded screens. The resin may comprise any material suitable for binding ions and other species from solutions, for example, silica, a zeolite, or a polymer, such as a poly(divinylbenzene-co-styrene). The resin may include cation materials having weak base functional groups on their surface regions, such as tertiary alkyl amino groups. The resins may also include anion resin materials, such as those containing Type II functional groups on their surface regions, for example, dimethyl ethanolamine, or Type I functional groups (quaternary ammonium groups) on their surface regions. These materials are commercially available, for example, as DOWEX™ MARATHON™ WBA resin, available from the Dow Chemical Company (Midland, Mich.) or AMBERJET™ 4600 Type II resin available from the Rohm & Haas Corporation (Philadelphia, Pa). Additionally, the resin within ion exchange compartment 210 can have a variety of arrangements including, but not limited to, layered packings as described by DiMascio et al. in U.S. Pat. No. 5,858,191, the teachings of which are incorporated by reference. Other types of particles may be present as well, to, for example, catalyze reactions, adsorb substances, or filter out solids. It will furthermore be understood that a variety of configurations may exist within ion exchange compartments 210. For instance, the ion exchange compartments may contain additional components, such as baffles, meshes, or screens, which may be used to, for example, contain and direct the resin or control liquid flow within the compartment.


In one embodiment as illustrated in FIG. 2, electrical purification apparatus 100 is assembled by the use of endblocks 240 on either end of the apparatus, held together by the use of tie bars 250, as would be found in a typical plate-and-frame construction, that is known in the art. See, for example, U.S. Pat. No. 4,931,160 by Giuffrida, U.S. Pat. No. 4,956,071 by Giuffrida et al., or U.S. Pat. No. 5,316,637 by Ganzi et al. In the present invention, the “plate” may be represented by ion exchange compartments 210 and the “frame” may be represented by endblocks 240. Ion exchange membranes 220 are arranged in parallel to each other, with the space between them forming ion exchange Compartments 210. puring operation, each ion exchange compartment 210 has an internal pressure. These liquid pressures surrounding ion exchange compartment 210 may be essentially balanced, and the likelihood of stress-induced failures of internal components may be reduce bars 250 and end blocks 240 are not required for operation of electrical purification apparatus 100, and, in some embodiments, tie bars 250 or endblocks 240 may be absent. Other methods of securing apparatus 100 within pressure vessel 110 may be used as well, for example, by welding or thermal fusion. Mechanical flanges, adhesives, or other methods as previously described may also be used to assemble the apparatus. Tie bars 250 or endblocks 240 may be made out of a metal, such as stainless steel, titanium, or aluminum. However, in other embodiments, the tie bars or the endplates may be made out of polymeric materials, such as polyvinyl chloride, chlorinated polyvinyl chloride, polypropylene, polysulfone, polyethylene, a polyolefin, a ceramic, or other inert or non-conducting materials, such as for safety reasons, cost, reliability, ease of manufacture, or ease of maintenance. In certain embodiments of the invention, endblock 240 may be a composite of two or more different materials. For example, endblock 240 may be made out of two material such as a metal and a polymer, which may, for example, prevent electrical short in within the electrical purification apparatus. In other embodiments, endblock 240 may, constructed out of three or more materials. For example, one material may provide structural strength, a second material may be an insulating material, and a third material may be used as electrode 230. The insulating material may be any material capable of electrical insulation, such as a polymer, for example, polyvinyl chloride or rubber. The outer material may be any material, for example, a material to provide structural strength to the apparatus, such as a metal, for example, aluminum or stainless steel. Other arrangements for endblock 240 may also be envisioned.


In one set of embodiments, a fluid 120 passes within pressure vessel 200 and outside electrical purification apparatus 100. Fluid 120 may be any fluid. For example, fluid 120 may be air, nitrogen gas, an oil, a hydrocarbon, an aqueous solution, or water, such as fresh water, salt water, or wastewater. The fluid filling or partially filling pressure vessel 110 may be one or more of the fluids exiting the electrical purification. apparatus, it may be a fluid that enters apparatus 100, or it may be a fluid that does not enter the apparatus. The pressure of fluid 120 within pressure vessel 200 may be greater than, less than, or equal to the pressure within apparatus 100. Smaller pressure differences between fluid 120 within pressure vessel 200 and electrical purification apparatus 100 may be used in some situations, for example, to reduce manufacturing costs or extend the lifetime of the apparatus, due to a reduction in pressure-induced stresses on apparatus 100, Thus, in one embodiment, the pressure difference may be less than 500 psi, less than 100 psi, less than 50 psi, less than 10 psi, or less than 5 psi. Either fluid 120 or apparatus 100 may have the greater pressure. Alternatively, there may be no substantial pressure difference between fluid 120 and apparatus 100.


In another set of embodiments, electrical purification apparatus 100 within pressure vessel 200 is pressurized structurally, for example, by filling and pressurizing the space between the apparatus and the pressure vessel with a solid material. The solid material may be any material that can be used to fill and at least partially pressurize the space between the electrical purification apparatus and the pressure vessel, for instance, to apply a pressure to at least a portion of the electrical purification apparatus. If a solid material is used, the material may be inert, or may be formed from of a substance that is unreactive toward the fluids used in the electrical purification apparatus, especially during application of an electric field. For example, the solid material may comprise a polymeric material, such as, but not limited to, polypropylene, polysulfone, polyethylene, polyvinyl chloride, chlorinated polyvinyl chloride or a polyolefin.


In one set of embodiments, the solid material may comprise a material that is expanded or solidified during its formation. As an example, a material may be placed between the electrical purification apparatus and the pressure vessel, and solidified in place, such as in a foam or an injection molding process. In one embodiment, the material is a polymer that is blown and expanded into place, for example, but not limited to, a polystyrene, polyethylene, or a polypropylene. In another embodiment, the material reacts to form a solid material, for example, an epoxy.


The solid material may be, in yet another set of embodiments, positioned in the pressure vessel during the fabrication process. The solid material may be pressurized (e.g., compressed) in some embodiments. In certain embodiments, however, the solid material is not pressurized, but is used, for example, to prevent or reduce fluid leakage from the purification apparatus, or to occupy space or buffer the apparatus from the pressure vessel, for instance, against physical shock or changes in temperature. In one embodiment, the solid material allows forces generated in the electrical purification apparatus to be transmitted to the pressure vessel. These forces may include internal forces such as internal hydraulic pressures, or expansion forces from the swelling of resins in embodiments where resins are used, such as in electrodeionization devices. In one embodiment, an elastomeric solid is placed between the electrical purification apparatus and the pressure vessel during the fabrication process. For example, the solid material may be a thermoplastic elastomer such as, but not limited to, rubber, polystyrene, polybutadiene, polyisoprene, polybutadiene, polyisobutylene, a polyurethane, polychloroprene, or a silicone.


It should be noted that the present invention may have a variety of other configurations. For example, in certain embodiments of the invention, both a fluid and a solid material may be used between the electrical purification apparatus and the pressure vessel. As another example, other means of applying an external pressure on the periphery of the electrical purification apparatus are contemplated. If a fluid is used to pressurize the apparatus, the fluid may be pressurized, for example, by an upstream pump or by application of higher flow rates or hydrostatic pressure heads, instead of being confined within a pressure vessel. As used herein, a “pressurized fluid” refers to a fluid with a pressure greater than that of atmospheric pressure, typically at least greater than 2 psi over atmospheric pressure. As previously discussed, a different fluid may be used to pressurize the outside of the apparatus, such as water or air.


Electrical purification apparatus 100 may also have other configurations as well, for example, including additional components, such as additional electrodes; or other internal geometries, for example, having cylindrical or spherical ion exchange compartments. Different inlet and outlet configurations may also be used. For example, several liquids may be simultaneously passed through the apparatus to be concentrated and diluted, such as water, brine, an aqueous solution, or an organic solution. Fluid 120 may additionally have other materials suspended or dissolved in it, such as may be present in sea water.


The fluid within the pressure vessel may be fed by one or more of the inlet fluids. For example, in one particular embodiment illustrated in FIG. 3 as a cross-sectional view, fluid 300 from a point of entry 160 first enters region 370 between pressure vessel 110 and electrical purification apparatus 100. Electrical purification apparatus 100 is divided into concentrating compartments 310 and diluting or depleting compartments 320 by cation exchange membranes 330 and anion exchange membranes 340. lithe electrical purification apparatus is an electrodeionization device, then one or both of compartments 310 and 320 may be filled with a resin. At one end of the apparatus is an anode 360 and an endblock 240; at the other end is cathode 350 and an endblock 240. The fluid from region 370 is passed from within the pressure vessel into both the concentrating 310 and diluting 320 compartments through inlets 315 and 325, respectively, where it is concentrated and diluted, respectively, under the influence of the applied electric potential. The fluid then exits concentrating 310 and diluting 320 compartments through outlets 317 and 327 as ion-concentrated stream 140 and ion-depleted stream 150, respectively. In some applications, for example, in water purification, the ion-depleted stream may be retained as a product, while the ion concentrated stream is discarded; however, in other applications, where concentrating operations may be desired, the ion-concentrated stream may be retained and the ion-depleted stream discarded. In the embodiment illustrated in FIG. 3, ion-concentrated stream 140 and ion-depleted stream 150 each end at points of use 380 and 385, respectively.


In some embodiments of the invention, region 370 may be an annular region between pressure vessel 110 and electrical purification apparatus 100, for example, if both the pressure vessel and the apparatus have cross circular-cross sections. In some embodiments of the invention, a smaller region 370 may be desired, for example, to minimize the amount of fluid within pressure vessel 110 that is not within electrical purification apparatus 100 in embodiments where a fluid is passed through region 370.


In other embodiments, however, a larger region 370 between pressure vessel 110 and apparatus 100 may be desired. For example, in a pharmaceutical application where a fluid passes between the pressure vessel and the electrical purification apparatus, a larger region 370 between pressure vessel 110 and electrical purification apparatus 100 may allow the fluid in the region have a higher or lower velocity profile, minimizing the amount of “dead” volume within the device. A “dead” or stagnant volume may have a very low fluid velocity, for example, less than about 10 ft/s, or less than about 5 ft/s, which could allow the growth of microorganisms to occur. In one set of embodiments, baffles, straps, ribs, or other devices may be used within region 370 to alter or affect fluid flow therein, for example, to prevent the formation of dead zones, or to facilitate uniform fluid flow within the annular space.


Another embodiment of the invention is illustrated in FIG. 4 as a cross-sectional view. In this embodiment, two separate inlet fluids 400, 410 are used, thus illustrating that multiple inlets may be used in accordance with the present invention. One inlet fluid 400 from a point of entry 460 is used to fill region 370 between pressure vessel 110 and electrical purification apparatus 100. From region 370, the fluid enters concentrating compartments 310 through inlets 315. The other inlet fluid 410 from point of entry 470 passes only through diluting compartments 320 of electrical purification apparatus 100, and does not enter region 370 between pressure vessel 110 and apparatus 100. The two fluids pass through concentrating 310 and diluting 320 compartments and exit through outlets 317 and 327 to produce the ion-concentrated 140 and ion-depleted 150 liquids, respectively, and from there to points of use 380 and 385, respectively.


Another embodiment of the invention is illustrated in FIG. 5 as a cross-sectional view. Here, two separate fluids 400, 410 from separate points of entry 460, 470, respectively, are used in electrical purification apparatus 100, but a third fluid or a solid material 500 is used to reduce the pressure difference between the inside of electrical purification apparatus 100 and pressure vessel 110, only a portion of which is illustrated in FIG. 5. Additionally, pressure vessel 110 is much larger than apparatus 100, does not conform to the shape of the apparatus, and does not entirely contain the apparatus. As used herein, “contain,” “surround,” “positioned within,” “secured within,” and similar words and phrases includes configurations where the apparatus is only partially surrounded or enclosed in the pressure vessel, as well as situations where the electrical purification apparatus is completely surrounded or enclosed by the pressure vessel. In FIG. 5, one inlet fluid 400 enters concentrating compartments 310 through inlets 315 while a second inlet fluid 410 enters diluting compartments 320 through inlets 325. Ion-concentrated liquid 140 from concentrating compartments 310 exits through outlets 317 to a point of use 170, while ion-depleted liquid 150 from diluting compartments 320 exits through outlets 327 to pressure vessel 110 and mixes with third fluid 500. In this embodiment, electrical purification apparatus 100 may be attached to the wall of pressure vessel 110 by means of a flange; however, other attachment methods, such as adhesives or tie rods, may also be used for attaching electrical purification apparatus 100.


It should be understood that many other configurations are possible. For example, any of the outlet fluids may be recirculated back to one of the inlets or into the pressure vessel, or, if a fluid is used to pressurize the exterior of the electrical purification apparatus, the fluid may not be connected in any fashion with either the inlet or the outlet fluids. Other configurations may also be envisioned. For example, the inlets or the outlets may be connected to other electrical purification devices in series or in parallel, resulting in linked networks of electrical purification devices, Liquids could be passed through a series of electrical purification devices, each device subsequently concentrating or purifying the liquid.



FIG. 6 shows another embodiment of the invention. In this embodiment, electrical purification apparatus 100 has been mounted to the side wall of pressure vessel 110. In this embodiment, part of apparatus 100 is located outside of pressure vessel 110, permitting ready access to the apparatus, so that, for example, routine maintenance operations may be performed on electrical purification apparatus 100, or piping configurations may be easily altered, internally or externally. In the embodiment illustrated in FIG. 7, electrical purification apparatus 100 has been mounted at the base of the pressure vessel 110. This may be advantageous in situations, for example, where pressure vessel 110 is large and access to electrical purification apparatus 100 at the bottom of the vessel may be more practical, safe, or cost-effective. In other embodiments, the apparatus may also be positioned at the top of pressure vessel 110.


In FIG. 8, electrical purification apparatus 100 is completely enclosed within pressure vessel 110. In this embodiment, two inlet liquids 800 enter apparatus 100, resulting in an ion-concentrated liquid 140 and an ion-depleted liquid 150. Ion-concentrated liquid 140 may be passed into pressure vessel 110, while ion-depleted liquid 150 is discarded. This configuration may be advantageous in certain situations, for example, where leakage from electrical purification apparatus 100 must be tightly controlled, for example, in the purification of toxic or biohazardous liquids. It will be understood that other configurations may also be possible, depending on the situation and the liquid to be concentrated or diluted.


The function and advantages of these and other embodiments of the present invention will be more fully understood from the following examples. These examples are intended to be illustrative in nature and are not considered to be limiting in the scope of the invention.


EXAMPLE 1

This example illustrates various conditions using one particular embodiment of the invention utilizing an electrodeionization device.


A continuous electrodeionization device having twelve diluting compartments and twelve concentration compartments was assembled. The intermembrane spacing between the compartments was 0.161 inches. The cation membrane within the device was a heterogeneous extruded cation exchange membrane. The anion exchange membrane was a heterogeneous extruded anion exchange membrane. The resin used in both the diluting compartment and the concentrating compartment was a mixture of DOWEX™ MARATHON™ A anion resin and DOWEX™ MARATHON™ C cation resin. The ratio between the anion and cation resin was 70:30.


The pressure vessel was constructed from polyvinyl chloride. The pressure vessel was a cylinder with an inner diameter of about 12.4 inches. The polyvinyl chloride cylinder was rated for a maximum pressure of 220 psi. The spacer within the electrodeionization device was constructed out of low density polyethylene. The electrodes were constructed out of titanium coated with a ruthenium oxide coating. The endplates on the pressure vessel were also constructed out of polyvinyl chloride.


Results for two sample runs using the particular electrodeionization device are shown in Table 1. The water fed to the device in Run 1 had a higher conductivity than the water used in Run 2, indicating that the water in Run 1 had a higher load of ions.


This electrodeionization device was able to successfully reduce the amount of silicon dioxide present in the inlet water by approximately 99%. Additionally, the resistivity of the ion-depleted fluid was found to be approximately 17 megohm-cm after electrodeionization.


Thus, this example illustrates that one embodiment of the invention may be used to reduce the concentration of silicon dioxide, as well as the resistivity of the sample stream of water.


















Run 1
Run 2




















Feed conductivity
14
8.26



(microsiemen/cm)





Feed temperature (° C.)
24.3
22.1



Feed CO2 (ppm)
3.75
2.5



Feed SiO2 (ppb)
215
256



Voltage (V)
153
142.3



Current (A)
5.0
4.0



Product Resistivity
16.95
17.75



(megohm-cm)





Dilute flow rate (gpm)
2
2



Conc Flow rate (gpm)
0.2
0.2



Dilute SiO2 (ppb)
3
2



SiO2 Removal (%)
98.6%
99.2%










EXAMPLE 2

One arrangement of the present invention is described in this example.


An electrodeionization apparatus is constructed and housed in a cylindrical pressure vessel. The spacers that form the diluting and concentrating compartments are circular in shape, with an outside diameter of 5.75 inches. The thickness of each diluting compartments is 0.33 inches, and the thickness of each concentrating compartments is 0.18 inches. Within each spacer are two compartments, each 3.5 inches long, and connected at one end to form a U-shaped flow path of 7 inches total length. The spacers are molded from a glass-reinforced polypropylene.


The endblocks that house the electrodes are machined from a solid polyvinyl chloride (PVC) block. The cylindrical vessel consists of a PVC Schedule 40 pipe, with an inside diameter of 6 inches. The stack of spacers, membranes and endblocks are assembled and inserted into the pressure vessel, and secured within the vessel by retaining pins at both ends.


The electrodeionization apparatus is operated with permeate water from a reverse osmosis purification system as the feed. The feed to the diluting compartments is introduced directly into the compartments at a pressure of 29 psig. The product fluid is at a pressure of 9 psig. The feed to the concentrating compartments is first introduced at 5 psig into the annular space between the inside of the pressure vessel and the outside of the apparatus. The water is then directed into the concentrate compartments. The effluent from the concentrating compartments (i.e., the reject) is discharged to a drain.


The maximum pressure differential between the interior and the exterior of the apparatus is about 24 psig (i.e., the pressure difference between the feed to the diluting compartment, and the feed to the annular space). This pressure difference may be narrowed by increasing the feed pressure to the annular spacer, and therefore to the concentrating compartments. The pressure difference is not significantly affected if the pressure of both of the feed streams is increased by the same amount.


The apparatus can be operated at feed pressure of up to 100 psig into the diluting compartments. With the apparatus housed inside a pressure vessel, and the feed into annular space also at 100 psig, the maximum pressure difference between the interior and the exterior of the diluting compartments is the pressure drop through the diluting compartments, about 20 psi. The lower pressure differential allows the use of glass-filled polypropylene as the spacer material.


Thus, this example illustrates an arrangement of the present invention.


Those skilled in the art would readily appreciate that all parameters and configurations described herein are meant to be exemplary and that actual parameters and configurations will depend upon the specific application for which the systems and methods of the present invention are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. For example, additional inlets, outlets, membranes, or fluids may be added to the electrodeionization device, or the invention may be combined with reverse osmosis or ultrafiltration equipment. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described. The present invention is directed to each individual feature, system, or method described herein. In addition; any combination of two or more such features, systems or methods, if such features, systems or methods are not mutually inconsistent, is included within the scope of the present invention.

Claims
  • 1. A system for purifying a liquid, comprising: a source of liquid to be purified fluidly connected to a point of entry;a pressure vessel comprising an inlet fluidly connected to the point of entry;an electrical purification apparatus positioned within the pressure vessel, the electrical purification apparatus constructed and arranged to produce a non-radial flow and a uniform flow velocity profile therein; anda fluid region defined between the pressure vessel and the electrical purification apparatus to hold at least a portion of the liquid to be purified and to apply an external pressure on a periphery of the electrical purification apparatus, the electrical purification apparatus comprising an inlet fluidly connected to the fluid region, and an outlet port fluidly connectable to a point of use.
  • 2. The system for purifying a liquid of claim 1, wherein the apparatus comprises an electrodeionization device.
  • 3. The system for purifying a liquid of claim 1, wherein the electrical purification apparatus further comprises an outlet fluidly connected to the fluid region.
  • 4. The system for purifying a liquid of claim 3, further comprising a water distribution system fluidly connecting the point of use to the electrical purification apparatus.
  • 5. The system for purifying a liquid of claim 1, wherein the electrical purification apparatus further comprises an ion exchange compartment exposed to the fluid region.
  • 6. The system for purifying a liquid of claim 1, wherein the electrical purification apparatus comprises an endplate constructed and arranged to be secured to a wall of the pressure vessel.
  • 7. The system for purifying a liquid of claim 6, further comprising an insulating material attached to the endplate.
  • 8. The system for purifying a liquid of claim 7, wherein the insulating material electrically insulates the endplate from an interior of the pressure vessel.
  • 9. The system for purifying a liquid of claim 8, wherein the electrical purification apparatus comprises an electrode attached to the insulating material.
  • 10. A system for purifying a liquid, comprising: an electrical purification apparatus comprising at least one ion exchange compartment, the apparatus constructed and arranged to produce a non-radial flow therein, the at least one ion exchange compartment constructed and arranged to produce a uniform liquid velocity profile therein and comprising an inlet disposed at a peripheral region of the at least one ion exchange compartment and an outlet disposed diametrically opposite the inlet at a peripheral region of the at least one ion exchange compartment;a pressure vessel surrounding the apparatus and comprising an inlet fluidly connectable to a point of entry; anda fluid region between the electrical purification apparatus and the pressure vessel, the fluid region fluidly connected to the inlet of the pressure vessel and the inlet at a peripheral region of the at least one ion exchange compartment.
  • 11. The system for purifying a liquid of claim 10, wherein the apparatus comprises an electrodeionization device.
RELATED APPLICATION

This application is a divisional application of pending U.S. patent application Ser. No. 10/272,356, entitled “Apparatus for Fluid Purification and Methods of Manufacture and Use Thereof,” filed Oct. 15, 2002, which claims the benefit of U.S. Provisional Application No. 60/329,296, entitled “Electrodeionization Apparatus and Methods of Manufacture and Use Thereof,” filed Oct. 15, 2001, each of which is incorporated herein by reference.

US Referenced Citations (224)
Number Name Date Kind
2514415 Rasch Jul 1950 A
2681319 Bodamer Jun 1954 A
2681320 Bodamer Jun 1954 A
2788319 Pearson Apr 1957 A
2794777 Pearson Jun 1957 A
2815320 Kollsman Dec 1957 A
2854394 Kollsman Sep 1958 A
2894894 Kressman et al. Jul 1959 A
2933674 Kressman Feb 1960 A
2943989 Kollsman Jul 1960 A
2990361 Solt Jun 1961 A
3014855 Kressman Dec 1961 A
3074864 Gaysowski Jan 1963 A
3099615 Kollsman Jul 1963 A
3148687 Dosch Sep 1964 A
3149061 Parsi Sep 1964 A
3149062 Gottschal et al. Sep 1964 A
3165460 Zang et al. Jan 1965 A
3216920 Nellen Nov 1965 A
3291713 Parsi Dec 1966 A
3330750 McRae et al. Jul 1967 A
3341441 Giuffrida et al. Sep 1967 A
3375182 Chen Mar 1968 A
3375208 Duddy Mar 1968 A
3627703 Kojima et al. Dec 1971 A
3630378 Bauman Dec 1971 A
3645884 Gilliland Feb 1972 A
3686089 Korngold Aug 1972 A
3755135 Johnson Aug 1973 A
3869376 Tejeda Mar 1975 A
3870033 Faylor et al. Mar 1975 A
3876565 Takashima et al. Apr 1975 A
3989615 Kiga et al. Nov 1976 A
4032452 Davis Jun 1977 A
4033850 Kedem et al. Jul 1977 A
4089758 McAloon May 1978 A
4102752 Rugh, II Jul 1978 A
4116889 Chlanda et al. Sep 1978 A
4119581 Rembaum et al. Oct 1978 A
4130473 Eddleman Dec 1978 A
4153761 Marsh May 1979 A
4167551 Tamura et al. Sep 1979 A
4191811 Hodgdon Mar 1980 A
4197206 Karn Apr 1980 A
4202772 Goldstein May 1980 A
4216073 Goldstein Aug 1980 A
4217200 Kedem et al. Aug 1980 A
4226688 Kedem et al. Oct 1980 A
4228000 Hoeschler Oct 1980 A
4294933 Kihara et al. Oct 1981 A
4298442 Giuffrida Nov 1981 A
4321145 Carlson Mar 1982 A
4330654 Ezzell et al. May 1982 A
4358545 Ezzell et al. Nov 1982 A
4374232 Davis Feb 1983 A
4430226 Hegde et al. Feb 1984 A
4465573 O'Hare Aug 1984 A
4473450 Nayak et al. Sep 1984 A
4505797 Hodgdon et al. Mar 1985 A
4569747 Kedem et al. Feb 1986 A
4574049 Pittner Mar 1986 A
4610790 Reti et al. Sep 1986 A
4614576 Goldstein Sep 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4655909 Furuno Apr 1987 A
4661411 Martin et al. Apr 1987 A
4671863 Tejeda Jun 1987 A
4687561 Kunz Aug 1987 A
4702810 Kunz Oct 1987 A
4707240 Parsi et al. Nov 1987 A
4747929 Siu et al. May 1988 A
4747955 Kunin May 1988 A
4751153 Roth Jun 1988 A
4753681 Giuffrida et al. Jun 1988 A
4770793 Treffry-Goatley et al. Sep 1988 A
4804451 Palmer Feb 1989 A
4808287 Hark Feb 1989 A
4849102 Latour et al. Jul 1989 A
4871431 Parsi Oct 1989 A
4872958 Suzuki et al. Oct 1989 A
4915803 Morris Apr 1990 A
4925541 Giuffrida et al. May 1990 A
4931160 Giuffrida et al. Jun 1990 A
4956071 Giuffrida et al. Sep 1990 A
4964970 O'Hare Oct 1990 A
4969983 Parsi Nov 1990 A
4983267 Moeglich et al. Jan 1991 A
5026465 Katz et al. Jun 1991 A
5030672 Hann et al. Jul 1991 A
5032265 Jha et al. Jul 1991 A
5066375 Parsi et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5073268 Saito et al. Dec 1991 A
5082472 Mallouk et al. Jan 1992 A
5084148 Kazcur et al. Jan 1992 A
5092970 Kaczur et al. Mar 1992 A
5106465 Kaczur et al. Apr 1992 A
5116509 White May 1992 A
5120416 Parsi et al. Jun 1992 A
5126026 Chlanda Jun 1992 A
5128043 Wildermuth Jul 1992 A
5154809 Oren et al. Oct 1992 A
5166220 McMahon Nov 1992 A
5176828 Proulx Jan 1993 A
5196115 Andelman Mar 1993 A
5203976 Parsi et al. Apr 1993 A
5211823 Giuffrida et al. May 1993 A
5223103 Kazcur et al. Jun 1993 A
5240579 Kedem Aug 1993 A
5254227 Cawlfield et al. Oct 1993 A
5259936 Ganzi Nov 1993 A
5292422 Liang et al. Mar 1994 A
5308466 Ganzi et al. May 1994 A
5308467 Sugo et al. May 1994 A
5316637 Ganzi et al. May 1994 A
5342521 Bardot et al. Aug 1994 A
5346624 Libutti et al. Sep 1994 A
5346924 Giuffrida Sep 1994 A
5352364 Kruger et al. Oct 1994 A
5356849 Matviya et al. Oct 1994 A
5358640 Zeiher et al. Oct 1994 A
5376253 Rychen et al. Dec 1994 A
5411641 Trainham, III et al. May 1995 A
5425858 Farmer Jun 1995 A
5425866 Sugo et al. Jun 1995 A
5434020 Cooper Jul 1995 A
5444031 Hayden Aug 1995 A
5451309 Bell Sep 1995 A
5458787 Rosin et al. Oct 1995 A
5460725 Stringfield Oct 1995 A
5460728 Klomp et al. Oct 1995 A
5489370 Lomasney et al. Feb 1996 A
5503729 Elyanow et al. Apr 1996 A
5518626 Birbara et al. May 1996 A
5518627 Tomoi et al. May 1996 A
5536387 Hill et al. Jul 1996 A
5538611 Otowa Jul 1996 A
5538655 Fauteux et al. Jul 1996 A
5539002 Watanabe Jul 1996 A
5547551 Bahar et al. Aug 1996 A
5558753 Gallagher et al. Sep 1996 A
5580437 Trainham, III et al. Dec 1996 A
5584981 Turner et al. Dec 1996 A
5593563 Denoncourt et al. Jan 1997 A
5599614 Bahar et al. Feb 1997 A
5670053 Collentro et al. Sep 1997 A
5679228 Elyanow et al. Oct 1997 A
5679229 Goldstein et al. Oct 1997 A
5714521 Kedem et al. Feb 1998 A
RE35741 Oren et al. Mar 1998 E
5736023 Gallagher et al. Apr 1998 A
5759373 Terada et al. Jun 1998 A
5762774 Tessier Jun 1998 A
5766479 Collentro et al. Jun 1998 A
5788826 Nyberg Aug 1998 A
5804055 Coin et al. Sep 1998 A
5814197 Batchelder et al. Sep 1998 A
5837124 Su et al. Nov 1998 A
5858191 DiMascio et al. Jan 1999 A
5868915 Ganzi et al. Feb 1999 A
5891328 Goldstein Apr 1999 A
5925240 Wilkins et al. Jul 1999 A
5954935 Neumeister et al. Sep 1999 A
5961805 Terada et al. Oct 1999 A
5980716 Horinouchi et al. Nov 1999 A
6056878 Tessier et al. May 2000 A
6099716 Molter et al. Aug 2000 A
6103125 Kuepper Aug 2000 A
6126805 Batchelder et al. Oct 2000 A
RE36972 Baker et al. Nov 2000 E
6146524 Story Nov 2000 A
6149788 Tessier et al. Nov 2000 A
6187154 Yamaguchi et al. Feb 2001 B1
6187162 Mir Feb 2001 B1
6190528 Li et al. Feb 2001 B1
6190553 Lee Feb 2001 B1
6190558 Robbins Feb 2001 B1
6193869 Towe et al. Feb 2001 B1
6197174 Barber et al. Mar 2001 B1
6197189 Schwartz et al. Mar 2001 B1
6214204 Gadkaree et al. Apr 2001 B1
6228240 Terada et al. May 2001 B1
6235166 Towe et al. May 2001 B1
6248226 Shinmei et al. Jun 2001 B1
6254741 Stuart et al. Jul 2001 B1
6258278 Tonelli et al. Jul 2001 B1
6267891 Tonelli et al. Jul 2001 B1
6274019 Kuwata Aug 2001 B1
6284124 DiMascio et al. Sep 2001 B1
6284399 Oko et al. Sep 2001 B1
6296751 Mir Oct 2001 B1
6303037 Tamura et al. Oct 2001 B1
6375812 Leonida Apr 2002 B1
6402916 Sampson et al. Jun 2002 B1
6402917 Emery et al. Jun 2002 B1
6482304 Emery et al. Nov 2002 B1
6607647 Wilkins et al. Aug 2003 B2
6607668 Rela Aug 2003 B2
6627073 Hirota et al. Sep 2003 B2
6648307 Nelson et al. Nov 2003 B2
6649037 Liang et al. Nov 2003 B2
6758954 Liang et al. Jul 2004 B2
6783666 Takeda et al. Aug 2004 B2
6808608 Srinivasan et al. Oct 2004 B2
6824662 Liang et al. Nov 2004 B2
20010003329 Sugaya et al. Jun 2001 A1
20020092769 Garcia et al. Jul 2002 A1
20030080467 Andrews et al. May 2003 A1
20030098266 Shiue May 2003 A1
20030155243 Sferrazza Aug 2003 A1
20030201235 Chidambaran et al. Oct 2003 A1
20040079700 Wood et al. Apr 2004 A1
20050016932 Arba et al. Jan 2005 A1
20050103622 Jha et al. May 2005 A1
20050103630 Ganzi et al. May 2005 A1
20050103631 Freydina et al. May 2005 A1
20050103644 Wilkins et al. May 2005 A1
20050103717 Jha et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050103723 Wilkins et al. May 2005 A1
20050103724 Wilkins et al. May 2005 A1
20050109703 Newenhizen May 2005 A1
20060060532 Davis Mar 2006 A1
Foreign Referenced Citations (70)
Number Date Country
B-18629-92 Oct 1992 AU
2316012 Nov 2001 CA
1044411 Aug 1990 CN
1 201 055 Sep 1965 DE
3238280 Apr 1984 DE
4016000 Nov 1991 DE
4418812 Dec 1995 DE
199 42 347 Mar 2001 DE
0170895 Feb 1986 EP
0503589 Sep 1992 EP
0621072 Oct 1994 EP
0680932 Nov 1995 EP
0803474 Oct 1997 EP
0870533 Oct 1998 EP
1068901 Jan 2001 EP
1075868 Feb 2001 EP
1101790 May 2001 EP
1106241 Jun 2001 EP
1172145 Jan 2002 EP
1222954 Jul 2002 EP
1506941 Feb 2005 EP
1598318 Nov 2005 EP
776469 Jun 1957 GB
852272 Oct 1960 GB
876707 Sep 1961 GB
877239 Sep 1961 GB
880344 Oct 1961 GB
893051 Apr 1962 GB
942762 Nov 1963 GB
1048026 Nov 1966 GB
1137679 Dec 1968 GB
1 381 681 Jan 1975 GB
1448533 Sep 1976 GB
47 49424 Dec 1972 JP
54-5888 Jan 1979 JP
02 307514 Dec 1990 JP
07-155750 Jun 1995 JP
7-265865 Oct 1995 JP
09-253643 Sep 1997 JP
2001-79358 Mar 2001 JP
2001-79553 Mar 2001 JP
2001-104960 Apr 2001 JP
2001-113137 Apr 2001 JP
2001-113279 Apr 2001 JP
2001-113280 Apr 2001 JP
2001-121152 May 2001 JP
2005007347 Jan 2005 JP
2005007348 Jan 2005 JP
114 874 Aug 1999 RO
WO 9211089 Jul 1992 WO
WO 9817590 Apr 1994 WO
WO 9532052 Nov 1995 WO
WO 9532791 Dec 1995 WO
WO 9622162 Jul 1996 WO
WO 9725147 Jul 1997 WO
WO 9746491 Dec 1997 WO
WO 9746492 Dec 1997 WO
WO 9811987 Mar 1998 WO
WO 9820972 May 1998 WO
WO 9858727 Dec 1998 WO
WO 9939810 Aug 1999 WO
WO 0030749 Jun 2000 WO
WO 0064325 Nov 2000 WO
WO 0075082 Dec 2000 WO
WO 0149397 Jul 2001 WO
WO 0204357 Jan 2002 WO
WO 0214224 Feb 2002 WO
WO 0226629 Apr 2002 WO
WO 03086590 Oct 2003 WO
2009077992 Jun 2009 WO
Related Publications (1)
Number Date Country
20080105548 A1 May 2008 US
Provisional Applications (1)
Number Date Country
60329296 Oct 2001 US
Divisions (1)
Number Date Country
Parent 10272356 Oct 2002 US
Child 11742704 US