The present invention is related to riveting and in particular to forming riveted pivot joints including a desired amount of clearance.
It is common in manufacturing to form a joint in which a rivet serves the dual purposes of both fastening two or more parts together and acting as a pivot shaft, as in pliers joints, scissors joints, wire cutters, or various types of pinions. Rivet tension or clearance in such a joint is a factor in determining the amount of friction between two or more pivotally interconnected members. In a joint in a tool such as pliers, it is usually desired to have two or more members in pivotal contact with one another, but not held so tightly together that friction interferes with their use, nor with so much clearance that the parts of a tool feel loose or sloppy with respect to each other. In the case of scissors or wire cutters, looseness may detract from the effectiveness of the tool in its primary cutting function. Such a tool with a loose or sloppy rivet joint is commonly perceived as having low quality.
The most widely used method of controlling the amount of tension or clearance in rivet joints, particularly in tools whose parts pivot with respect to each other, is manual adjustment. That is, after a rivet joint has been formed by machinery, hand tools are used to tighten or loosen the joint as necessary. This often results in inconsistent quality of pivot joints or imperfections in the appearance of a rivet head.
What is needed, therefore, is an improved method and apparatus for automatically forming rivets to form joints having a very small, but accurately established, amount of clearance between the parts riveted together, so that the parts are pivotally movable with respect to one another, with neither excessive friction nor excessive clearance, and without the need for manual adjustment.
The present invention provides a method and apparatus for mechanically forming a rivet in a riveted pivot joint that interconnects a group of parts and reliably provides a desired amount of clearance despite variations in the total thickness of parts being joined.
In accordance with the method of the present invention, a set of parts to be riveted together is clamped together and supported by a parts clamp that moves the set of parts and a rivet held in an aligned set of rivet holes in the parts to a position in which a preformed first head of the rivet is supported by a rivet support anvil. An initial condition or preliminary position of the parts and the rivet with respect to the rivet support anvil is thereby established. Thereafter, a parts support anvil is adjusted with respect to the rivet support anvil to provide the desired amount of clearance in the riveted joint. The opposite end of the rivet is then upset to form a second head, while the rivet support anvil supports the preformed first head of the rivet independently from the parts support anvil.
The method may include a step of moving the parts support anvil a predetermined distance from initial or preliminary position with respect to the rivet support anvil.
In the method of the present invention, establishing the initial condition or preliminary position of the parts support anvil and rivet support anvil with respect to each other, with the parts and rivet being urged against the rivet support anvil, compensates automatically for the actual dimensions of the rivet and the parts being interconnected, and thus compensates for slight manufacturing variations in the parts, in order to provide a joint having the required amount of clearance. It should be understood that the, desired or required amount of clearance may be zero clearance, and that during the process of forming a rivet the parts being interconnected may be compressed, where the desired or required clearance is an interference or negative clearance resulting in tension in the rivet when the joint has been completed.
The present invention also provides apparatus for forming a rivet joint according to the method of the invention, the apparatus including a parts support anvil, a parts clamp, a rivet support anvil capable of supporting a first or preformed head of a rivet located in a set of aligned rivet holes through the parts to be riveted together, and a mechanism associated with the parts support anvil, arranged to move the parts support anvil precisely and to hold it in an adjusted position to cause it to support the parts relative to the rivet support anvil so that when a second rivet head is formed on the opposite end of the rivet the rivet joint will have the desired amount of clearance.
Apparatus which is a preferred embodiment of the invention includes a mechanism to hold the parts clamp and parts support anvil in an initial condition, and a mechanism for adjusting the relationship between the rivet support anvil and the parts support anvil from the initial condition to a condition in which formation of the second head of the rivet provides the required clearance.
In a preferred embodiment of the invention a set of arched leaf springs support the parts support anvil, and its position is adjusted by pressing on the leaf springs to straighten them somewhat and thus elongate them to move the parts support anvil.
In one preferred embodiment of the invention a hydraulic piston and cylinder assembly is used to straighten the leaf springs and to hold them in a required position.
In one preferred embodiment of the invention a sensitive transducer is used to detect and measure movement of the parts support anvil and electrically controlled valves are operated in response to signals produced by the transducer to control movement of the parts support anvil.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.
Referring now to
A rivet support anvil 32 includes a working face 33 and a generally cylindrical main body 34 that extends downwardly from a generally horizontal upper member 36 of the supporting structure 22. A parts support anvil 38 is disposed slidably on the generally cylindrical main body 34 of the rivet support anvil 32 and is moveable precisely with respect to the supporting structure 22, and thus with respect to the rivet support anvil 32.
The parts clamp 30 includes a parts support jig 39 having a clamping face 40 and defining a riveting opening 42 extending through the clamping face 40. The parts clamp 30 is movable with respect to its foundation 28 and the frame 22 by a motor arrangement such as pneumatic cylinder-and-piston assemblies 44, of which the cylinders are mounted on the foundation 28, while the pistons are connected to the parts clamp 30 to move it toward or away from the parts support anvil 38. A table 46 surrounds the clamping face 40 and is supported relative to the supporting structure 22 where it is aligned with the clamping face 40 when the parts clamp 30 is in a lowered position as shown in
A gauge block 52 is carried on the parts clamp 30, and a position sensor 54 is supported on a mounting bracket 56 carried on the supporting-structure 22, so that the position sensor 54 is fixed relative to the position of the rivet support anvil. The position sensor 54 includes a spring-loaded plunger 58 whose outer end rests on the gauge block 52 to determine the position of the parts clamp 30 during the process of forming a riveted joint, shown in
The parts support anvil 38 is movable in the directions indicated by the arrow 60 in
In a preferred embodiment of the invention, as shown in
A movable parts support anvil carrying body 70 is fitted slidably on the main body 34 of the rivet support anvil 32, whose outer surface guides movement of said anvil carrying body 70. The movable body 70 is urged along the main body 34 of the rivet support anvil 32 toward the main support body 64, and thus away from the parts clamp 30, by a set of coil springs 72 extending in tension between the main support body 64 and the movable body 70.
The main support body 64 defines a pair of similar cavities 76 defined by parallel side walls 78 that are located on opposite sides of the main body of the rivet support anvil 32. Guide apertures 80 are defined by and located correspondingly in each side wall 78 of each cavity 76.
Within each spring cavity 76, as may be seen best in
A compression spring 86 is captured in a pocket 87 defined within each spring cavity 76 and presses against a respective backing plate 88, continuously urging the leaf springs 82 of each group toward the inner wall 90 of each of the spring cavities 76, adjacent to the main body 34 of the rivet support anvil 32. The ends of the leaf springs 82 opposite the compression spring 86 are located within pockets 92 aligned generally with the spring cavities 76 and defined within the movable parts support anvil carrying body 70.
A respective hydraulic cylinder-and-piston assembly 94 is mounted in a corresponding opening 95 on each end of the main support body 64. A presser head 96 is mounted on the piston rod of each cylinder-and-piston assembly 94 and presses against the respective backing plate 88. A pair of guide rollers 98 are mounted rotatably on a roller shaft 100 extending through each presser head 96. The guide rollers 98 are disposed within the respective guide apertures 80 and support the piston rods of the hydraulic cylinder-and-piston assemblies 94, keeping them aligned with the cylinders. As the piston rod of each cylinder-and-piston assembly 94 extends from the cylinder the presser head 96 pushes the respective backing plate 88 against the set of leaf springs 82, tending to straighten the leaf springs 82. As the leaf springs 82 are straightened they are also elongated, and thus force the movable body 70 away from the main support body 64. Using several springs thus arranged provides required column strength along the length of the springs to support the parts support anvil 38 yet allows the set of leaf springs to be partially straightened using a reasonably small force from the cylinder-and-piston assemblies 94.
The opposite ends of the leaf springs 82 bear upon the opposing, parallel interior surfaces 102 and 103 of the main support body 64 and the movable body 70, so that straightening the leaf springs 82 moves the movable body 70 away from the upper member 36 of the supporting structure 22, along the main body 34 of the rivet support anvil 32, overcoming the tension in the coil springs 72. As the movable body 70 is moved by straightening the leaf springs 82, the face, or supporting surface 105 of the parts support anvil 38 is moved toward the parts clamp 30 with respect to the supporting structure 22 and thus with respect to the rivet support anvil 32. Conversely, when the leaf springs 82 are allowed to elastically resume a more curved configuration the parts support anvil 38 is retracted by the coil springs 72.
It will be understood that other types of motors could also be used instead of the hydraulic cylinder-and-piston assemblies 94, although perhaps not to the same degree of precision. For example, screws driven by electric stepping motors (not shown) might also be utilized to move the backing plates 88 against the respective sets of leaf springs 82 to control the position of the parts support anvil 38.
In order to control the operation of the mechanism shown in
A supply of air under pressure, such as a 100 psi air supply, is provided through an appropriate filter 108 and a main cutoff valve 110 to a main supply conduit 112. A precision pressure regulator 114 provides air from the conduit 112 to a solenoid valve 118, connected to the controller 104 by an electrical conductor 119, to control the cylinder-and-piston assemblies 44 that move the parts clamp 30. An electrical conductor set 117 of one or more conductors, as required, interconnects the position sensor 54 with the controller 104.
A pressure regulator 116 provides a supply of air under pressure to a solenoid valve 120, connected to the controller 104 by an electrical conductor 121, to control the supply of air to the rivet forming machine 26 to extend and retract its forming head and to cause it to form a second head on a rivet.
The main air supply conduit 112 is also connected to a solenoid valve 122 that in a first condition provides air under pressure to a pneumatic cylinder-and-piston assembly 124, through a pressure regulating valve 126 and a flow regulating valve 128. An electrical conductor 123 interconnects the solenoid valve 122 with the controller 104. When the solenoid valve 122 is in a second condition the pressure regulating valve 126 instead provides air at a similarly regulated pressure through a conduit 129 to an accumulator 130, thus providing pressure to urge hydraulic fluid through a conduit 131 to the piston rod end of each of the hydraulic cylinder-and-piston assemblies 94, to retract the piston rods and presser heads 96 away from the backing plates 88.
The piston rod of the cylinder-and-piston assembly 124 is connected directly to the piston rod of a hydraulic cylinder-and-piston assembly 132, so that extension of the piston rod from the cylinder-and-piston assembly 124 drives the piston of the cylinder-and-piston assembly 132 into the cylinder. This expels hydraulic fluid from the cylinder through an electrically controlled hydraulic valve 134, connected to the controller 104 electrically by a conductor 135, and thence through a hydraulic fluid conduit 136 to each of the hydraulic cylinder-and-piston assemblies 94. The piston rods then extend from the cylinders and partially straighten the sets of leaf springs 82 and thus move the parts support anvil 38 towards the parts clamp 30.
The hydraulic conduit 136 includes a bleed valve 138 arranged to eliminate any gas from within the hydraulic cylinder-and-piston assemblies 94 and the conduit 136. Connected to the conduit 136 in conjunction with the bleed valve 138 is a fluid reservoir 139. When the electrically controlled valve or solenoid 134 is closed the piston rods of the cylinder-and-piston assemblies 94 will remain properly extended and substantially immovable, supported by the substantially incompressible liquid hydraulic fluid contained in the cylinders and in the conduits 136.
The pneumatic cylinder-and-piston assembly 124 is of a larger diameter, and thus has a larger displacement for the same distance of piston travel than does the hydraulic cylinder-and-piston assembly 132. Thus, when the solenoid valve 122 provides air under pressure through the flow regulating valve 128 to the cylinder-and-piston assembly 124 the resultant movement of the interconnected piston rods of the cylinder-and-piston assemblies 124 and 132 delivers hydraulic fluid to the cylinder-and-piston assemblies 94 at a pressure sufficient to overcome the back pressure provided from the accumulator 130 and to move the pistons with ample force to move the parts support anvil 38 as required, and at a rate regulated by the flow control valve 128. The bore of the cylinder-and-piston assemblies 94 is large enough to provide sufficient force to overcome the elastic restorative forces of the springs 82 and 72 and forces from the parts clamp 30 acting through parts being joined and through the leaf springs 82, and to withstand a component of the forces resulting from forming a second rivet head.
The main controller 104 may be, for example, a commercially available programmable controller having the ability to establish a timing sequence and to receive and respond to electrical signals from a transducer such as the sensor 54, and to provide control signals to operate several external devices such as the solenoid valves 118, 120, 122, and 134, and a device such as the rivet forming machine 26. Such a main controller 104 should also be capable of receiving individual control signals from operational control switches (not shown) to accomplish manual, rather than automatic, control of the riveting machine 20. One such device which has proved satisfactory for controlling such a riveting machine is available from the Mitsubishi Corporation as its Series FX 2N programmable controller.
Referring now to FIGS. 5 and 7–11, a set of parts such as a channel-shaped handle 140 and a pair of jaws 142 are to be riveted together. The parts are placed together properly aligned with one another, and a rivet 144 is inserted through a corresponding set of aligned bores 146, 148 of the correct diameter. For assembly of the tool shown in
Although not shown as such herein, the support jig 39 may be movable together with a portion of the table 46 so that the set of parts may be placed upon the support jig 39 at a position spaced apart from the location of the rivet support anvil and parts clamp. Once the set of parts and the rivet 144 are properly positioned in the support jig 39, the support jig 39 is moved, if necessary, into the position shown in
The appropriate signal is then provided by the controller 104 to the solenoid valve 118 to extend the cylinder-and-piston assembly 44 to raise the parts clamp 30, and thus to raise the set of parts and the rivet 144 toward the working face 33 of the rivet support anvil 32. As the parts clamp 30 is raised, the gauge block 52 is brought into contact with the end of the plunger 58 of the position sensor 54, which then provides an electrical signal on the conductor set 117 indicating a change of position to the controller 104. When the preformed head 154 of the rivet 144 encounters the support face of the rivet support anvil 32 any clearance in the set of parts, or between the upper surface of the handle 140 and the preformed head 154 of the rivet 144, will be eliminated to the extent possible by the force of the pneumatic cylinder-and-piston assemblies 44 of the parts clamp 30, and the support surface 40 of the parts clamp 30 will then stop moving toward the rivet support anvil.
The air pressure provided to the cylinder-and-piston assemblies 44 by the pressure regulator 114 is preferably controlled to limit the force exerted by the parts clamp 30 to be small enough not to deform parts to be fastened together. The rate of flow of the air to the cylinder-and-piston assemblies 44 is also controlled to limit the speed of movement of the parts clamp 30. Other motors, also arranged to move at controlled speeds and to exert controlled force, might also be used instead. These might include hydraulic cylinder-and-piston assemblies or ball screw arrangements driven by electric or pneumatic motors with appropriate controls, provided that the arrangement includes a way for the parts clamp 30 to be moved resiliently by the parts support anvil 38 acting through a set of parts to be riveted.
When the controller 104 detects no further change in the signal from the position sensor 54 for a certain amount of time, indicating that the parts clamp 30 has moved as far as possible toward the rivet support anvil 32, the controller 104 sends an electrical signal to operate the solenoid valve 122 to direct air into the cylinder-and-piston assembly 124. At this point in the operation of the riveting machine 20 the solenoid-operated hydraulic valve 134 is open, and a flow of hydraulic fluid is forced from the cylinder-and-piston assembly 132 along the hydraulic conduit 136, causing the hydraulic cylinder-and-piston assemblies 94 to extend their piston rods, straightening the leaf springs 82 and thus moving the parts support anvil 38 toward the handle 140.
The parts support anvil 38 is designed to fit around the preformed head 154 of the rivet 144 and to press upon the upper surface of the handle 140 without bearing upon the preformed head 154. When the working face 105 of the parts support anvil 38 encounters the top surface of the handle 140 it exerts sufficient force to move the set of parts, and thus the parts clamp 30, overcoming the force provided by the cylinder-and-piston assemblies 44. The slightest movement of the parts clamp 30 causes the gauge block 52 also to move, and its motion to be detected by the position sensor 54. The signal sent via the conductor set 117 indicating an initial change of position will be interpreted by the controller 104 as establishing an initial position of the parts support anvil 38 from which it needs to be moved a required distance to result in the desired clearance of the completed riveted joint. The required distance to move the parts support anvil 38 is initially determined empirically and is used thereafter in programming the controller 104 for riveting a particular type of assembly, using fairly uniform parts and rivets of known composition. Once the correct amount of adjustment has been determined, the same adjustment of the position of the parts support anvil 38 from the initial condition established as described above will result in the desired amount of clearance in each similar joint made thereafter.
When the desired amount of movement of the parts support anvil 38 with respect to the rivet head support anvil has taken place, as measured by movement of the gauge block 52 detected by the position sensor 54, the controller 104 will close the solenoid-operated hydraulic valve 134, thus hydraulically blocking further movement of the parts support anvil 38 with respect to the supporting structure 22, and thus with respect to the rivet head support anvil. The position of the parts support anvil 38 can thus be adjusted and held precisely and reliably at positions controlled to within less than 0.0001 inch.
As shown in
With these relative positions of the rivet support anvil 32 and the parts support anvil 38 thus maintained, the controller 104 then sends an electrical signal to the solenoid valve 120 causing the forming head 162 of the rivet forming machine 26 to be raised into engagement with the shank end 156 of the rivet 144, as shown in
One satisfactory rivet forming device 26 suitable for forming steel rivets is an electrically and pneumatically driven radial former equipped with a carbide-tipped forming tool or head 162. Such a machine is available from the Bracker Corporation of Canonsburg, Pennsylvania, as its RNE 331 machine, which has the capacity to provide 7,800 pounds of force through a forming stroke whose length is in the range from 5–50 millimeters, and which also has an initial engagement stroke length of up to 50 millimeters.
The forces exerted in urging the parts clamp 30 against the parts to be assembled and against the parts support anvil 38 and the rivet support anvil 32 in establishing the initial position are reasonably uniform, as may be assured by regulating the pressure utilized in the cylinder-and-piston assemblies 44. So long as the force exerted on the rivet 144 by the riveting head 162 is not so great that it overcomes or causes significantly different amounts of flexure in the supporting structure 22 supporting the rivet support anvil 32 and the parts support anvil 38 or so great that it deforms the parts to be connected by the rivet 144, the amount of pressure exerted by the riveting machine 26 and the dwell time during which the pressure is exerted do not affect the eventual clearance distance which can be obtained.
As shown in
The adjustment of the parts support anvil 38 with respect to the rivet support anvil 32 may not result in actual movement of the rivet support anvil 32 with respect to the rivet support anvil 32 when the adjustment is made, because of any elasticity of the frame 22 and the fastenings of the rivet support anvil 32 to the frame 22. It would be expected that if the frame 22 and the connections of the rivet support anvil 32 to the frame 22 were completely rigid there would have to be an adjustment moving the parts support anvil 38 away from the head 154 of the rivet 144. In fact, because of flexibility of the parts to be connected, or of the frame 22, or other such factors, the required adjustment of the parts support anvil 38 might in some cases be in the direction allowing additional preloading of the frame 22 to support the rivet head 76 more firmly, if the riveting head 162 is able to move the rivet support anvil 32 with respect to the parts support anvil 38, or to compress the set of parts to be connected when it urges the rivet head 154 against the rivet head support anvil face 33 in the process of forming the second head 164. While the clearance distance 158 is shown in the drawings as an actual space between the head 154 and a surface of the tool handle 140, the desired or required clearance in some cases may be zero, or may be an interference allowing some compression of parts during formation of the second head 164 of the rivet, in order to result in a desired amount of tension in the rivet when formation of the joint has been completed.
The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
This application is a continuation of U.S. patent application Ser. No. 10/196,584, filed Jul. 15, 2002, now U.S. Pat. No. 6,796,020, which is a division of U.S. patent application Ser. No. 09/631,876 filed Aug. 2, 2000, now U.S. Pat. No. 6,442,823.
Number | Name | Date | Kind |
---|---|---|---|
1004275 | Kennicott | Sep 1911 | A |
1177738 | Thomson | Apr 1916 | A |
2521505 | Doyle | Sep 1950 | A |
2925748 | Ross | Feb 1960 | A |
3292413 | Falcioni | Dec 1966 | A |
3557442 | Speller | Jan 1971 | A |
3747193 | Gregory | Jul 1973 | A |
3747194 | Christensen | Jul 1973 | A |
3797365 | Yoshikawa | Mar 1974 | A |
3874070 | Falcioni | Apr 1975 | A |
3933025 | Briles | Jan 1976 | A |
3934330 | Briles | Jan 1976 | A |
3971116 | Goodsmith et al. | Jul 1976 | A |
4369907 | Muhr et al. | Jan 1983 | A |
4564986 | Peterson | Jan 1986 | A |
4659001 | Herten | Apr 1987 | A |
4785529 | Pamer et al. | Nov 1988 | A |
4854491 | Stoewer | Aug 1989 | A |
4893394 | Muller | Jan 1990 | A |
4908928 | Mazurik et al. | Mar 1990 | A |
5027490 | Roberts et al. | Jul 1991 | A |
5072518 | Scott | Dec 1991 | A |
5136873 | Hopkins et al. | Aug 1992 | A |
5379508 | Givler et al. | Jan 1995 | A |
RE35619 | Muller | Oct 1997 | E |
5855054 | Rivera et al. | Jan 1999 | A |
6161273 | Rivera et al. | Dec 2000 | A |
6796020 | Thompson | Sep 2004 | B1 |
Number | Date | Country |
---|---|---|
87210763 | Aug 1988 | CN |
2046783 | Nov 1989 | CN |
330341 | Aug 1989 | EP |
344906 | Dec 1989 | EP |
2-70348 | Mar 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20050022371 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09631876 | Aug 2000 | US |
Child | 10196584 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10196584 | Jul 2002 | US |
Child | 10922321 | US |