Apparatus for generating pulse train with adjustable time interval

Information

  • Patent Grant
  • 8995054
  • Patent Number
    8,995,054
  • Date Filed
    Friday, December 21, 2012
    12 years ago
  • Date Issued
    Tuesday, March 31, 2015
    9 years ago
Abstract
An apparatus for generating a pulse train with an adjustable time interval is provided. The apparatus, being an annular optical cavity structure, includes a seed source receiving end, a pump source receiving end, an optical coupler, an optical combiner, a gain fiber, an optical path time regulator and a beam splitter. Thus, the apparatus is capable of generating a pulse train with an adjustable time interval to increase material processing quality and speed.
Description
CROSS REFERENCE TO RELATED APPLICATION

This application also claims priority to Taiwan Patent Application No. 101145023 filed in the Taiwan Patent Office on Nov. 30, 2012, the entire content of which is incorporated herein by reference.


BACKGROUND

1. Technical Field


The disclosed embodiments relate in general to an apparatus for generating a pulse train, and more particularly to an apparatus for generating a pulse train with an adjustable time interval.


2. Description of the Related Art


In the prior art, a picosecond laser adopted in material micromachining comes in a picosecond laser with single pulse, as shown in FIG. 1A, or a picosecond laser with pulse train having an unadjustable time interval, as shown in FIG. 2A. Under a same amount of laser energy, compared to a drilling depth of the picosecond laser with single pulse shown in FIG. 1B, a picosecond laser with pulse train has a greater depth as shown in FIG. 2B. Referring to FIG. 1C, the picosecond laser with pulse train hence offers preferred surface processing effects. In the prior art, in addition to necessary signal synchronization and delay control, a conventional mechanism for generating the picosecond laser with pulse train is also complex in structure and high in cost as well as having an unadjustable pulse train time interval. FIG. 4 shows a state change of a material during a laser process, where the horizontal axis represents a material density and the vertical axis represents a material temperature. After being processed by a laser, the material enters a liquid phase from a solid phase, and then enters a gas phase. If the time interval of the pulse train is too long, a cutting amount is lowered when the material is cooled to below a critical point after the laser process, as shown in FIG. 5. In FIG. 5, the horizontal axis represents the time interval of the pulse train, and the vertical axis represents the cutting amount. As the cutting amount at the vertical axis decreases as the time interval at the horizontal axis increases, it is concluded that the time interval cannot be too long. Referring to FIG. 6, if the time interval of the pulse train is too short, plasma shielding effects are generated after the laser process. In FIG. 6, the horizontal axis represents the time. An area of plasma shielding generated due to an inadequate time interval blocks a next laser pulse when the material is still in the liquid phase after the laser process, signifying that the time interval of the pulse train cannot be too short, either. Further, time intervals of pulse trains for different materials may also be different. Therefore, the time interval is a critical processing parameter for laser pulse trains. In a conventional method for generating a picosecond laser with pulse train, from a high repetition rate laser pulse optical source, an electrically-controlled high-speed optical pulse picker selects a desired pulse train shape. However, such method limits the time interval between the pulse trains as the interval is unadjustable.


SUMMARY

The disclosure is directed to an apparatus for generating a pulse train with an adjustable time interval. In addition to providing superiorities of pulse trains, the apparatus further has a structure for controlling the time interval of a pulse train to generate a pulse train with an adjustable time interval, thereby satisfying process requirements for different materials.


The apparatus for generating a pulse train with an adjustable time interval offers preferred drilling depth and material surface processing quality compared to a picosecond laser with single pulse. More specifically, compared to a conventional picosecond laser with single pulse, a pulse train with an adjustable time interval generated by the apparatus of the embodiments renders not only a greater drilling depth but also preferred quality as no burr is produced by the material surface processing as well as a faster processing speed.


According to one embodiment, an apparatus for generating a pulse train with an adjustable time interval is provided. The apparatus, being an annular optical cavity structure, comprises: an optical coupler, having an input end as a first end serving as a seed source receiving end for receiving a seed source optical signal inputted, and another input end as a second end for cyclically transmitting the seed source optical signal within the annular optical cavity; an optical combiner, having an input end as a fourth end connected to an output end of the optical coupler as a third end, and another input end as a fifth end serving as a pump source receiving end for receiving a pump source optical signal inputted; at least one gain fiber, being a gain medium, located on the annular optical cavity structure, having at least one input end connected to an output end of the optical combiner as a sixth end, for amplifying a pulse train optical signal cycling within the annular optical cavity structure; an optical path time regulator, having an input end as a seventh end connected to an output end of the at least gain fiber, for adjusting the time interval between the pulse train of optical signals within the annular optical cavity; and a beam splitter, having an input end as a ninth end connected to an output end of the optical path time regulator as an eighth end, and a second output end as an eleventh end connected to the second end (input end) of the optical coupler, such that a part of the seed source optical signals traveling for one cycle within the annular optical cavity are outputted via a first output end of the beam splitter as a tenth end.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1A is a schematic diagram of a picosecond laser with single pulse;



FIG. 1B is a schematic diagram of drilling depth of a picosecond laser with single pulse;



FIG. 1C is a schematic diagram of surface processing of a picosecond laser with single pulse;



FIG. 2A is a schematic diagram of a picosecond laser with pulse train;



FIG. 2B is a schematic diagram of drilling depth of a picosecond laser with pulse train;



FIG. 2C is a schematic diagram of surface processing of a picosecond laser with pulse train;



FIG. 3 is a diagram of a relationship between the number of pulse trains and a removal rate under a same laser repetition rate;



FIG. 4 is a diagram depicting three phase corresponding to a material density and a material temperature during a material process;



FIG. 5 is a diagram of a relationship between a long pulse time interval and a decrease in a cutting amount;



FIG. 6 is a schematic diagram of a short pulse time interval and plasma shielding generated;



FIG. 7 is a schematic diagram of a repetition rate reps and a pulse width τs of a laser seed source;



FIG. 8 is a schematic diagram of a repetition rate repp and a pulse width τp of a pump source;



FIG. 9 is a schematic diagram of determining the number of pulse trains according to a pulse width τp of a pump source;



FIG. 10 is a schematic diagram of an apparatus for generating a pulse train with an adjustable time interval according to one embodiment.



FIG. 10B is a simplified view of FIG. 10.





In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.


DETAILED DESCRIPTION

An apparatus for generating a pulse train with an adjustable time interval is provided by the disclosure. Referring to FIGS. 10 and 10B, by use of an optical design, a time interval of a pulse train can be arbitrary adjusted to satisfy processing requirements of various materials. Thus, with the embodiments of the disclosure, a time interval of a pulse train can be adjusted as desired to also improve quality and a speed of material processing. FIG. 2A shows a schematic diagram of picosecond laser pulse trains. In FIG. 2A, each envelope has five pulse trains. FIG. 2B shows a schematic diagram of a drilling depth of a picosecond laser with pulse train. Compared to FIG. 1B, the picosecond laser with pulse train in FIG. 2B has a greater drilling depth than that shown in FIG. 1B. FIG. 2C shows a schematic diagram of surface processing effects of a picosecond laser with pulse train. Compared to FIG. 1C, the picosecond laser with pulse train in FIG. 2C renders a preferred burr suppressing effect and preferred process quality. FIG. 3 shows a diagram of a relationship corresponding to a higher material removal rate as the number of pulse trains gets larger under a same laser pulse repetition rate.


Referring to FIG. 10, an apparatus 10 for generating a pulse train with an adjustable time interval, being an annular optical cavity structure, comprises a seed source receiving end 11, a pump source receiving end 12, an optical coupler 13, an optical combiner 14, at least one gain fiber 15, an optical path time regulator 16, and a beam splitter 18. The optical coupler 13 has an input end as a first end 41 as the seed source receiving end 11 for receiving a seed source optical signal inputted, and another input end as a second end 31 for cyclically transmitting the seed source optical signal within the annular optical cavity. The optical combiner 14 has an input end as a fourth end 33 connected to an output end of the optical coupler 13 as a third end 32, and another input end as a fifth end 42 disposed on the pump source receiving end 12 and for receiving a pump source optical signal inputted. The at least one gain fiber 15 is a gain medium for amplifying a pulse train optical signal cycling within the annular optical cavity, and is located on the annular optical cavity. Further, the at least one gain fiber 15 has at least one input end connected to an output end of the optical combiner 14 as a sixth output end 34. The optical path time regulator 16 has an input end as a seventh end 35 connected to an output end of the at least one gain fiber 15, and is for adjusting the time interval of the pulse train optical signals within the annular optical cavity. The beam splitter 18 has an input end as a ninth end 37 connected to an output end of the optical path time regulator 16 as an eighth end 36, such that a part of the pulse train optical signals traveling for one cycle within the annular optical cavity are outputted from a first output end of the beam splitter 18 as a tenth end 43. Further, the beam splitter 18 has a second output end as an eleventh end 44 connected to the second end 31 (input end) of the optical coupler 13. Initial optical signals received by the seed source receiving end need to have a pulse time interval greater than the time that the same signals traveling for one cycle within the annular optical cavity. FIG. 7 shows a schematic diagram of a repetition rate reps and a pulse width τs of an initial optical signal received by the seed source receiving end 11. FIG. 8 shows a schematic diagram of a repetition rate repp and a pulse width τp of a pulse optical signal received by the pump source receiving end 12. Referring to FIGS. 7 and 8, the repetition rate repp of the pump optical signal is the same as the repetition rate reps of the initial seed source optical signal. The seed source optical signal attenuates as the number of cyclical travels within the annular optical cavity increases, and so the attenuated optical signal is amplified through the pump source optical signal and the gain fiber. The repetition rate of pulse train is determined by a length L of the annular optical cavity structure. A speed of light within the annular optical cavity is Vc, and hence the repetition rate of the pulse train is repb=Vc/L, the time interval of the pulse train is τb=L/Vc, and the number of pulse trains is N=τpVc/L, as shown in FIG. 9.


The optical path time regulator 16 controls the optical path time of light traveling for one cycle within the annular optical cavity. For example, the optical path time regulator 16 is a plurality of free-space mirrors or a passive fiber switch. Again referring to FIG. 10, the plurality of free-space mirrors comprise a first free-space mirror 21, a second free-space mirror 22, a third free-space mirror 23, and a fourth free-space mirror 24. The first free-space mirror 21 transmits the pulse train optical signal cycling within the annular optical cavity to the first free-space mirror 21 via the seventh end 35 (input end) of the optical path time regulator 16. The second free-space mirror 22 reflects the pulse train optical signal cycling within the annular optical cavity to the second free-space mirror 22 via the first free-space mirror 21. The third free-space mirror 23 reflects the pulse train optical signal cycling within the annular optical cavity to the third free-space mirror 23 via the second free-space mirror 22. The fourth free-space mirror 24 reflects the pulse train optical signal cycling within the annular optical cavity to the fourth free-space mirror 24 via the third free-space mirror 23, and outputs the pulse train optical signal cycling within the annular optical cavity to the eighth end 36 (output end) of the optical path time regulator 16 via the fourth free-space mirror 24. The free-space mirrors are capable of adjusting reflection angles and distances between the free-space mirrors, so as to control the optical path time of light traveling for one cycle within the annular optical cavity.


Again referring to FIG. 10, the optical coupler 13 receives incident light of different wavelengths and different directions. For example, the optical coupler 13 is a wavelength division multiplexer (WDM), a combiner or a coupler. As shown in FIG. 10, the optical combiner 14 receives the seed source initial optical signal and the pump source optical signal received by the coupler 13. For example, the optical combiner 14 is a WDM or a combiner. The beam splitter 18 divides a beam into two separate beams of different proportions. For example, the beam splitter 18 is a coupler or a half-wave plate cooperating with a polarization beam splitter. The apparatus for generating a pulse train with an adjustable time interval may further comprise a polarization controller 17 for changing a wave envelope shape of the pulse train.


It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.

Claims
  • 1. An apparatus for generating a pulse train with an adjustable time interval, the apparatus being an annular optical cavity structure, the apparatus comprising: a seed source receiving end, for receiving an initial optical signal inputted;an optical coupler, having an input end serving as the seed source receiving end for receiving the seed source optical signal inputted, and another input end for cyclically transmitting the seed source optical signal within the annular optical cavity;an optical combiner, having an input end connected to an output end of the optical coupler, and another input end serving as a pump source receiving end for receiving a pump source optical signal inputted;at least one gain fiber, being a gain medium, located on the annular optical cavity structure, having at least one input end connected to an output end of the optical combiner, for amplifying a pulse train optical signal cycling within the annular optical cavity structure;an optical path time regulator, having an input end connected to an output end of the at least gain fiber, for adjusting the time interval between the pulse train optical signals within the annular optical cavity; anda beam splitter, having an input end as connected to an output end of the optical path time regulator, and a second output end connected to the input end of the optical coupler as the second end, such that a part of the seed source optical signals traveling for one cycle within the annular optical cavity are outputted via a first output end of the beam splitter;wherein the initial optical signal received by the seed source receiving end has a signal pulse time interval greater than a time of light travelling for one cycle within the annular optical cavity.
  • 2. The apparatus according to claim 1, wherein the optical coupler has the input end serving as the seed source receiving end as a first end, the another input end as a second end, and the output end as a third end; the optical combiner has the input end connected to the output end of the coupler as a fourth end, the another input end as a fifth end, and the output end as a sixth end; the optical path time regulator has the input end as a seventh end, and an output end as an eighth end; the beam splitter has the input end as a ninth end, the first output end as a tenth end, and the second output end as an eleventh end.
  • 3. The apparatus according to claim 1, wherein the optical path time regulator controls the time of light traveling for one cycle within the annular optical cavity, and is a plurality of free-space mirrors or a passive fiber switch.
  • 4. The apparatus according to claim 3, wherein the plurality of free-space mirrors comprise: a first free-space mirror, for transmitting the pulse train optical signal cycling within the annular optical cavity to the first free-space mirror via the seventh end being the input end of the optical path time regulator;a second free-space mirror, for reflecting the pulse train optical signal cycling within the annular optical cavity to the second free-space mirror via the first free-space mirror;a third free-space mirror, for reflecting the pulse train optical signal cycling within the annular optical cavity to the third free-space mirror via the second free-space mirror; anda fourth free-space mirror, for reflecting the pulse train optical signal cycling within the annular optical cavity to the fourth free-space mirror via the third free-space mirror, and outputting the pulse train optical signal cycling within the annular optical cavity to the eighth end being the input end of the optical path time regulator via the fourth free-space mirror; andthe free-space mirrors are capable of adjusting reflection angles and distances between the free-space mirrors to control the time of light traveling for one cycle within the annular optical cavity.
  • 5. The apparatus according to claim 4, wherein the optical coupler receives incident light of different wavelength and different directions, and is a wavelength division multiplexer (WDM), a combiner or a coupler.
  • 6. The apparatus according to claim 5, wherein the optical combiner receives the seed source initial optical signal and the pump source optical signal received by the coupler, and is a WDM or a combiner.
  • 7. The apparatus according to claim 6, wherein the beam splitter splits a beam into two separate beams of different proportions, and is a coupler or a half-wave plate cooperating with a polarization beam splitter.
  • 8. The apparatus according to claim 7, further comprising a polarization controller for changing a pulse wave envelope shape.
Priority Claims (1)
Number Date Country Kind
101145023 A Nov 2012 TW national
US Referenced Citations (69)
Number Name Date Kind
3740664 Freiberg et al. Jun 1973 A
3825845 Angelbeck et al. Jul 1974 A
4136929 Suzaki Jan 1979 A
4469397 Shaw et al. Sep 1984 A
4473270 Shaw Sep 1984 A
4685107 Kafka et al. Aug 1987 A
4725728 Brininstool et al. Feb 1988 A
4738503 Desurvire et al. Apr 1988 A
4972423 Alfano et al. Nov 1990 A
5126876 O'Meara Jun 1992 A
5260954 Dane et al. Nov 1993 A
5359612 Dennis et al. Oct 1994 A
5566261 Hall et al. Oct 1996 A
5828682 Moores Oct 1998 A
5898716 Ahn et al. Apr 1999 A
6122097 Weston et al. Sep 2000 A
6292282 Mossberg et al. Sep 2001 B1
6356377 Bishop et al. Mar 2002 B1
6373866 Black Apr 2002 B1
6664498 Forsman et al. Dec 2003 B2
7027217 Kanou Apr 2006 B2
7123403 Hironishi Oct 2006 B2
7339727 Rothenberg et al. Mar 2008 B1
7394476 Cordingley et al. Jul 2008 B2
7397600 Yu Jul 2008 B2
7477664 Liu Jan 2009 B2
7477666 Liu Jan 2009 B2
7561605 Delfyett et al. Jul 2009 B1
7768699 Suzuki et al. Aug 2010 B2
7876803 Di Teodoro et al. Jan 2011 B1
7884997 Goodno Feb 2011 B2
7916387 Schmitt Mar 2011 B2
7940817 Okhotnikov et al. May 2011 B2
8036537 Cai Oct 2011 B2
8040927 Chang et al. Oct 2011 B2
8054537 Okuno Nov 2011 B2
8107167 Galvanauskas et al. Jan 2012 B2
8139910 Stadler et al. Mar 2012 B2
8160113 Adams et al. Apr 2012 B2
8199398 Fermann et al. Jun 2012 B2
8233807 Cai Jul 2012 B2
8265117 Govorkov et al. Sep 2012 B2
8270067 Hsieh et al. Sep 2012 B1
8340141 Chang et al. Dec 2012 B2
8391323 Takenaga Mar 2013 B2
8427769 Stultz Apr 2013 B1
8675708 Honda et al. Mar 2014 B2
20010017727 Sucha et al. Aug 2001 A1
20030174379 Gupta Sep 2003 A1
20030218757 Hill Nov 2003 A1
20040190119 Tauser et al. Sep 2004 A1
20040207905 Tauser et al. Oct 2004 A1
20050169324 Ilday et al. Aug 2005 A1
20050225846 Nati et al. Oct 2005 A1
20050254533 Hollemann et al. Nov 2005 A1
20060007978 Govorkov et al. Jan 2006 A1
20060056480 Mielke et al. Mar 2006 A1
20080175279 Kakui Jul 2008 A1
20090003391 Li Jan 2009 A1
20090067018 Pu et al. Mar 2009 A1
20100034221 Dragic Feb 2010 A1
20100177794 Peng et al. Jul 2010 A1
20100225897 Fermann et al. Sep 2010 A1
20100329288 Kitabayashi Dec 2010 A1
20110122895 Savage-Leuchs et al. May 2011 A1
20110158265 Chang et al. Jun 2011 A1
20110188850 Mikami et al. Aug 2011 A1
20110286474 Takenaga Nov 2011 A1
20120127464 Oigawa et al. May 2012 A1
Foreign Referenced Citations (3)
Number Date Country
101617448 Dec 2009 CN
2006332666 Dec 2006 JP
201201943 Jan 2012 TW
Non-Patent Literature Citations (6)
Entry
Hu et al., “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate”, Appl Phys A, pp. 407-415, 2010.
Desbiens et al., “Arbitrarily-shaped bursts of picosecond pulses from a fiber laser source for high-throughput applications”, Proc. of SPIE vol. 7914, pp. 1-9, 2011.
Hendow et al., “Dynamic Pulsing of a MOPA Fiber Laser for Enhanced Material Processing”, Proc. of SPIE vol. 7914, pp. 1-6.
Knappe et al., “Scaling ablation rates for picosecond lasers using burst micromachining”, Proc. of SPIE vol. 7585, pp. 1-6, 2010.
Harzic et al., “Processing of metals by double pulses with short laser pulses”, Appl. Phys. pp. 1121-1125, 2005.
Taiwan Patent Office, Office Action, Patent Application Serial No. TW101145023, Aug. 6, 2014, Taiwan.
Related Publications (1)
Number Date Country
20140153594 A1 Jun 2014 US