The present invention relates generally to an apparatus for forming a roll of contaminant removal tape and methods of forming rolls of contaminant removal tape. The present invention relates more particularly to an apparatus for forming a roll of contaminant removal tape including a turret assembly having a first winding cylinder, a first vacuum source providing vacuum to the first winding cylinder, and a web breaking assembly moveable between a first web breaking assembly position and a second web breaking assembly position, where the web breaking assembly includes a blade, where the blade is moveable between a first blade position and a second blade position, and methods of using such an apparatus to form rolls of contaminant removal tape.
A variety of lint removal devices and methods of making such lint removal devices are known. Lint removal devices remove lint and other small particles or contaminants, such as hair or threads, from a surface, such as clothing. One known form of a lint removal device includes lint removal tape, which is used while still on a roll to remove lint and other small particles from the surface. In roll form, lint removal tape is typically wound on a core with the adhesive side of the tape wound outwardly for use. The lint removal tape roll is rolled against the surface to remove the lint and other small particles or contaminants from the surface. The lint, small particles and other contaminants adhere to the adhesive side of the lint removal tape. When the outer wrap of the lint removal tape is saturated with the lint, small particles and other contaminants, the outer wrap of the tape is removed from the roll to discard it. A roll of lint removal tape is generally used on an applicator.
U.S. Pat. No. 5,940,921 (Wood et al.), “Applicator for a Coreless Tape Roll,” describes an applicator for a lint removal device that includes a handle portion connected to a tape-receiving portion. The tape-receiving portion includes a tape-receiving surface, an inner lip, a tapered outer lip, and grooves adjacent the lips. This patent also describes a roll of lint removal tape. In column 2, lines 41-43 of the patent, the lint removal tape is described as including a backing that could be made of backing material which is compostible or degradable, could be colored, could be printed, or could be of different surface textures or embossed, without providing any additional details as to which side is embossed.
U.S. Pat. No. 5,763,038 (Wood), “Progressively Perforated Tape Roll,” describes a tape including a backing layer and an adhesive layer formed on the backing layer. A plurality of lines of perforations extend across the tape to separate the tape into sheets. The sheets have progressively increasing lengths such that when the sheets are wound into a roll, each sheet is longer than the sheet underneath it. When in a roll, the outermost sheet covers all of the lines of perforations to reduce instances of the tape tearing in a downweb direction.
Other lint removal devices are described in U.S. Pat. No. 6,055,695, U.S. Pat. No. 6,127,014, U.S. Pat. No. 5,388,300, U.S. Pat. No. 5,027,465, U.S. Pat. No. 4,905,337, U.S. Pat. No. 4,422,201, and U.S. Pat. No. 3,906,578.
3M Company based in St. Paul, Minn. has sold lint rollers and roller refills in a variety of sizes under the brand name “3M” under part numbers 836, 837, and 833. These “regular size” lint rolls have typically included an inner diameter of 1.76 inches (4.47 cm), an outer diameter in the range of 1.8 inches (4.57 cm) to 2.5 inches (6.35 cm), and a width of 4 inches (10.16 cm). The mini lint rolls, sold under 3M brand, part number 836, typically have an inner diameter of 0.89 inches (2.26 cm), an outer diameter of 1.1 inches (2.79 cm), and a width of 3 inches (7.62 cm).
Helmac Products Corporation, based in Flint, Mich. has sold lint adhesive rollers and adhesive roller refills in a variety of sizes under the brand name “Evercare.” These lint rolls including the core have typically included an inner diameter of 1.5 inches (3.81 cm), an outer diameter in the range of 1.6 in. (4.06 cm) to 2.4 in. (6.1 cm), and a width of 4 inches (10.16 cm). Helmac Products Corporation also has sold mini-lint rolls, sold typically as a “Trial Size Roll”, which have typically included an inner diameter of 0.84 inches (2.13 cm), an outer diameter of 1.0 inches (2.54 cm), and a width of 3 inches (7.62 cm).
PCT publication WO 96/40578 A1 “Coreless Adhesive Tape Winding Mandrel and Method,” (Ogren et al.), describes a method and apparatus for forming a plurality coreless rolls of pressure sensitive adhesive tape, formed simultaneously, involving the use of a mandrel assemblies having a specific circumferential tape supporting segment thereon for winding tape. The circumferential tape supporting segments have a tape engaging surface portion that, in a radial orientation, is compressible yet sufficiently stiff to support the tape as it is successively wound about the mandrel to form a tape roll, and that is sufficiently pliant to permit ready axial removal of a wound tape roll from the mandrel. The innermost wrap of pressure sensitive adhesive tape about the mandrel is masked by an adhesive liner. Multiple rotatably driven winding mandrels are advanced through successive stations by a turret assembly. The functional aspects of the five mandrel stations include a mandrel loading position, a ready position, a winding position, a transfer position, and a mandrel unloading position. When winding of a roll upon a mandrel is nearly complete, the turret assembly advances the mandrel from the winding position to the transfer position. Once the leading edge of the adhesive liner is detected, an enveloper assembly pivots to envelop the web of tape around the mandrel at the winding position and a knife assembly, opposite the enveloper assembly, also pivots towards the web of tape material. The tape web is held in tension by the enveloper and knife assemblies, which are merged together around the winding mandrel. A knife blade extends from the knife assembly and severs the tape web at the leading edge of the adhesive liner, thus creating the innermost wrap of a new coreless roll of tape. System control is preferably achieved through the use of a microprocessor which is operatively coupled to the various motors and actuators.
There are also various patents describing apparatuses and method for forming tape rolls. For example, U.S. Pat. No. 5,885,391, “Tape Roll Liner/Tab Application Apparatus and Method,” (Cram et al.), describes a method and apparatus for longitudinally advancing a web having pressure sensitive adhesive on a first side and providing a supply of liner/tab strip. Then advancing the liner/tab strip from the supply laterally across the longitudinally advancing web adjacent the first, adhesive bearing side. The breaking the liner/tab strip to a length approximating the lateral width of the web, and urging a leading lateral edge portion of the cut liner/tab strip against the first adhesive bearing side of the advancing web to cause adherence to the adhesive side of the web. Finally urging the remainder of the cut liner/tab strip against the advancing web as the web carries the liner/tab strip away longitudinally. The method further comprises: periodically repeating the advancing, breaking and both urging steps as the web is advanced past the supply of liner/tab strip. Pressure sensitive adhesive tape wound with its adhesive side out requires no liner on innermost wrap to prevent adhesive from engaging winding mandrel, since non-adhesive side of tape faces winding mandrel. Thus, it is contemplated that no liner be provided for innermost wrap, in which instance adhesion by wrapping about winding mandrel would begin with second wrap.
U.S. Pat. No. 5,620,544, “Tape Roll Liner/Tab Application Apparatus and Method,” (Cram et al.), describes a process for sequentially forming a plurality of coreless rolls of pressure sensitive adhesive tape comprising the steps of: longitudinally advancing a web having first and second major surfaces, one surface thereof bearing pressure sensitive adhesive thereon, applying a liner/tab across a lateral width of the advancing web on the adhesive-bearing surface thereof, winding the advancing web about a mandrel member to define a tape roll, whereby an innermost wrap of the web for each tape roll includes an extent of the liner/tab sufficient to mask any exposed adhesive, and breaking the liner/tab and web laterally into two segments, a first segment of the liner/tab defining said extent for one tape roll, and a second segment of the liner/tab defining a mask for adhesive along at an outermost end portion of a web for a previously wound tape roll.
One aspect of the present invention provides an apparatus for forming a roll of contaminant removal tape. The apparatus for forming a roll of contaminant removal tape comprises: a turret assembly including a first winding cylinder; a first vacuum source providing vacuum to the first winding cylinder; and a web breaking assembly moveable between a first web breaking assembly position and a second web breaking assembly position, where the web breaking assembly includes a blade, where the blade is moveable between a first blade position and a second blade position.
In one preferred embodiment of the above apparatus, the first winding cylinder travels along a winding cylinder path, where the first web breaking assembly position is away from the winding cylinder path and the second web breaking assembly position is in the winding cylinder path, and where the first blade position is distant from a web path and the second blade position is in the web path. In one aspect of this embodiment, the web breaking assembly further comprises: a first actuator for moving the web breaking assembly between the first web breaking assembly position and the second web breaking assembly position; and a second actuator for moving the blade between the first blade position and the second blade position. In another aspect of this embodiment, the turret assembly further includes a second winding cylinder, and where the second winding cylinder travels along the winding cylinder path. In yet another aspect of this embodiment, the first winding cylinder includes a first end, a second end opposite the first end, a cylinder wall, and a plurality of holes in the cylinder wall, where the first end is attached to the turret assembly, where the first vacuum source provides vacuum to the first end of the first winding cylinder and to the plurality of holes; and where the apparatus further comprises a support arm assembly, where the support arm assembly is movable between a first position distant from the second end of the first winding cylinder and a second position to engage with the second end of the first winding cylinder.
In another aspect of the above embodiment, the apparatus includes a second vacuum source for providing vacuum to the second end of the first winding cylinder and to the plurality of holes. In yet another aspect of the above embodiment, the turret assembly further includes a second winding cylinder, and where the second winding cylinder travels along the winding cylinder path, where the support arm assembly includes an extension member for engaging with the second end of the first winding cylinder, where the extension member is movable between the first position distant from the second end of the second winding cylinder and the second position to mate with the second end of the second winding cylinder.
In another preferred embodiment of the above apparatus, the apparatus further comprises a web guide movable between a first web guide position and a second web guide position, where the first web guide position is away from the winding cylinder path and the second web guide position is in the winding cylinder path. In one aspect of this embodiment, the web guide is attached to the web breaking assembly, where the web guide and the web breaking assembly are moveable together between the first position and the second position. In another preferred embodiment of the above apparatus, the apparatus includes a length of contaminant removal tape, where the length of tape includes a first side and second side opposite the first side, where the second side includes a layer of adhesive, and the tape is wrapped around the first winding cylinder such that the layer of adhesive faces outwardly from the first winding cylinder.
The present invention provides an alternative apparatus for forming a roll of contaminant removal tape. This apparatus comprises: a turret assembly including a first winding cylinder, where the first winding cylinder includes a first end, a second end opposite the first end, a cylinder wall, and a plurality of holes in the cylinder wall, and where the first end is attached to the turret assembly; a first vacuum source, where the first vacuum source provides vacuum to the first end of the first winding cylinder and to the plurality of holes; and a support arm assembly where the support arm assembly is movable between a first position distant from the second end of the first winding cylinder and a second position to engage with the second end of the first winding cylinder.
In one preferred embodiment of the above apparatus, the apparatus includes a second vacuum source for providing vacuum to the second end of the first winding cylinder and to the plurality of holes. In another preferred embodiment of the above apparatus, the support arm assembly includes a extension member for engaging with the second end of the first winding cylinder, where the extension member is movable between the first position distant from the second end of the first winding cylinder and the second position to mate with the second end of the first winding cylinder. In another preferred embodiment of the above apparatus, the apparatus further comprises an actuator for moving the extension member between the first position and the second position.
In yet another preferred embodiment of the above apparatus, the apparatus further comprises a web breaking assembly moveable between a first web breaking assembly position and a second web breaking assembly position, where the web breaking assembly includes a blade, where the blade is moveable between a first blade position and a second blade position. In one aspect of this embodiment, the first winding cylinder travels along a winding cylinder path, where the first web breaking assembly position away from the winding cylinder path and the second web breaking assembly position is in the winding cylinder path, and where the first blade position is distant from a web path and the second blade position is in the web path. In another aspect of this embodiment, the apparatus further-comprises: a web guide movable between a first web guide position and a second web guide position, where the first web guide position is away from the winding cylinder path and the second web guide position is in the winding cylinder path. In yet another aspect of this embodiment, the web guide is attached to the web breaking assembly, where the web guide and the web breaking assembly are moveable together between the first position and the second position.
In another preferred embodiment of the above apparatus, the cylinder wall includes a first surface and a second surface opposite the first surface, where the second surface faces outwardly from the first winding cylinder, where the plurality of holes in the first winding cylinder have a first diameter in the first surface and a second diameter in the second surface, and where the second diameter is greater than the first diameter. In another preferred embodiment of the above apparatus, the apparatus includes a length of contaminant removal tape, where the length of tape includes a first side and second side opposite the first side, where the second side includes a layer of adhesive, and the tape is wrapped around the first winding cylinder such that the layer of adhesive faces outwardly from the first winding cylinder.
The present invention provides another alternative apparatus for forming a roll of contaminant removal tape. This apparatus comprises: a turret assembly including a first winding cylinder, where the first winding cylinder travels along a winding cylinder path; a web breaking assembly, and a web guide movable between a first web guide position and a second web guide position, where the first web guide position is away from the winding cylinder path and the second web guide position is in the winding cylinder path.
In one embodiment of the above apparatus, the web guide and the web breaking assembly are moveable together between the first position and the second position. In one aspect of this embodiment, the web guide is attached to the web breaking assembly. In another aspect of this embodiment, the web guide includes a roller for guiding the web between the web guide and the first winding cylinder after the winding cylinder has moved-from a first position to a second position along the winding cylinder path.
In another embodiment of the above apparatus, the web breaking assembly is moveable between a first web breaking assembly position and a second web breaking assembly position, where the web breaking assembly includes a blade, where the blade is moveable between a first blade position and a second blade position. In one aspect of this embodiment, the first winding cylinder travels along a winding cylinder path, where the first web breaking assembly position is away from the winding cylinder path and the second web breaking assembly position is in the winding cylinder path, and where the embodiment first blade position is distant from a web path and the second blade position is in the web path. In another of the above apparatus, the apparatus further comprises a first vacuum source and a second vacuum source, where the first winding cylinder includes a first end, a second end opposite the first end, a cylinder wall, and a plurality of holes in the cylinder wall, where the first end is attached to the turret assembly, where the first vacuum source provides vacuum to the first end of the first winding cylinder and to the plurality of holes, and where the second vacuum source provides vacuum to the second end of the first winding cylinder and to the plurality of holes; and where the apparatus further comprises a support arm assembly, where the support arm assembly is movable between a first position distant from the second end of the first winding cylinder and a second position to engage with the second end of the first winding cylinder.
In another embodiment of the above apparatus, the apparatus includes a length of contaminant removal tape, where the length of tape includes a first side and second side opposite the first side, where the second side includes a layer of adhesive, and the tape is wrapped around the first winding cylinder such that the layer of adhesive faces outwardly from the first winding cylinder.
The present invention provides yet another alternative apparatus for forming a roll of contaminant removal tape. This apparatus comprises: a turret assembly including a first winding cylinder and a second winding cylinder, where the first winding cylinder includes a first end, a second end opposite the first end, a cylinder wall, and a plurality of holes in the cylinder wall, where the first end of the second winding cylinder is attached to the turret assembly, where the second winding cylinder includes a first end, a second end opposite-the first end, a cylinder wall, and a plurality of holes in the cylinder wall, where the first end of the second winding cylinder is attached to the turret assembly; a first vacuum source providing vacuum to the first end of the first winding cylinder and to the plurality of the holes; a web breaking assembly moveable between a first web breaking assembly position and a second web breaking assembly position, where the web breaking assembly includes a blade, where the blade is moveable between a first blade position and a second blade position; a second vacuum source for providing vacuum to the second end of the first winding cylinder and to the plurality of holes; a support arm assembly, where the support arm assembly includes an extension member for engaging with the second end of the second winding cylinder, where the extension member is movable between a first position distant from the second end of the second winding cylinder and a second position to engage with the second end of the second winding cylinder to provide vacuum to the second end of the second winding cylinder and to provide mechanical support to the second end of the second winding cylinder; and a web guide movable between a first web guide position and a second web guide position, where the first web guide position is away from the winding cylinder path and the second web guide position is in the winding cylinder path, where the web guide is attached to the web breaking assembly, and where the web guide and the web breaking assembly are moveable together between the first position and the second position.
The present invention also provides a method of forming a roll of contaminant removal tape. This method comprises: a) winding a length of contaminant removal tape into a first roll about a first cylinder, where the first cylinder is movable between a first position and a second position along a cylinder path; b) providing a web breaking assembly linearly movable between a first position and a second position along a web breaking assembly path, where the web breaking assembly includes a blade linearly movable between a first blade position and a second blade position along blade path, where the first blade position is distant from the web and the second blade position is to break the web into a first length and a second length; c) moving the web breaking assembly from the first position in the cylinder path to the second position distant from the cylinder path; d) moving the first cylinder from the first position to the second position along the cylinder path; e) moving the web breaking assembly from the second position distant from the cylinder path to the first position in the cylinder path; f) providing a second cylinder, where the second cylinder is moveable between a first position and a second position along the cylinder path.
In one preferred embodiment of the above method, the method further comprises the steps of: g) contacting the length of tape about the second cylinder; and h) linearly moving the blade from the first blade position to a second blade position to break the web into a first length and a second length. One aspect of the above embodiment, the method, further comprises the steps of: i) winding the second length of tape into a second roll about the second cylinder; and j) removing the first roll of tape from the first cylinder. Another aspect of the above embodiment, steps (a)-(j) are repeated. In one preferred embodiment of the above, the length of contaminant removal tape includes a first side and second side opposite the first side, where the second side includes a layer of adhesive, and where step a) comprises winding the length of tape such that the layer of adhesive faces outwardly from the roll.
The present invention also provides an alternative method of forming a roll of contaminant removal tape. This method comprises: a) winding a length of contaminant removal tape into a first roll about a first cylinder, where the first cylinder includes a first end, a second end opposite the first end, a cylinder wall and a plurality of holes in the cylinder wall; b) providing a vacuum to the first end of the first cylinder and to the plurality of the holes; c) moving a support arm assembly from a first position distant from the second end of the first cylinder to a second position to engage with the second end of the first cylinder to support the second end of the first cylinder; d) thereafter breaking the length of tape with a web breaking assembly; and e) moving the support arm assembly from the second position to the first position.
In one preferred embodiment of the above method, the method comprises the step prior to step c) of: moving the first cylinder from a first position to a second position along a cylinder path and contacting the length of tape about a second cylinder. In another preferred embodiment of the above method, the method comprises the step prior to step d) of: providing a vacuum to the first end and second end of the first cylinder and to the plurality of holes. In another preferred embodiment of the above method, the length of tape includes a first side and second side opposite the first side, where the second side includes a layer of adhesive, and where step a) comprises winding the length of tape such that the layer of adhesive faces outwardly from the roll.
The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:
The present invention provides an apparatus for forming a roll of contaminant removal tape. A roll of contaminant removal tape or lint removal tape is designed to pick up contaminants, such as lint, hair, threads, dirt or any other matter from a surface, such as floors, ceilings, work surfaces, or clothing, to clean the surface. The roll of contaminant removal tape is wrapped such that the layer of adhesive is facing outwards, away from the center of the roll, to allow it to remove contaminants from the surface.
The apparatus of the present invention is particularly useful for making coreless rolls of contaminant removal tape for “mini-lint rollers,” which are smaller in size to allow a user to carry one in their purse or pocket. The rolls of removal tape on the mini lint rollers typically have significantly smaller inner and outer diameters in comparison to the rolls of removal tape on the “regular-sized lint rollers,” which for example are currently commercially available under the 3M brand from 3M Company based in St. Paul, Minn. For example, the typical regular-sized lint roller has a roll of removal tape with an inner diameter of 1.76 inches (4.47 cm), and an outer diameter in the range of 1.8 inches (4.57 cm) to 2.5 inches (6.35 cm). In comparison, the mini-lint roller has a roll of removal tape preferably with an inner diameter of 0.89 inches (2.26 cm), and an outer diameter of 1.1 inches (2.79 cm). The overall length of the rolls of removal tape is also different, when comparing the roll of the regular-sized lint rollers with the roll of a mini-linter roller. For example, the roll on a regular-sized lint roller has a length of four inches (10.16 cm), where the roll on a mini-lint roller has width of three inches (7.62 cm). Because the inner and outer diameters of the tape rolls on the mini-lint rollers are so small, for example approximately 1 inch, this presents certain difficulties in manufacturing such rolls. The apparatus of the present invention includes several different aspects and embodiments which independently and/or together assist in making rolls for mini-lint rollers, which is explained in more detail below. Alternatively, the apparatus 10 may be used to manufacture regular-sized lint rollers.
The apparatus includes a first plate 12a and a second plate 12b, which is preferably mounted perpendicular to the first plate 12a. The apparatus includes a turret assembly 14 attached to plate 12a. The turret assembly 14 includes a turret head 16 that rotates 360° in a plane parallel to the first plate 12a. The turret assembly 14 includes a motor (not shown) for rotating the turret head 16. The turret assembly 14 further includes two winding stations for winding rolls of contaminant removal tape, as explained in more detail below. The first winding station includes a first winding cylinder 18 or a winding mandrel 18. The second winding station includes a second winding cylinder 20 or a second winding mandrel 20. Both winding cylinders 18, 20 include a first end 22 and a second end 24 opposite the first end 22. The first end 22 of the winding cylinders 18, 20 is mounted perpendicular to the turret head 16. When the turret assembly 14 rotates, the winding cylinders rotate with it because they are attached to the turret assembly 14. Preferably, the winding cylinders 18, 20 are hollow and include a plurality of holes 28 through the winding cylinder wall 19 for providing vacuum to the roll of contaminant removal tape, as the web is being wrapped around the cylinder. The holes 28 in the winding cylinders 18, 20 are in fluid communication with the first end 22 and the second end 24 of the cylinders 18, 20 to allow a vacuum to be pulled through the holes 28. Preferably, the cylinder wall 19 includes a first surface and a second surface opposite the first surface, where the second surface faces outwardly from the winding cylinder 18, 20. More preferably, the holes 28 in the winding cylinders 18, 20 have a first diameter in the first surface and a second diameter in the second surface, where the second diameter is greater than the first diameter. In other words, the diameter of the holes 28 expands from the inside of the winding cylinder to the outside of the winding cylinder. This hole configuration assists in increasing the area of the vacuum without significantly increasing the flow of the vacuum. Both winding cylinders 18, 20 rotate independently about their respective axis. Each winding cylinder 18, 20 has a motor (not shown) for rotating the cylinders. Alternatively, the winding cylinders 18, 20 may be driven by a single motor. The apparatus also includes a vacuum source (not shown), such as a vacuum pump, for providing vacuum to the first end of the winding cylinders 18, 20. The vacuum pump may be a part of the turret assembly. However, this is not required.
The turret assembly 14 includes a vacuum assembly 78. The vacuum assembly 78 includes a vacuum box 80 mounted to the turret head 16. The vacuum box 80 includes a vacuum source (not shown), such as a vacuum pump. The vacuum box 80 includes a first side 81a and a second side 81b. Both sides 81a, 81b have a plurality of channels 82 for providing a vacuum for the web of tape between the first and second winding cylinders 18, 20, as explained in more detail below. When the turret assembly 14 rotates, the vacuum assembly 78 rotates with it because it is mounted to the turret heat 16.
The apparatus 10 includes a web breaking assembly 40 mounted to the second plate 12b. The web breaking assembly breaks the web of removal material, as explained in more detail below. The web breaking assembly 40 includes an arm 42 that has a first end 44 and a second end 46 opposite the first end 44. The second end 46 of the arm 42 is mounted to a slide 50. Slide 50 moves relative to rail 52 to allow the web breaking assembly to move between a first position, as illustrated in
The apparatus includes a roll ejector assembly 32 mounted to the plate 12a above the turret assembly 14. The roll ejector assembly 32 will assist in removing the rolls of contaminant removal tape from the winding cylinders 18, 20, as explained in more detail in the discussion related to FIG. 7. The roll ejector assembly 32 includes an ejector arm 34 that pivots about pivot 35 and contacts a disk 30. Each of the winding cylinders 18, 20 includes a disk 30 that is slideably engaged with its respective cylinder 18, 20. The ejector arm 34 includes a hook on one end that mates with the section of the winding cylinders 18, 20 between the turret head 16 and the disk 30. The ejector arm 34 also includes a spring to keep it biased in the position illustrated in FIG. 1. The roll ejector assembly 32 includes a rod-less air cylinder 36 for pivoting the ejector arm 34 about its pivot. One example of a suitable rod-less air cylinder is commercially available under brand name Bimba from John Henry Foster based in St. Louis Mo.
The apparatus 10 includes a series of driven and idle rollers for providing a web of contaminant removal material to the turret assembly 14. All the rollers are attached to the first plate 12a. The first roller 86 is for receiving a large roll 94 of contaminant removal material. The apparatus also includes a second roller 88, third roller 90, a fourth roller 92, a fifth roller 142, a sixth roller 144, and a seventh roller 146. The third roller 90 is a driven roller. A motor (not shown) rotates the driven roller 90 and the driven roller 90 pulls the web 202 from the roll 94 of contaminant removal material.
Preferably, the apparatus 10 includes web perforation assembly 100. The web perforation assembly 100 cuts the web in the transverse direction with a serrated blade 112 to form perforations in the web. The perforation is a series of holes or slits in the web, preferably along a straight line. Alternatively, the web perforation assembly 100 may form a breaking line in the web 202, such as forming a scored or partially scored line in the web 202, where the web 202 is cut partially through the thickness of the web 202, but the web, 202 remains in tact until it is broken into two separate pieces by the web breaking assembly 40. The web perforation assembly 100 includes a driven roller 110 and a driven roller 114. The roller 110 includes a plurality of serrated blades 112 located equidistant around the roller 110. Roller 110 is illustrated as including three serrated blades 112. However, roller 110 may include any number of blades 112 or only one blade 112. The web 202 of contaminant removal material travels between roller 110 and roller 114. When a perforation line in the web is desired, the roller 110 rotates to bring one of the serrated blades 112 into contact with the web 202 traveling around the roller 114. The roller 114 provides a back support for the serrated blade 112 as it cuts through the web. Preferably, the roller 110 and 114 travel at the same speed when the perforation line is formed, so as to not rip or stretch the web 202 as to travels between the two rollers 110, 114.
The apparatus 10 includes a controller (not shown), which sends signals to all of the driven rollers, assemblies, and actuators in the apparatus. An example of a suitable controller is commercially available under the brand name Allen Bradley from Northland Electric Company based in St. Paul, Minn. As an example, the controller sends a signal to roller 110 when to rotate based on the desired distance between adjacent lines of perforation in the web. The perforations in the web 202 of the contaminant removal material may be equidistant from each other along the web. Alternatively, the perforations in the web 202 may be spaced such that the sections of the web between adjacent perforations may be increasing or decreasing in length. Preferably, the perforations in the web 202 are spaced such that the length of the sections of web between the perforations is increasing to provide a roll of lint removal tape as described in U.S. Pat. No. 5,763,038 (Wood), “Progressively Perforated Tape Roll,” described in the Background section.
The apparatus 10 includes a roller assembly 120 attached to the first plate 12a. The roller assembly 120 transports the web 202 from the seventh roller 146 to the winding cylinders 18, 20. The roller assembly 120 includes a triangle-shaped plate 122 that pivots about pivot 126. The roller assembly 120 also includes a first drive roller 124, an idler roller 128, and a second drive roller 130. A motor (not shown) rotates the first and second drive rollers 124, 130. Preferably, the roller assembly 120 includes a web slitter 134, which includes a plurality of blades for cutting the web in the longitudinal direction just prior to wrapping the web 202 around the winding cylinders 18, 20. By cutting or slitting the web longitudinally into a plurality of lengths of web 202, it is possible to form a plurality of rolls around the winding cylinders 18, 20 at the same time.
The web 202 of contaminant removal material moves along the following web path 200 within apparatus 10: a) from the first roller 86 to the second roller 88; b) then to the third roller 90; c) then to the fourth roller 92; d) then to the fifth roller 142; e) then to the sixth roller 144; f) then between roller 110 and roller 114 of the web perforation assembly 100; g) then to the seventh roller 146; h) then to the first driver roller 124 and the idler roller 128 of the roller assembly 120; i) then between the web slitter 134 and the drive roller 130 of the roller assembly 120, where the web is cut into a plurality of lengths of web and j) then around the first winding cylinder 18. While the apparatus 10 operates, the web 202 may move in, the range of 40 feet/minute to 150 feet/minute, when making rolls for mini-lint rollers. The web 202 may move in the range of 100 feet/minute to 350 feet/minute, when making rolls for regular sized lint rollers.
While first winding cylinder 18 is winding tape about its axis, the ejector arm 34 of the roll ejector assembly 32 is biased by a spring to hold the first end 22 of the second winding cylinder 20. The web breaking assembly 40 is stationary in its first position. The blade 56 is also stationary in its first position. Also during this time, the controller sends to periodic signals to the web perforation assembly 100 to form perforations in the web 202 with the serrated blades 112 of the roller 110.
While the web 202 is being wrapped around the first cylinder 18, the web breaking assembly is in its first position, which is outside the path C that the cylinders 18, 20 follow when the turret assembly 14 rotates. Once a predetermined number of wraps are around the first cylinder 18, the controller sends a signal to the fourth actuator 132 to pivot the roller assembly 120 clockwise toward the plate 12b, to move it out of the cylinder path into a second position, as illustrated in FIG. 3. Next, the controller sends a signal to the motor that rotates the turret assembly 14. The turret assembly 14 rotates counter clockwise for approximately 180°. This is to place the first winding cylinder 18 in the same position that was previously occupied by the second winding cylinder 20 and the second winding cylinder 20 in the same position that was previously occupied by the first winding cylinder 18 (as illustrated in FIG. 4). As the turret assembly 14 rotates, the first winding cylinder 18 continues to rotate about its axis and wind web around the cylinder. As the turret assembly 14 rotates, the winding cylinders 18, 20 follow a winding cylinder path designated by dotted line C. As the second winding cylinder 20 moves along this path, the ejector arm 34 pivots clockwise about pivot 35, as shown in phantom lines. After the second winding cylinder 20 has moved far enough along the path C to no longer contact the ejector arm 34, the spring (not shown) pulls the ejector arm back to its original position (shown in solid lines) ready to receive the first winding cylinder 18 carrying the rolls 5 of contaminant removal tape.
The support arm assembly 60 serves two independent purposes. The first purpose of the support arm assembly 60 is to provide mechanical support to the second end 24 of the winding cylinder 18, 20, while the web breaking mechanism 40 breaks or separates the web into two separate sections. When the extension member 70 is properly mated with the second end 24 of the first winding cylinder, the winding cylinder 18 is then mechanically supported on both ends 22, 24. The second purpose is to provide another vacuum source to the winding cylinders 18, 20. The second end 24 of the winding cylinders 18, 20 and the free end of the extension member 70 are chamfered to mate together tightly, such that the vacuum is provided into the winding cylinder without loosing much of the vacuum. The controller sends a signal to the third actuator 68 to move the extension member from a first position to a second position to engage with the second end of the winding cylinder just before the web breaking assembly moves from its first position to its second position to break the web.
The support arm assembly 60 is particularly useful in the apparatus for making rolls of contaminant removal tape for mini-lint rollers, which typically have inner diameters of approximately 0.89 inches (2.26 cm) and outer diameters of approximately inches. Because the inner diameters of the rolls are typically less than one inch, the winding cylinders are also less than one inch in diameter. If the winding cylinders 18, 20 are not mechanically supported at both ends 22,24, then the winding cylinders have a tendency to start to oscillate about the end 22 that is fixed to the turret head 16 after the web breaking assembly 40 breaks the web. If the winding cylinders were to oscillate as they rotate, it is possible that the web might have wrinkles or be crooked as it is wound around the cylinder. By providing mechanical support at both ends 22, 24 of the cylinder, the second length 214 of the web 202 may contact the cylinder without causing the cylinder to move. Additionally, the support arm assembly 60 includes an additional vacuum source to provide vacuum into the winding cylinders and through the holes 28. This additional vacuum source, in combination with the vacuum source on the turret assembly 14, increases the chances that the second length 214 will be drawn to the winding cylinder to start winding the web around the winding cylinder.
After the third actuator 68 moves the extension member 70 of the support arm assembly to mate with the second end 24 of the first winding cylinder 18 to provide both mechanical support and to provide an additional vacuum source to the winding cylinder, the blade 56 of-the web breaking apparatus moves from a first position to a second position along the direction of the arrow B (shown in
When the term “breaking” is used herein, including the claims, it shall mean any method of separating the web into two sections or pieces, such as cutting a continuous web or by applying a force along a previously weakened, prepared, scored or perforation line to separate the sections on either side of the scored or perforation line. The sinusoidal-shaped surface of the blade 56 is arranged such that the crests of the surface approximately contact the middle of the perforation line in each of individual portions of the web 202. Once the crest of the blade surface breaks through the middle of the perforation line, the rest of the perforation line then separates the web into two separate pieces.
After the web breaking assembly 40 breaks the web along a desired breaking or perforation line, it forms a first length 210 of web 202 with a trailing edge 212 and the second length 214 of web 202 with a leading edge 216. The first length 210 will continue to move upward past the vacuum assembly 78 and be wrapped around the first cylinder 18. The vacuum assembly 78 continues to provide resistance on the first length 210 of web 202, as it is traveling past the channels 82 in the vacuum box 80. The vacuum assembly 78 controls the travel of the free end of the first length 210 until it is finished wrapping around the first winding cylinder 18. Without the vacuum assembly providing resistance on the first length 210 of web 202, the first length 210 may snap upwards towards the first winding cylinder after the web breaking assembly 40 breaks the web into two lengths because the web 202 is under tension. Meanwhile, the leading edge 216 of the second length 214 will be pulled down, as indicated by arrow D, by the vacuum force coming through the holes in the winding cylinder to start wrapping around the second cylinder 20. Meanwhile, the second winding cylinder 20 is rotating counter clockwise, winding the second length of web 202 around the winding cylinder. The process described above with regard to the first winding cylinder 18 is then repeated with respect to the second winding cylinder 20 to form new rolls of contaminant removal tape about the second winding cylinder 20.
The web breaking assembly 40 and the support arm assembly 60 are designed to preferably work together, however both assemblies may work independently and the apparatus is not required to have both assemblies 40, 60.
The handle portion 152 can have any shape and can be contoured to ergonomically fit a hand. The handle portion 152 has a free end 156 and a connecting end 158. The free end 156 can have an opening 160 to permit hanging the applicator 150 on a hook for storage.
The tape-receiving portion 154 also includes a free end 162 and a connecting end 164. The connecting end 158 of the handle portion 152 is connected to the connecting end 164 of the tape-receiving portion 154. The tape-receiving portion 154 also includes a cylindrical tape receiving surface 166, which extends between the free end 162 and the connecting end 164. The tape-receiving surface 166 extends for the entire width of a tape roll 5 and provides support along substantially the entire surface of the tape roll. Preferably, there are no openings, gaps, or notches on which a tape roll could catch or snag to damage the roll. However, the tape-receiving surface 166 need not be cylindrical. It could be formed of planar or curved sides meeting in edges that assist in holding the tape roll 5 in position.
An inner lip 168 is adjacent the connecting end 164, and an outer lip 170 adjacent the free end 162 on the tape-receiving portion 154. Both lips 168, 170 extend radially beyond the tape-receiving surface 166.
The outer lip 170 has a tapered portion 172 on the side facing the free end 162 of the tape-receiving portion 154. The taper is in a direction in which the diameter increases from the free end toward the connecting end. This facilitates applying a roll on the applicator. The tapered portion can be at an angle of from 5° to 15° to a line parallel to the tape-receiving surface 166. This taper permits a tape roll 5 to be applied over the outer lip 170 without damaging the inner wraps of tape and ruining the tape roll.
The outer lip 170 can be perpendicular to the tape-receiving portion 154 on the side 174 facing the handle portion 152. After a tape roll 5 traverses over the outer lip 170, it is in place on the tape-receiving surface 166.
If the tape roll 5 is coreless and is stretchable, it can be stretched over the slightly oversized and tapered outer lip 170, which can optionally be compressible and flexible. In one embodiment of the invention, maximum diameter of the outer lip is more than 5% bigger than the diameter of the tape-receiving portion; the inner diameter of the tape roll 5 is bigger than the diameter of the tape-receiving portion 154 (which must not be too big to permit the tape roll 5 to rotate) and smaller than the maximum diameter of the outer lip 170. Once the roll 10 is in place, the tape recovers to its original size and resides in the recessed area of the tape-receiving surface 166 (between the inner lip 168 and the outer lip 170) which is slightly oversized to allow seating of the roll 10 of tape 208.
The inner and outer lips have grooves 176, 178 in the tape-receiving surface 166 to hold the tape roll 5 in place, so that the tape roll 5 cannot be removed except by dispensing the total roll, that is all of the sheets of a coreless roll (or compressing the outer lip 170). The grooves 176, 178 extend completely around the tape-receiving surface 166 and prevent the tape roll 5 from bending upward over the respective inner and outer lips 168, 170. The grooves cause the tape roll 5 to bend into, the groove when forced toward the lips 168, 170 and retains the tape 208 in proper alignment on the tape-receiving surface 166. Typically, up to eight layers of tape would be retained by the grooves 176, 178.
The roll 5 of contaminant removal tape 208 is not illustrated as including a core or any support material. However, roll 5 may optionally include a core, where the multiple wraps of contaminant removal tape 208 would be wound about the core. Roll 5 may include an optional liner interposed between multiple wraps of tape 208.
The contaminant removal tape 208 is illustrated as having the layer of adhesive coated across the entire width of the contaminant removal tape 208. Alternatively, the tape 208 may include one or any number of non-adhesive zones. These non-adhesive zones would help the user separate the outer wrap of tape 208 from the roll 5. A first non-adhesive zone could run along the first edge of the length of the contaminant removal tape 208. A second non-adhesive zone could run along the second edge of the length of the contaminant removal tape 208, opposite the first non-adhesive zone. Both non-adhesive zones could run along the length of the contaminant removal tape 208 opposite each other with the layer of adhesive 206 located in between. The non-adhesive zones could be first adhesive coated, along with the rest of the tape, and then detackified by using waxes, lacquers, or inks, for example. Alternatively, the first and second non-adhesive zones could be left uncoated-by adhesive.
The present invention has now been described with reference to several embodiments thereof. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. All patents and patent applications cited herein are hereby incorporated by reference. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the exact details and structures described herein, but rather by the structures described by the language of the claims, and the equivalents of those structures.
Number | Name | Date | Kind |
---|---|---|---|
3127122 | Roshkind | Mar 1964 | A |
3549097 | Seigh | Dec 1970 | A |
3844501 | Spencer | Oct 1974 | A |
3899075 | Hall et al. | Aug 1975 | A |
3906578 | Huber | Sep 1975 | A |
4422201 | McKay | Dec 1983 | A |
4905337 | McKay | Mar 1990 | A |
5027465 | McKay | Jul 1991 | A |
5388300 | Hickey | Feb 1995 | A |
5620544 | Cram et al. | Apr 1997 | A |
5763038 | Wood | Jun 1998 | A |
5878457 | Cox et al. | Mar 1999 | A |
5885391 | Cram et al. | Mar 1999 | A |
5934602 | Jendroska et al. | Aug 1999 | A |
5940921 | Wood et al. | Aug 1999 | A |
6055695 | McKay, Jr. | May 2000 | A |
6127014 | McKay, Jr. | Oct 2000 | A |
6270034 | Kury et al. | Aug 2001 | B1 |
6308908 | Marchante | Oct 2001 | B1 |
20010035474 | Kury et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
1048597 | Nov 2000 | EP |
2 320 886 | Mar 1977 | FR |
WO 9640578 | Dec 1996 | WO |
WO-01146051 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030226636 A1 | Dec 2003 | US |