FIELD OF THE INVENTION
The present invention relates to temporary guardrails and, more particularly, to an apparatus for erecting a temporary guardrail on a stair.
BACKGROUND OF THE INVENTION
Typically, stairs, particularly of the type in apartment buildings and the like, comprise three major components: stringers, treads and risers, although in certain stair constructions; e.g., pan stairs, there are no risers, open space is being formed between the treads. The stringers can be made of a steel channel beam, wood, etc., the dimensions of which can vary depending upon the load to be carried. As is well known, the treads are the generally horizontal portions of the stair, while the risers are the vertical portions connecting the treads.
Because of safety concerns during construction or remodeling, it is generally necessary, before a permanent handrail or guardrail is installed, to erect a temporary guardrail or handrail, and thereby minimize the chance of injuries from a construction worker falling off the stair.
SUMMARY OF THE INVENTION
One object of the present invention is to provide an assembly for erecting a temporary guardrail on a stair.
Another object of the present invention is to provide an apparatus for erecting a temporary guardrail on a stair, which can be quickly assembled and disassembled, as needed.
In one aspect, the present invention comprises a stanchion or other elongate member, first and second, spaced jaws connected to the stanchion, which are adapted to rigidly connect the stanchion to the stringer in such a manner that the stringer is substantially perpendicular to the pitch of the stair.
The apparatus of the present invention can further comprise, at least one bracket which can receive a temporary handrail; e.g., a 2×4 or the like.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an elevational view of the front side of one embodiment of the apparatus of the present invention.
FIG. 2 is an elevational, side view of the apparatus shown in FIG. 1.
FIG. 3 is an elevational view of the back side of the apparatus of FIGS. 1 and 2.
FIG. 4 is an isometric, environmental view of a temporary guardrail attached to a stair stringer, using one embodiment of the apparatus of the present invention.
FIG. 5 is a cross-sectional view taken along the lines 5-5 of FIG. 4.
FIG. 6 is a cross-sectional, view of another embodiment of the jaw assembly portion of FIG. 4.
FIG. 7 is an elevational view of the front side of the embodiment shown in FIG. 6.
FIG. 8 is a cross-sectional view taken along the lines 8-8 of FIG. 6.
FIG. 9 is a cross-sectional view taken along the lines 9-9 of FIG. 6.
DESCRIPTION OF PREFERRED EMBODIMENTS
Referring first to FIGS. 1-3, the apparatus of the present invention, shown generally as 10, comprises a metal tubular member or stanchion 12, having a front side 14, a first side 16, a second, opposite side (not shown), and a back side 18 (FIG. 3). Located generally near the lower end of the stanchion 12 is a first jaw assembly shown generally as 20, a second jaw assembly shown generally as 22 being spaced longitudinally from first jaw assembly 20 in a direction toward the upper end of stanchion 12.
With reference to FIG. 5, the details of construction of jaw assemblies 20 and 22 are shown. Bottom jaw assembly 20 comprises an L-shaped head portion having a flange portion 24 and a leg portion 26 attached thereto, a threaded shank 28 extending from leg portion 26 and through registering bores 31 and 30 in the front and back sides 14 and 18, respectively. A wing nut 32 is threadedly received on the portion of shank portion 28 extending out of bore 30, a washer 34 being positioned between wing nut 32 and back surface 18. In effect, threaded shank 28 and wing nut 32 comprise a compression assembly for a purpose described hereafter. Second jaw assembly 22 also comprises an L-shaped head portion having a flange portion 36, a leg portion 38, a threaded shank portion 40 extending from leg portion 38 through registering bores 42 and 43 in stanchion 12. A wing nut 44 is threadedly received on the portion of threaded shank 40 extending through back side 18 of stanchion 12. As can be seen, stanchion 12 has a plurality of registering bores 42 and 43, through which threaded shank 40 can extend to allow jaw assembly 22 to be adjustable longitudinally along stanchion 12. To provide strength, a channel shaped spacer 60, effectively a washer, can be used, the spacer 60 overlying the plurality of bores on the back side 18 of stanchion 12.
As can be seen, FIG. 5 is a cross-sectional view taken along the lines 5-5 of FIG. 4 and accordingly, shows a portion of a stair assembly. The stair assembly comprises treads 46 and risers 48, which are attached in a suitable fashion to stringers 50, 51 which support the stair. For purposes of the following description, the detailed construction of only one of the stringers of the apparatus of the present invention will be described. Further, although a stair with two stringers is shown, it will be apparent that many stairs are constructed against a wall so that only one stringer would have a guardrail. Furthermore, although the stairs shown have risers, as noted above, in the case of pan stairs there are no risers. As can be seen in FIG. 4, the stringers 50, 52 act as side supports for the stair and are generally at the desired pitch of the stairs. Stringer 50 comprises a channel shaped metal beam, having a main beam portion 52 and spaced, laterally extending flanges 54 and 56. As can be seen in FIG. 5, flanges 54 and 56 space beam portion 52 from stanchion 12. It will be appreciated that the stringer 50 need not be channel-shaped but could be a square tubular member, a wooden beam, etc., but in any event, would have a surface 58 spaced from stanchion 12.
As can be seen in FIG. 5, stringer 50 is received between first and second jaw assemblies 20 and 22, such that flange portion 24 abuts the side 58 of stringer beam portion 52 adjacent flange portion 54 and that flange portion 36 abuts the side 58 of stringer beam portion 52 adjacent flange portion 56. Further, when so positioned, it can be seen that by tightening wing nuts 32 and 44, flanges 24 and 36, respectively, will urge stanchion 12 toward stringer 50, stanchion 12 being compressed against the outer edges 54a and 56a of flanges 54 and 56 of stringer 50, thereby rigidly securing stanchion 12 to stringer 50, the outer surface of flange 54 forming a bottom edge of stringer 50, the outer surface of flange 56 forming a top edge.
With reference to FIGS. 1-4, it can be seen that the apparatus of the present invention is provided with first and second brackets or tubular members 70 and 72, which are affixed to stanchion 12 by means of bolts 74 and 76, respectively, which extend through registering bores 80, 82 in the front side 14 and back side 18 of stanchion 12. Although brackets 70 and 72 are shown as tubular, they could be L-shaped in construction or for that matter, any other form, the only proviso being that they be adapted to support a temporary guardrail; e.g., a 2×4. As shown, 2×4 temporary rails 84 and 86 are received in brackets 70 and 72, respectively, the rails being secured to the brackets 70 and 72 by fasteners 90 and 92; e.g., a screw, nail or the like, extending through holes 78, 79 of brackets 70, 72, respectively. Threaded wing nuts 75 and 77 are received on bolts 74 and 76, respectively, to secure brackets 70 and 72, respectively, to stanchion 12. It will be appreciated from the above description that jaws 20, 22 and brackets 70 and 72 are rotatable with respect to stanchion 12, such that they can be disposed at any desired angle, if necessary, to accommodate and provide rails which are at any desired angle. However, typically the guardrails are at an angle the same as the angle of the pitch line of the stair, as shown in FIG. 4.
As is the case with jaw assembly 22, it can be seen that brackets 70 and 72 can be longitudinally adjusted along stanchion 12 by virtue of a plurality of registering bores, such as 80 and 82.
Referring now to FIGS. 6-9, there is seen another embodiment of the jaw assembly, shown generally as 120. Jaw assembly 120 comprises an L-shaped head portion having a flange portion 124, a leg portion 126 attached thereto, and a threaded shank 128 extending from leg portion 126. Registering bores 131 and 130 are in the front and back sides 14 and 18, respectively of the stanchion 12. Leg portion 126 extends through bore 131 and shank portion 128 extends through bore 130. Wing nut 32 is threadedly received on the portion of shank 128 extending out of bore 130, to form a compression assembly.
Leg portion 126 and bore 131 have cross-sectional shapes such that rotation of the leg portion is prevented relative to the bore. As shown in FIGS. 6-9, leg portion 126 and bore 131 both have rectangular cross-sections, however, it will be understood that any cross-sectional shapes which prevent relative rotation to one another are within the scope of the invention. Leg portion 126 and bore 131 can be keyed together and complementary or not. Leg portion 126 and bore 131 may have different cross-sectional shapes so long as their respective cross-sections prevent relative rotation when leg portion 126 is extended through bore 131. Leg portion 126 need not have a uniform cross-section. It is contemplated that at least a portion of leg portion 126 will extend through bore 131. In some embodiments though, leg portion 126 may have a uniform cross-section, thus allowing the entire leg portion to extend through bore 131.
FIG. 6 illustrates a bottom jaw assembly, but it will be understood that the embodiment of FIG. 6 could be used in place of any of the jaw assemblies described herein.
The above description is intended in an illustrative rather than a restrictive sense, and variations to the specific configurations described may be apparent to skilled persons in adapting the present invention to other specific applications. Such variations are intended to form part of the present invention insofar as they are within the spirit and scope of the claims below.