Field of the Invention
Embodiments of the present invention generally relate to a gripping assembly for gripping tubulars. More particularly, the invention relates to a gripping apparatus for connecting wellbore tubulars on a drilling rig. More particularly still, the invention relates to a method of operating a tubular handling system.
Description of the Related Art
In the construction and completion of oil and gas wells, a drilling rig is located on the earth's surface to facilitate the insertion and removal of tubular strings to and from a wellbore. The tubular strings are constructed and run into the hole by lowering a string into a wellbore until only the upper end of the top tubular extends from the wellbore (or above the rig floor). A gripping device, such as a set of slips or a spider at the surface of the wellbore, or on the rig floor, holds the tubular in place with bowl-shaped slips while the next tubular to be connected is lifted over the wellbore center. Typically, the next tubular has a lower end with a pin end, male threaded connection, for threadedly connecting to a box end, female threaded connection, of the tubular string extending from the wellbore. The tubular to be added is then rotated, using a top drive, relative to the string until a joint of a certain torque is made between the tubulars.
A tubular connection may be made near the floor of the drilling rig using a power tong. Alternatively, a top drive facilitates connection of tubulars by rotating the tubular from its upper end. The top drive is typically connected to the tubular by using a tubular gripping tool that grips the tubular. With the tubular coupled to a top drive, the top drive may be used to make up or break out tubular connections, lower a string into the wellbore, or even drill with the string when the string includes an earth removal member at its lower end.
An internal gripping device or spear may grip the inside diameter of a tubular to temporarily hold the tubular while building a string or rotating the string to drill. An internal gripping device is typically connected at an upper end to a top drive and at a lower end the internal gripping device includes outwardly extending gripping members configured to contact and hold the interior of the tubular in order to transmit axial and torsional loads. To engage the tubular, it may be useful to monitor the position of the tubular gripping apparatus and the gripping mechanism in the tubular gripping apparatus.
There is a need for an improved tubular handling assembly capable of tracking a position of the tubular gripping apparatus and the gripping mechanism. There is also a need for an integrated safety system between the gripping apparatus and a gripper on the rig floor.
Embodiments described herein relate to a method and apparatus for handling tubular on a drilling rig. The apparatus is adapted for gripping a tubular and may be used with a top drive. The apparatus includes a connection at one end for rotationally fixing the apparatus to the top drive and gripping members at a second end for gripping the tubular. The apparatus has a primary actuator configured to move and hold the gripping members in contact with the tubular and a backup assembly to maintain the gripping member in contact with the tubular.
In another embodiment described herein, a safety system for use with a tubular handling system is described. The safety system includes a sensor adapted to track movement of a slip ring for actuating a gripping apparatus, wherein the sensor sends a signal to a controller when the gripping apparatus is in a position that corresponds to the gripping apparatus being engaged with the tubular.
In yet another embodiment, the sensor comprises a trigger which is actuated by a wheel coupled to an arm, wherein the wheel moves along a track coupled to an actuator as the actuator moves the slip ring. Additionally, the track may have one or more upsets configured to move the wheel radially and actuate the trigger as the wheel travels.
In yet another embodiment described herein, a method for monitoring a tubular handling system is described. The method includes moving a gripping apparatus toward a tubular and engaging a sensor located on a stop collar of the gripping apparatus to an upper end of the tubular. The method further includes sending a signal from the sensor to a controller indicating that the tubular is in an engaged position and stopping movement of the gripping apparatus relative to the tubular in response to the signal. Additionally, the method may include gripping the tubular with the gripping apparatus.
In yet another embodiment, the method further includes monitoring a position of one or more engagement members of the gripping apparatus relative to the tubular using a second sensor, and sending a second signal to the controller indicating that the gripping apparatus is engaged with the tubular.
In yet another embodiment, the method further includes coupling the tubular to a tubular string held by a spider on the rig floor and verifying that the tubular connection is secure.
In yet another embodiment, the method further includes having verified the tubular connection is secure and the gripping apparatus is secure the controller permits release of the spider.
In yet another embodiment, a method of handling a tubular includes gripping the tubular with a gripping apparatus; sending an electronic signal to a controller indicating that the gripping apparatus is gripping the tubular; and controlling actuation of the gripping apparatus using the controller to prevent inadvertent release of the tubular.
In yet another embodiment, a tubular handling system includes a gripping apparatus; and a controller operable to receive an electronic signal indicating a position of the gripping apparatus, wherein the controller is operable to control actuation of the gripping apparatus to prevent inadvertent release of a tubular supported by the gripping apparatus.
So that the manner in which the above recited features of the present invention may be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The gripping apparatus 104, as shown in
In an alternative embodiment, the gripping apparatus 104 may be an external gripper for gripping the exterior of the tubular 112. The external gripper may incorporate slips which move toward the longitudinal axis when actuated. Further, a combination of an internal and external gripping apparatus 104 may be used. Further still, the external gripper may incorporate gripping members which pivot in order to engage the tubular. An exemplary external gripper is show in U.S. Patent Application Publication No. 2005/0257933, which is herein incorporated by reference in its entirety.
The actuator 106 is shown schematically in
The swivel 200 allows an electrical or fluid source such as a pump (not shown) to transmit a fluid and/or electric current to the actuator 106 during operation, especially during rotation of the actuator 106. The swivel 200 may be a conventional swivel such as a SCOTT ROTARY SEAL™ with conventional o-ring type seals. The swivel 200, in
The actuator 106 may be coupled to the mandrel 212 and operatively coupled to the swivel 200. The swivel 200 may generally be a hollow or solid shaft with grooves or contact rings and an outer ring having fluid ports or brushes. The shaft is free to rotate while the ring is stationary. Thus, the fluid is distributed from a stationary point to a rotating shaft where, in turn the fluid is further distributed to various components to operate the equipment rotating with the mandrel 212, such as the actuator 106 to set and release the slips 208.
In one embodiment, the actuator 106 is two or more annular piston assemblies 300, as shown in
The control lines 308, shown schematically in
Generally, the controller 312 may have additional control lines operatively communicating with a traveling block, a location system, a sensor, the drive mechanism, a power tong, and/or a pipe handling apparatus. Further, the controller 312 receives data from the monitor lines and the drive mechanism. The controller 312 in various embodiments may be in fluid, wireless (e.g., infrared, RF, Bluetooth, etc.), or wired communication with components of the present invention. Illustratively, the controller 312 may be communicatively coupled to the drive mechanism, fluid chambers, gripping apparatus 104, a release, a location system, one or more sensors, and other drilling rig components. The controller 312 may generally be configured to operate and monitor each of the respective components in an automated fashion (e.g., according to a preprogrammed sequence stored in memory) or according to explicit user input.
Although not shown, the controller 312 may be equipped with a programmable central processing unit, a memory, a mass storage device, and well-known support circuits such as power supplies, clocks, cache, input/output circuits and the like. Once enabled, an operator may control the operation of the gripping apparatus 104 by inputting commands into the controller 312. To this end, another embodiment of the controller 312 includes a control panel, not shown. The control panel may include a key pad, switches, knobs, a touch pad, etc.
With the controller 312 monitoring and operating the drilling rig, an integrated safety system may easily be adapted to the drilling rig 100. A safety system may prevent dropping a tubular 112 or tubular string 116. In one embodiment, the safety system is adapted to provide an indication of whether the gripping apparatus 104 is properly connected to the tubular 112. Thus, the safety system would allow an operator or the controller 312 to know that the gripping apparatus 104 has fully engaged the tubular 112. When engagement of the gripping apparatus 104 to the tubular 112, which is now a part of the tubular string 116, is confirmed by the safety system, the controller 312 or operator may release the slips or spider at the rig floor 118. The traveling block would then lower the tubular string 116 so that the box end of the tubular is located near the rig floor 118. The controller 312 or operator may then re-activate the slips or spider to grip the tubular string 116. With the slips engaging the tubular string 116, the controller 312 would allow the gripping apparatus 104 to release the tubular string 116. The safety system is also capable of monitoring the proper amount of torque in the threads of the tubulars 112 during make up. This ensures that the threads are not damaged during make up and that the connection is secure. Examples of suitable safety systems are illustrated in U.S. Pat. No. 6,742,596 and U.S. Patent Application Publication Nos. U.S. 2005/0096846, 2004/0173358, and 2004/0144547, which are herein incorporated by reference in their entirety.
In an alternative embodiment, the actuator 106 of the gripping apparatus 104 includes one or more piston and cylinder assemblies 400, as shown in
In another embodiment, the actuator 106 may be electrically powered. The electrically powered actuator may be equipped with a mechanical locking device, which acts as a backup assembly, which prevents release of the gripping apparatus 104. Further, the electrically powered actuator may include more than one actuation member for redundancy or as a backup. Further still, the electrically powered actuator may send data to a controller 312 to communicate its position to an operator. Thus, if one lock fails, the controller 312 may take steps to prevent the accidental release of the tubular 112.
As described above, in order to provide for redundancy or a backup safety assembly, a separately operable redundant actuator may be used to ensure operation of the gripping apparatus 104 in the event of failure of the primary actuator. In one embodiment, as shown in
In another embodiment, one or more valves 314, shown schematically in
In yet another alternative embodiment, the redundant actuator is one or more of the piston and cylinder assemblies 400, and the primary actuator is one of the piston and cylinder assemblies 400, as shown in
In yet another embodiment, at least some of the piston and cylinder assemblies 400 are equipped with a valve 500, shown schematically in
To activate the gripping apparatus 104, fluid flows through the one or more feed lines 508. The fluid enters each of the actuation lines 506, then flows past the valves 500. The valves 500 operate in a manner that allows fluid to flow toward the cylinder 502, but not back toward the feed line 508. As the fluid continues to flow past the valves 500, it fills up each of the lines downstream of the valves 500. The fluid may then begin to exert a force on the pistons 504. The force on the pistons 504 causes the pistons 504 to move the slip ring 404 (shown in
In yet another alternative embodiment, one or all of the piston and cylinder assemblies 400 may be equipped with an accumulator 514, optional, shown in
In the event that the hydraulic system leaks, the system will slowly begin to lose its system fluid. However, the compressible fluid in the accumulators 514 maintains the pressure of the system fluid by adding volume as the system fluid is lost. As the compressible fluid expands, the bladder expands, thus maintaining the pressure of the system fluid by adding volume to the system. The expansion of the bladder is relative to the amount of system fluid lost. In other words, the pressure of the system fluid and in turn the pressure on the piston 504 remains constant as the system fluid is lost due to the expansion of the bladder. The bladder continues to move as the system fluid leaks out until the bladder is fully expanded. Once the bladder has fully expanded, any further leaking of the system fluid will cause a loss of pressure in the system. The pressure in the accumulators 514 may be monitored by the controller 312. Thus, upon loss of pressure in the accumulators 514, the controller 312 or an operator may increase the pressure in the piston and cylinder assemblies 400 thereby preventing inadvertently releasing the gripping apparatus 104. Each of the valves 500 and accumulators 514 act independently for each of the piston and cylinder assemblies 400. Therefore, there may be one primary piston having a valve 500 and an accumulator 514 and any number of redundant pistons having a valve 500 and an accumulator 514, thereby providing an increased factor of safety. The accumulators 514 may be used with any actuator described herein.
In an alternative embodiment to the swivel 200 discussed above, a swivel 600 couples directly to the actuator 106, as shown in
In yet another alternative embodiment, the redundancy for any of the actuators described above may be achieved by a primary fluid system with an electrically powered backup. Further the primary system may be electrically powered and the redundant system may be fluid operated.
In yet another alternative embodiment, the swivel 200 and/or 600 described above may be in the form of a rotating union 620, as shown in
The hydraulic fluid inlet 626 fluidly couples to an annular chamber 632 via a port 634 through the outer stationary member 624. The annular chamber 632 encompasses the entire inner diameter of the outer stationary member 624. The annular chamber 632 fluidly couples to a control port 636 located within the inner rotational member 622. The control port 636 may be fluidly coupled to any of the components of the tubular handling system 102. For example, the control port 636 may be coupled to the actuator 106 in order to operate the primary actuator and/or the redundant actuator.
In order to prevent leaking between the inner rotational member 622 and the outer stationary member 624, a hydrodynamic seal 638 may be provided at a location in a recess 640 on each side of the annular chamber 632. As shown, the hydrodynamic seal 638 is a high speed lubrication fin adapted to seal the increased pressures needed for the hydraulic fluid. The hydrodynamic seal 638 may be made of any material including but not limited to rubber, a polymer, an elastomer. The hydrodynamic seal 638 has an irregular shape and/or position in the recess 640. The irregular shape and/or position of the hydrodynamic seal 638 in the recess 640 is adapted to create a cavity 641 or space between the walls of the recess 640 and the hydrodynamic seal 638. In operation, hydraulic fluid enters the annular chamber 632 and continues into the cavities 641 between the hydrodynamic seal 638 and the recess 640. The hydraulic fluid moves in the cavities as the inner rotational member 622 is rotated. This movement circulates the hydraulic fluid within the cavities 641 and drives the hydraulic fluid between the hydrodynamic seal contact surfaces. The circulation and driving of the hydraulic fluid creates a layer of hydraulic fluid between the surfaces of the hydrodynamic seal 638, the recess 640 and the inner rotational member 622. The layer of hydraulic fluid lubricates the hydrodynamic seal 638 in order to reduce heat generation and increase the life of the hydrodynamic seal. In an alternative embodiment, the hydrodynamic seal 638 is narrower than the recess 640 while having a height which is substantially the same or greater than the recess 640. The hydrodynamic seal 638 may also be circumferentially longer than the recess. This configuration forces the hydrodynamic seal 638 to bend and compress in the recess as shown in the form of the wavy hidden line on
A seal 642 may be located between the inner rotational member 622 and the outer stationary member 624 at a location in a recess 640 on each side of the annular chamber 632 of the pneumatic fluid inlets 628. The seal 642 may include a standard seal 644 on one side of the recess and a low friction pad 646. The low friction pad may comprise a low friction polymer including but not limited to Teflon™ and PEEK™. The low friction pad 646 reduces the friction on the standard seal 644 during rotation. Any of the seals described herein may be used for any of the inlets 626 and/or 628.
The tubular handling system 102 may include a compensator 700, as shown in
In operation, the gripping apparatus 104 grips the tubular 112. With only the tubular 112 coupled to the gripping apparatus 104, the compensator piston 702 will remain in its original position. The tubular 112 will then engage the tubular string 116, shown in
The compensator pistons 702 may be controlled and monitored by the controller 312 via a control line(s) 708. The control line(s) 708 enables the pressure in the compensating pistons 702 to be controlled and monitored in accordance with the operation being performed. The controller 312 is capable of adjusting the sensitivity of the compensator pistons 702 to enable the compensator pistons to move in response to different loads.
In another embodiment, the compensator 700 is simply a splined sleeve or collar, not shown. The splined sleeve allows for longitudinal slip or movement between the drive mechanism 108 and the gripping apparatus 104. In yet another embodiment, the compensator may include a combination of pistons and the splined sleeve.
The actuator 106 may be adapted for interchangeable and/or modular use, as shown in
In operation, the modular aspect of the tubular handling system 102 allows for quick and easy accommodation of any size tubular 112 without the need for removing the actuator 106 and/or the drive mechanism 108. Thus, the external modular gripping apparatus 804, shown in
In yet another embodiment, the gripping apparatus 104 includes a sensor 1000 for indicating that a stop collar 1002 of the gripping apparatus 104 has reached the top of a tubular 112, as shown in
The sensor 1000, as shown in
In yet another embodiment, the adapter 218, which may provide the connection between the components of the tubular handling system 102, contains a lock 1100 as shown in
In yet another alternative embodiment, the adapter 218 is an external locking tool 1110 as shown in
In another embodiment, equipment 114 is a cementing plug launcher 1200 adapted for use with the gripping apparatus 104, as shown in
The cementing plug launcher 1200 will be described as used with an internal gripping apparatus 104. As shown in
The cementing plug launcher 1200, shown in
It should be appreciated that cementing plug launchers 1200 and 1200A may be used in conjunction with clamps, casing elevators, or even another gripping apparatus such as a spear or external gripping device to connect to the previously run tubular string 116.
The cement plug launcher 1200 and 1200(A) are shown having manual plug releases. In yet another alternative embodiment, the cement plug launcher 1200 and 1200(A) are equipped with a remotely operated actuation system. In this embodiment the manual plug releases are replaced or equipped with by plug activators. The plug activators are fluid, electrically or wirelessly controlled from the controller 312. Therefore the controller or an operator at a remote location may release each plug 1208 and 1210 at the desired time using the plug activators. The plug activators typically remove a member which prevents the plug 1208/1210 from traveling down the cementing plug launcher 1200/1200(a) and into the tubular 112. Thus with the member removed after actuation of the plug activator, the plug 1208/1210 performs the cementing operation. The fluid or electric lines used to operate the plug activators may include a swivel in order to communicate with the plug activators during rotation of the cementing plug launcher 1200 and 1200(A). In an alternative, the plug activators may release a ball or a dart adapted for use with the plugs 1208 and 1210.
During a cementing operation it may be beneficial to reciprocate and/or rotate the tubular string 116 as the cement enters the annulus between the wellbore 115 and the tubular string 116. The movement, reciprocation and/or rotation, may be accomplished by the hoisting system 110 and the drive mechanism 108 and helps ensure that the cement is distributed in the annulus. The remotely operated actuation system for the cement plug launcher may be beneficial during the movement of the tubular string 116 in order to prevent operators from injury while releasing the plugs 1208 and 1210 due to the movement of the cement plug launcher.
While the cementing plug launcher may be used or discussed with the redundant safety mechanism for a gripping apparatus, it will be understood that the launcher need not be associated with any other aspect or subject matter included herein.
In an additional embodiment, the tubular handling system 102 may include a release 1300, shown in
The integrated safety system 1400 may also be capable of monitoring the proper amount of torque in the threads of the tubulars 112 during make up. This ensures that the threads are not damaged during make up and that the connection is secure. Examples of suitable safety systems are illustrated in U.S. Pat. No. 6,742,596 and U.S. Patent Application Publication Nos. U.S. 2005/0096846, 2004/0173358, and 2004/0144547, which are herein incorporated by reference in their entirety.
In another embodiment, the integrated safety system 1400 may incorporate the location system 900. The location system 900 sends a signal to the controller 312, which gives the status of the gripping apparatus 104 in relation to the tubular 112. In other words, the location system 900 indicates to the controller 312 when the tubular 112 is gripped or ungripped by the gripping apparatus 104. In operation, after the gripping apparatus 104 grips the tubular 112, the location system 900 sends a signal to the controller 312 indicating that the tubular 112 is gripped and it is safe to lift the gripping apparatus 104. The gripping apparatus 104 is manipulated by the drive mechanism 108 and/or the hoisting system 110 to couple the tubular 112 to the tubular string 116. The controller 312 may then open the gripper 119 to release the tubular string 116. The tubular 112 is lowered and regripped by the gripper 119 as described above. The controller 312 then releases the gripping apparatus 104 from the tubular 112. The location system 900 informs the controller 312 when the gripping apparatus 104 is safely disengaged from the tubular 112. The gripping apparatus 104 may then be removed from the tubular 112 without marking or damaging the tubular 112.
The integrated safety system 1400 may incorporate the sensor 1000 in another embodiment. The sensor 1000 sends a signal to the controller 312 when the stop collar 1002 is proximate to the tubular 112. Therefore, as the gripping apparatus 104 approaches the tubular 112 and/or the tubular string 116, a signal is sent to the controller 312 before the stop collar 1002 hits the tubular 112. The controller 312 may then stop the movement of the gripping apparatus 104 and, in some instances, raise the gripping apparatus 104 depending on the operation. The stopping of the gripping apparatus prevents placing weight on the tubular 112 when do so is not desired. In another embodiment, the signal may set off a visual and/or audible alarm in order to allow an operator to make a decision on any necessary steps to take.
In yet another embodiment, the integrated safety system 1400 may incorporate the release 1300. The release 1300 may send a signal to the controller 312 when the release begins to activate the slow release of the gripping apparatus 104. The controller 312 may then override the release 1300, lift the gripping apparatus 104, and/or initiate the actuator 106 in order to override the release 1300, depending on the situation. For example, if the slow release of the gripping apparatus 104 is initiated by the release 1300 prior to the gripper 119 gripping the tubular 112, the controller may override the release 1300, thereby preventing the gripping apparatus 104 from releasing the tubular 112.
In yet another alternative embodiment, the integrated safety system 1400 is adapted to control the compensator 700 via the controller 312. When the compensator 700 is initiated during the coupling of the tubular 112 to the tubular string 116, the compensator 700 may send a signal to the controller 312. The compensator 700 may measure the distance the tubular 112 has moved down during coupling. The distance traveled by the compensator 700 would indicate whether the connection had been made between the tubular 112 and the tubular string 116. With the connection made, the controller 312 may now allow the gripping apparatus 104 to disengage the tubular 112 and/or the compensator to return to its initial position.
In an alternative embodiment, the integrated safety system may be one or more mechanical locks which prevent the operation of individual controllers for one rig component before the engagement of another rig component.
In operation, the gripping apparatus 104 attaches to the drive mechanism 108 or the swivel 200, which are coupled to the hoisting system 110 of the rig 100. The tubular 112 is engaged by an elevator (not shown). The elevator may be any elevator known in the art and may be coupled to the tubular handling system 102 by any suitable method known in the art. The elevator then brings the tubular 112 proximate the gripping apparatus 104. In an alternative embodiment, the gripping apparatus may be brought to the tubular 112. The gripping apparatus 104 is then lowered by the hoisting system 110 or the elevator raises the tubular 112 relative to the gripping apparatus 104 until the slips 208 are inside the tubular 112. When the stop collar 1002 of the gripping apparatus 104 gets close to the tubular 112, the sensor 1000 may send a signal to the controller 312. The controller 312 may then stop the relative movement between the gripping apparatus 104 and the tubular 112.
With the gripping apparatus 104 at the desired location, the controller 312 either automatically or at the command of an operator activates the actuator 106. At least the primary actuator of the actuator 106 is activated to urge the slips 208 into engagement with the tubular 112. One or more redundant actuators may be actuated either simultaneously with or after the primary actuator is actuated. The primary actuator will ensure that the slips 208 engage the tubular while the redundant actuators will ensure that the tubular 112 is not prematurely released by the gripping apparatus 104. The operation of the primary actuator and the redundant actuators are monitored by the controller 312 and/or the operator.
As the actuator 106 activates the gripping apparatus 104, the location system 900 may send a signal to the controller 312 regarding the location of the slips 208 in relation to the tubular 112. After the tubular 112 is engaged, the drive mechanism 108 and or hoisting system 110 may bear the weight of the tubular 112 for connection to a tubular string 116. The tubular handling system 102 then lowers the tubular 112 until the tubular 112 is engaged with the tubular string 116. The drive mechanism 108 may then rotate the tubular 112 in order to couple the tubular 112 to the tubular string 116. During the coupling of the tubular 112 to the tubular string 116, the compensators 700 may compensate for any axial movement of the tubular 112 relative to the drive mechanism 108. The compensation prevents damage to the tubular 112 threads. The compensator 700 may indicate to the controller 312 the extent of the connection between the tubular 112 and the tubular string 116. As the drive mechanism 108 transfers rotation to the tubular 112 via the gripping apparatus 104 and the slips 208, the swivel allows for communication between the rotating components and the controller 312 or any fluid/electric sources. After the connection of the tubular 112 to the tubular string 116 is made up, the gripper 119 may release the tubular string 116, while the gripping apparatus 104 continues to support the weight of the tubular 112 and the tubular string 116. The hoisting system 110 then lowers the tubular string 116 to the desired location. The gripper 119 then grips the tubular string 116. The controller 312 may then disengage the slips 208 either by use of the release 1300 or de-activating the actuator 106 to release the tubular string 116. During this sequence, the integrated safety system 1400 may prevent the tubular string 116 from being inadvertently dropped into the wellbore 115. The process may then be repeated until the tubular string 116 is at a desired length.
As the tubular string 116 is lowered into the wellbore 115, drilling fluids may be pumped into the tubular string 116 through the gripping apparatus 104. The drilling fluids flow through the flow path 206 (shown in
After the lowering the tubular 112 and the tubular string 116, the gripping apparatus 104 may then be used to engage the equipment 114 in the manner described above. In one embodiment, the equipment is the cement plug launcher 1200/1200A shown in
With the tubular string 116 cemented in place, the gripping apparatus 104 may be removed from the actuator 106. One of the modular gripping apparatus 804, shown in
In yet another embodiment described herein, an apparatus for gripping a tubular for use with a top drive is disclosed. The apparatus includes a connection at one end for rotationally fixing the apparatus relative to the top drive and one or more gripping members at a second end for gripping the tubular. Further, the apparatus includes a primary actuator configured to move and hold the gripping members in contact with the tubular, and a backup assembly adapted to maintain the gripping member in contact with the tubular.
In yet another embodiment, the primary actuator is fluidly operated.
In yet another embodiment, the primary actuator is electrically operated.
In yet another embodiment, the backup assembly comprises a selectively powered redundant actuator.
In yet another embodiment, the backup assembly is hydraulically operated.
In yet another embodiment, a monitor is coupled to a controller for monitoring a condition in the backup assembly.
In yet another embodiment, the monitor monitors a condition in the primary actuator.
In yet another embodiment, the backup assembly comprises a check valve operable in conjunction with the primary actuator to ensure the primary actuator remains operable in the event of hydraulic failure.
In yet another embodiment, the backup assembly further includes an additional source of fluids to ensure the primary actuator remains operable in the event of hydraulic failure.
In yet another embodiment, a first swivel in configured to communicatively couple the primary actuator to a fluid source. Additionally a second swivel may couple to the backup assembly configured to communicatively couple the backup assembly to the fluid source. Additionally, a second fluid source may be provided.
In yet another embodiment, the connection comprises a lock for preventing the apparatus and the top drive from rotating independently of one another. Further, the lock may include a shaped sleeve for engaging a shaped outer diameter of the top drive and the apparatus. Alternatively, the lock may include two or more link elements configured to surround the connection, and one or more gripping dies on an inside surface of each link element, the one or more gripping dies configured to engage the apparatus and the top drive.
In yet another embodiment, a release may be actuated by applying weight to the apparatus to actuate a fluid operated piston. Further, the fluid operated piston may be coupled to a fluid resistor for constricting fluid flow. Additionally, the fluid resistor may act to release the gripping members from the tubular using a substantially constant force applied over time.
In yet another embodiment described herein, an apparatus for gripping a tubular for use in a wellbore is described. The apparatus may include a gripping member for gripping the tubular, wherein the gripping member is coupled to a rotating mandrel. Further, the apparatus may include an actuator for actuating the gripping member and a locking member for locking the gripping member into engagement with an inner diameter of the tubular. Additionally, the apparatus may include a swivel for connecting the actuator to the gripping member.
In yet another embodiment, the actuator comprises one or more chambers controlled by fluid pressure. Further, the fluid pressure may actuate a piston.
In yet another embodiment, the locking member includes one or more pressure chambers connected to a fluid source.
In yet another embodiment, the locking member is one or more check valves provided between a fluid source and the one or more pressure chambers.
In yet another embodiment, a controller for monitoring the fluid pressure in the one or more pressure chambers in provided.
In yet another embodiment, a release actuated by applying weight to the gripping apparatus to actuate a fluid operated piston is included. Further, the fluid operated piston may be coupled to a fluid resistor for constricting fluid flow. Additionally the fluid resistor may act to release the gripping members using a constant force applied over time.
In yet another embodiment described herein, an apparatus for gripping a tubular for use in a wellbore is described. The apparatus may include a set of slips connectable to a rotating mandrel for engaging an inner diameter of the tubular. Further, the apparatus may include a plurality of fluid chambers for actuating the slips and a swivel for fluidly connecting a fluid source to the plurality of fluid chambers.
In yet another embodiment, the chambers comprise one or more primary actuators and one or more redundant actuators.
In yet another embodiment, the redundant actuator has a locking member.
In yet another embodiment, the locking member comprises a check valve configured to hold pressure in the redundant actuator. Further, the check valve may allow one way flow of fluid into at least one of the plurality of fluid chambers.
In yet another embodiment, the fluid source supplies a hydraulic fluid.
In yet another embodiment, the fluid source comprises a pneumatic fluid.
In yet another embodiment, a controller for monitoring at least one of the plurality of fluid chambers is provided.
In yet another embodiment, a sensor may be coupled to a stop collar, wherein the sensor is configured to communicate to the controller when the stop collar engages the tubular.
In yet another embodiment, a control line may be connectable to the swivel and the plurality of fluid chambers.
In yet another embodiment described herein, a method for connecting a tubular is described. The method includes providing a fluid pressure from a fluid source and conveying the fluid pressure through a swivel to a plurality of chambers. Further, the swivel may have two or more annular seals located in a recess on each side of a fluid inlet. The method additionally includes actuating a gripping member to grip the tubular, wherein the gripping member is actuated by applying a fluid pressure to a piston within the plurality of chambers. The method additionally may include rotating the tubular using the gripping member and moving a pressurized fluid into cavities between the two or more annular seals and the recess in response to rotating the tubular. Further, the method may include continuing to supply the fluid source through the swivel and into the chambers via the swivel during rotation.
In yet another embodiment, the method further includes locking at least one chamber of the plurality of chambers upon actuation, wherein locking the at least one chamber may include flowing fluid through a check valve.
In yet another embodiment, the method further includes monitoring at least one of the plurality of chambers with a controller. Additionally, the gripping member may be operatively coupled to a top drive. Further, the gripping member may be rotated by the top drive.
In yet another embodiment described herein, a tubular handling system is described. The tubular handling system includes a tubular torque device coupled to a hoisting system and a gripping apparatus. Additionally, the tubular handling system includes a cementing plug launcher configured to selectively coupled to the gripping apparatus having a tubular housing for receiving the gripping member, and one or more plugs located within the tubular housing configured to perform a cementing operation.
In yet another embodiment, a check valve may be disposed within the tubular housing configured to prevent fluid flow from the launcher to the gripping apparatus.
In yet another embodiment, a swivel that allows for a fluid to be pumped into the launcher while the torque device rotates the launcher is provided.
In yet another embodiment, the gripping member comprises a spear.
In yet another embodiment, the gripping member comprises an external tubular gripper.
In yet another embodiment described herein, a method of completing a wellbore is described. The method includes providing a tubular handling system coupled to a hoisting system, wherein the tubular handling system comprises a gripping apparatus, an actuator, and a torquing apparatus. The method further includes gripping a first tubular using the gripping apparatus and coupling the first tubular to a tubular string by rotating the first tubular using the torquing apparatus, wherein the tubular string is partially located within the wellbore. Additionally, the method may include lowering the first tubular and the tubular string and releasing the first tubular from the gripping apparatus. The method may further include gripping a cementing tool using the gripping apparatus and coupling the cementing tool to the first tubular by rotating the cementing tool. Additionally the method may include flowing cement into the cementing tool and cementing at least a portion of the tubular string into the wellbore.
In yet another embodiment, the method includes preventing cement from flowing into contact with the gripping apparatus with a check valve.
In yet another embodiment described herein, a release for releasing a gripping apparatus from a tubular is described. The release includes a piston and a piston cylinder operatively coupled to a mandrel of the gripping apparatus. The release further includes a fluid resistor configured to fluidly couple a release chamber to the piston by providing a constrained fluid path. Additionally the release may include a shoulder adapted to engage a tubular and increase pressure in the release chamber as weight is applied to the shoulder, and wherein continued weight on the shoulder slowly actuates the piston thereby slowly releasing the gripping apparatus from the tubular.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 14/062,739, filed Oct. 24, 2013, which is a continuation of Ser. No. 13/009,475, filed on Jan. 19, 2011; which is a divisional of U.S. patent application Ser. No. 11/609,709, filed on Dec. 12, 2006, now U.S. Pat. No. 7,874,352; which application claims benefit of U.S. Provisional Patent Application Ser. No. 60/749,451, filed Dec. 12, 2005. Each of above referenced applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
D179973 | Thornton | Jul 1876 | S |
1414207 | Reed | Apr 1922 | A |
1418766 | Wilson | Jun 1922 | A |
1585069 | Youle | May 1926 | A |
1728136 | Power | Sep 1929 | A |
1777592 | Thomas | Oct 1930 | A |
1805007 | Pedley | May 1931 | A |
1825026 | Thomas | Sep 1931 | A |
1842638 | Wigle | Jan 1932 | A |
1917135 | Littell | Jul 1933 | A |
2105885 | Hinderliter | Jan 1938 | A |
2128430 | Pryor | Aug 1938 | A |
2167338 | Murcell | Jul 1939 | A |
2184681 | Osmun et al. | Dec 1939 | A |
2214429 | Miller | Sep 1940 | A |
2414719 | Cloud | Jan 1947 | A |
2522444 | Grable | Sep 1950 | A |
2536458 | Munsinger | Jan 1951 | A |
2570080 | Stone | Oct 1951 | A |
2582987 | Hagenbook | Jan 1952 | A |
2595902 | Stone | May 1952 | A |
2610690 | Beatty | Sep 1952 | A |
2641444 | Moon | Jun 1953 | A |
2668689 | Cormany | Feb 1954 | A |
2692059 | Bolling, Jr. | Oct 1954 | A |
2953406 | Young | Sep 1960 | A |
2965177 | Bus et al. | Dec 1960 | A |
3041901 | Knights | Jul 1962 | A |
3087546 | Wooley | Apr 1963 | A |
3122811 | Gilreath | Mar 1964 | A |
3191683 | Alexander | Jun 1965 | A |
3193116 | Kenneday et al. | Jul 1965 | A |
3266582 | Homanick | Aug 1966 | A |
3305021 | Lebourg | Feb 1967 | A |
3321018 | McGill | May 1967 | A |
3380528 | Timmons | Apr 1968 | A |
3392609 | Barbs | Jul 1968 | A |
3477527 | Koot | Nov 1969 | A |
3489220 | Kinley | Jan 1970 | A |
3518903 | Ham et al. | Jul 1970 | A |
3540266 | Lofgren | Nov 1970 | A |
3548936 | Kilgore et al. | Dec 1970 | A |
3552507 | Brown | Jan 1971 | A |
3552508 | Brown | Jan 1971 | A |
3552509 | Brown | Jan 1971 | A |
3552510 | Brown | Jan 1971 | A |
3566505 | Martin | Mar 1971 | A |
3570598 | Johnson | Mar 1971 | A |
3602302 | Kluth | Aug 1971 | A |
3606664 | Weiner | Sep 1971 | A |
3635105 | Dickmann et al. | Jan 1972 | A |
3638989 | Sandquist | Feb 1972 | A |
3662842 | Bromell | May 1972 | A |
3680412 | Mayer et al. | Aug 1972 | A |
3691825 | Dyer | Sep 1972 | A |
3697113 | Palauro et al. | Oct 1972 | A |
3700048 | Desmoulins | Oct 1972 | A |
3706347 | Brown | Dec 1972 | A |
3746330 | Taciuk | Jul 1973 | A |
3747675 | Brown | Jul 1973 | A |
3766991 | Brown | Oct 1973 | A |
3776320 | Brown | Dec 1973 | A |
3780883 | Brown | Dec 1973 | A |
3808916 | Porter et al. | May 1974 | A |
3838613 | Wilms | Oct 1974 | A |
3840128 | Swoboda, Jr. et al. | Oct 1974 | A |
3848684 | West | Nov 1974 | A |
3857450 | Guier | Dec 1974 | A |
3871618 | Funk | Mar 1975 | A |
3881375 | Kelly | May 1975 | A |
3885679 | Swoboda, Jr. et al. | May 1975 | A |
3901331 | Djurovic | Aug 1975 | A |
3913687 | Gyongyosi et al. | Oct 1975 | A |
3915244 | Brown | Oct 1975 | A |
3961399 | Boyadjieff | Jun 1976 | A |
3964552 | Stator | Jun 1976 | A |
3980143 | Swartz et al. | Sep 1976 | A |
4054332 | Bryan, Jr. | Oct 1977 | A |
4077525 | Callegari et al. | Mar 1978 | A |
4100968 | Delano | Jul 1978 | A |
4127927 | Hauk et al. | Dec 1978 | A |
4142739 | Billingsley | Mar 1979 | A |
4202225 | Sheldon et al. | May 1980 | A |
4221269 | Hudson | Sep 1980 | A |
4257442 | Claycomb | Mar 1981 | A |
4262693 | Giebeler | Apr 1981 | A |
4274777 | Scaggs | Jun 1981 | A |
4274778 | Putnam et al. | Jun 1981 | A |
4280380 | Eshghy | Jul 1981 | A |
4315553 | Stallings | Feb 1982 | A |
4320915 | Abbott et al. | Mar 1982 | A |
4401000 | Kinzbach | Aug 1983 | A |
4402239 | Mooney | Sep 1983 | A |
4437363 | Haynes | Mar 1984 | A |
4440220 | McArthur | Apr 1984 | A |
4446745 | Stone et al. | May 1984 | A |
4449596 | Boyadjieff | May 1984 | A |
4472002 | Beney et al. | Sep 1984 | A |
4489794 | Boyadjieff | Dec 1984 | A |
4492134 | Reinholdt et al. | Jan 1985 | A |
4494424 | Bates | Jan 1985 | A |
4515045 | Gnatchenko et al. | May 1985 | A |
4529045 | Boyadjieff et al. | Jul 1985 | A |
4570706 | Pugnet | Feb 1986 | A |
4592125 | Skene | Jun 1986 | A |
4593584 | Neves | Jun 1986 | A |
4593773 | Skeie | Jun 1986 | A |
4604724 | Shaginian | Aug 1986 | A |
4604818 | Inoue | Aug 1986 | A |
4605077 | Boyadjieff | Aug 1986 | A |
4613161 | Brisco | Sep 1986 | A |
4625796 | Boyadjieff | Dec 1986 | A |
4646827 | Cobb | Mar 1987 | A |
4649777 | Buck | Mar 1987 | A |
4652195 | McArthur | Mar 1987 | A |
4667752 | Berry et al. | May 1987 | A |
4676312 | Mosing et al. | Jun 1987 | A |
4681158 | Pennison | Jul 1987 | A |
4681162 | Boyd | Jul 1987 | A |
4683962 | True | Aug 1987 | A |
4686873 | Lang et al. | Aug 1987 | A |
4709599 | Buck | Dec 1987 | A |
4709766 | Boyadjieff | Dec 1987 | A |
4725179 | Woolslayer et al. | Feb 1988 | A |
4735270 | Fenyvesi | Apr 1988 | A |
4738145 | Vincent et al. | Apr 1988 | A |
4742876 | Barthelemy et al. | May 1988 | A |
4759239 | Hamilton et al. | Jul 1988 | A |
4762187 | Haney | Aug 1988 | A |
4765401 | Boyadjieff | Aug 1988 | A |
4765416 | Bjerking et al. | Aug 1988 | A |
4773689 | Wolters | Sep 1988 | A |
4781359 | Matus | Nov 1988 | A |
4791997 | Krasnov | Dec 1988 | A |
4793422 | Krasnov | Dec 1988 | A |
4800968 | Shaw et al. | Jan 1989 | A |
4813493 | Shaw et al. | Mar 1989 | A |
4813495 | Leach | Mar 1989 | A |
4821814 | Willis et al. | Apr 1989 | A |
4832552 | Skelly | May 1989 | A |
4836064 | Stator | Jun 1989 | A |
4843945 | Dinsdale | Jul 1989 | A |
4854383 | Arnold et al. | Aug 1989 | A |
4867236 | Haney et al. | Sep 1989 | A |
4875530 | Frink et al. | Oct 1989 | A |
4878546 | Shaw et al. | Nov 1989 | A |
4899816 | Mine | Feb 1990 | A |
4909741 | Schasteen et al. | Mar 1990 | A |
4921386 | McArthur | May 1990 | A |
4936382 | Thomas | Jun 1990 | A |
4962579 | Moyer et al. | Oct 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4971146 | Terrell | Nov 1990 | A |
4981180 | Price | Jan 1991 | A |
4997042 | Jordan et al. | Mar 1991 | A |
5022472 | Bailey et al. | Jun 1991 | A |
5036927 | Willis | Aug 1991 | A |
5049020 | McArthur | Sep 1991 | A |
5060542 | Hauk | Oct 1991 | A |
5062756 | McArthur et al. | Nov 1991 | A |
5081888 | Schulze-Beckinghausen | Jan 1992 | A |
5083356 | Gonzalez et al. | Jan 1992 | A |
5107940 | Berry | Apr 1992 | A |
5111893 | Kvello-Aune | May 1992 | A |
RE34063 | Vincent et al. | Sep 1992 | E |
5161438 | Pietras | Nov 1992 | A |
5191939 | Stokley | Mar 1993 | A |
5207128 | Albright | May 1993 | A |
5233742 | Gray et al. | Aug 1993 | A |
5245265 | Clay | Sep 1993 | A |
5251709 | Richardson | Oct 1993 | A |
5255751 | Stogner | Oct 1993 | A |
5272925 | Henneuse et al. | Dec 1993 | A |
5282653 | LaFleur et al. | Feb 1994 | A |
5284210 | Helms et al. | Feb 1994 | A |
5294228 | Willis et al. | Mar 1994 | A |
5297833 | Willis et al. | Mar 1994 | A |
5305839 | Kalsi et al. | Apr 1994 | A |
5332043 | Ferguson | Jul 1994 | A |
5340182 | Busink et al. | Aug 1994 | A |
5351767 | Stogner et al. | Oct 1994 | A |
5354150 | Canales | Oct 1994 | A |
5368113 | Schulze-Beckinghausen | Nov 1994 | A |
5386746 | Hauk | Feb 1995 | A |
5388651 | Berry | Feb 1995 | A |
5433279 | Tessari et al. | Jul 1995 | A |
5458454 | Sorokan | Oct 1995 | A |
5461905 | Penisson | Oct 1995 | A |
5497840 | Hudson | Mar 1996 | A |
5501280 | Brisco | Mar 1996 | A |
5501286 | Berry | Mar 1996 | A |
5503234 | Clanton | Apr 1996 | A |
5535824 | Hudson | Jul 1996 | A |
5575344 | Wireman | Nov 1996 | A |
5577566 | Albright et al. | Nov 1996 | A |
5584343 | Coone | Dec 1996 | A |
5588916 | Moore | Dec 1996 | A |
5645131 | Trevisani | Jul 1997 | A |
5661888 | Hanslik | Sep 1997 | A |
5667026 | Lorenz et al. | Sep 1997 | A |
5706894 | Hawkins, III | Jan 1998 | A |
5711382 | Hansen et al. | Jan 1998 | A |
5735348 | Hawkins, III | Apr 1998 | A |
5735351 | Helms | Apr 1998 | A |
5746276 | Stuart | May 1998 | A |
5765638 | Taylor | Jun 1998 | A |
5772514 | Moore | Jun 1998 | A |
5785132 | Richardson et al. | Jul 1998 | A |
5791410 | Castille et al. | Aug 1998 | A |
5803191 | Mackintosh | Sep 1998 | A |
5806589 | Lang | Sep 1998 | A |
5833002 | Holcombe | Nov 1998 | A |
5836395 | Budde | Nov 1998 | A |
5839330 | Stokka | Nov 1998 | A |
5842530 | Smith et al. | Dec 1998 | A |
5850877 | Albright et al. | Dec 1998 | A |
5890549 | Sprehe | Apr 1999 | A |
5909768 | Castille et al. | Jun 1999 | A |
5931231 | Mock | Aug 1999 | A |
5960881 | Allamon et al. | Oct 1999 | A |
5971079 | Mullins | Oct 1999 | A |
5971086 | Bee et al. | Oct 1999 | A |
6000472 | Albright et al. | Dec 1999 | A |
6012529 | Mikolajczyk et al. | Jan 2000 | A |
6056060 | Abrahamsen et al. | May 2000 | A |
6065550 | Gardes | May 2000 | A |
6070500 | Dlask et al. | Jun 2000 | A |
6079509 | Bee et al. | Jun 2000 | A |
6119772 | Pruet | Sep 2000 | A |
6142545 | Penman et al. | Nov 2000 | A |
6161617 | Gjedebo | Dec 2000 | A |
6170573 | Brunet et al. | Jan 2001 | B1 |
6173777 | Mullins | Jan 2001 | B1 |
6189621 | Vail, III | Feb 2001 | B1 |
6199641 | Downie et al. | Mar 2001 | B1 |
6202764 | Ables et al. | Mar 2001 | B1 |
6217258 | Yamamoto et al. | Apr 2001 | B1 |
6227587 | Terral | May 2001 | B1 |
6237684 | Bouligny, Jr. et al. | May 2001 | B1 |
6276450 | Seneviratne | Aug 2001 | B1 |
6279654 | Mosing et al. | Aug 2001 | B1 |
6309002 | Bouligny | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6315051 | Ayling | Nov 2001 | B1 |
6334376 | Torres | Jan 2002 | B1 |
6349764 | Adams et al. | Feb 2002 | B1 |
6360633 | Pietras | Mar 2002 | B2 |
6378630 | Ritorto et al. | Apr 2002 | B1 |
6390190 | Mullins | May 2002 | B2 |
6412554 | Allen et al. | Jul 2002 | B1 |
6415862 | Mullins | Jul 2002 | B1 |
6431626 | Bouligny | Aug 2002 | B1 |
6443241 | Juhasz et al. | Sep 2002 | B1 |
6527047 | Pietras | Mar 2003 | B1 |
6527493 | Kamphorst et al. | Mar 2003 | B1 |
6536520 | Snider et al. | Mar 2003 | B1 |
6553825 | Boyd | Apr 2003 | B1 |
6571868 | Victor | Jun 2003 | B2 |
6591471 | Hollingsworth et al. | Jul 2003 | B1 |
6595288 | Mosing et al. | Jul 2003 | B2 |
6622796 | Pietras | Sep 2003 | B1 |
6637526 | Juhasz et al. | Oct 2003 | B2 |
6651737 | Bouligny et al. | Nov 2003 | B2 |
6668684 | Allen et al. | Dec 2003 | B2 |
6668937 | Murray | Dec 2003 | B1 |
6679333 | York et al. | Jan 2004 | B2 |
6688394 | Ayling | Feb 2004 | B1 |
6688398 | Pietras | Feb 2004 | B2 |
6691801 | Juhasz et al. | Feb 2004 | B2 |
6695559 | Pietras | Feb 2004 | B1 |
6705405 | Pietras | Mar 2004 | B1 |
6725938 | Pietras | Apr 2004 | B1 |
6725949 | Seneviratne | Apr 2004 | B2 |
6732822 | Slack et al. | May 2004 | B2 |
6742584 | Appleton | Jun 2004 | B1 |
6742596 | Haugen | Jun 2004 | B2 |
6832656 | Fournier, Jr. et al. | Dec 2004 | B2 |
6832658 | Keast | Dec 2004 | B2 |
6840322 | Haynes et al. | Jan 2005 | B2 |
6892835 | Shahin et al. | May 2005 | B2 |
6907934 | Kauffman et al. | Jun 2005 | B2 |
6938697 | Haugen | Sep 2005 | B2 |
6976298 | Pietras | Dec 2005 | B1 |
6994176 | Shahin et al. | Feb 2006 | B2 |
7004259 | Pietras | Feb 2006 | B2 |
7028586 | Robichaux et al. | Apr 2006 | B2 |
7044241 | Angman | May 2006 | B2 |
7055594 | Springett et al. | Jun 2006 | B1 |
7073598 | Haugen | Jul 2006 | B2 |
7090021 | Pietras | Aug 2006 | B2 |
7096977 | Juhasz et al. | Aug 2006 | B2 |
7100698 | Kracik et al. | Sep 2006 | B2 |
7107875 | Haugen et al. | Sep 2006 | B2 |
7117938 | Hamilton et al. | Oct 2006 | B2 |
7128161 | Pietras | Oct 2006 | B2 |
7140443 | Beierbach et al. | Nov 2006 | B2 |
7140445 | Shahin et al. | Nov 2006 | B2 |
7188686 | Folk et al. | Mar 2007 | B2 |
7191840 | Pietras et al. | Mar 2007 | B2 |
7213656 | Pietras | May 2007 | B2 |
7264050 | Koithan et al. | Sep 2007 | B2 |
7296623 | Koithan et al. | Nov 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7874352 | Odell, II et al. | Jan 2011 | B2 |
7882902 | Boutwell, Jr. | Feb 2011 | B2 |
8136603 | Schneider | Mar 2012 | B2 |
8356675 | Pietras | Jan 2013 | B2 |
20010042625 | Appleton | Nov 2001 | A1 |
20020108748 | Keyes | Aug 2002 | A1 |
20020170720 | Haugen | Nov 2002 | A1 |
20030164276 | Snider et al. | Sep 2003 | A1 |
20030173073 | Snider | Sep 2003 | A1 |
20030221871 | Hamilton et al. | Dec 2003 | A1 |
20040003490 | Shahin et al. | Jan 2004 | A1 |
20040026088 | Pietras | Feb 2004 | A1 |
20040159425 | Webre | Aug 2004 | A1 |
20040188098 | Schulze-Beckinghausen | Sep 2004 | A1 |
20050000691 | Giroux et al. | Jan 2005 | A1 |
20050000696 | McDaniel | Jan 2005 | A1 |
20050051343 | Pietras et al. | Mar 2005 | A1 |
20050274508 | Folk | Dec 2005 | A1 |
20060000600 | Pietras | Jan 2006 | A1 |
20060124353 | Juhasz et al. | Jun 2006 | A1 |
20060180315 | Shahin et al. | Aug 2006 | A1 |
20070000668 | Christensen | Jan 2007 | A1 |
20070131416 | Odell, II | Jun 2007 | A1 |
20070169930 | Shahin | Jul 2007 | A1 |
20080149326 | Angelle | Jun 2008 | A1 |
20140116686 | Odell, II | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2 307 386 | Nov 2000 | CA |
3523221 | Jan 1987 | DE |
0087373 | Aug 1983 | EP |
0 162 000 | Nov 1985 | EP |
0 171 144 | Feb 1986 | EP |
0 285 386 | Oct 1988 | EP |
0 474 481 | Mar 1992 | EP |
1148206 | Oct 2001 | EP |
1 256 691 | Nov 2002 | EP |
1963612 | Sep 2008 | EP |
2 053 088 | Feb 1981 | GB |
2 224 481 | May 1990 | GB |
2 275 486 | Aug 1994 | GB |
2 357 530 | Jun 2001 | GB |
2001173349 | Jun 2001 | JP |
2004769 | Dec 1993 | RU |
236377 | Jun 1969 | SU |
9307358 | Apr 1993 | WO |
9618799 | Jun 1996 | WO |
9708418 | Mar 1997 | WO |
9805844 | Feb 1998 | WO |
9832948 | Jul 1998 | WO |
9911902 | Mar 1999 | WO |
9958810 | Nov 1999 | WO |
0008293 | Feb 2000 | WO |
0009853 | Feb 2000 | WO |
0050730 | Aug 2000 | WO |
0052297 | Sep 2000 | WO |
0133033 | May 2001 | WO |
0169034 | Sep 2001 | WO |
0179652 | Oct 2001 | WO |
0236927 | May 2002 | WO |
03054338 | Jul 2003 | WO |
2004022903 | Mar 2004 | WO |
2004101417 | Nov 2004 | WO |
2005090740 | Sep 2005 | WO |
Entry |
---|
Norwegian Office Action dated Oct. 27, 2017, for Norwegian Patent Application No. 20110681. |
Brazil Written Opinion dated Apr. 20, 2017, for Brazil Patent Application No. PI0619754-0. |
Canadian Office Action dated Jun. 1, 2017, for Canadian Patent Application No. 2,937,095. |
Norwegian Office Action dated Jan. 13, 2018, for Norwegian Patent Application No. 20110682. |
Australian Examination Report dated Feb. 6, 2018, for Australian Patent Application No. 2016273903. |
Canadian Office Action dated Feb. 27, 2018, for Canadian Patent Application No. 2,937,095. |
PCT International Search Report and Written Opinion dated Oct. 12, 2007, for International Application No. PCT/US2006/061945. |
EPO Office Action dated Jul. 29, 2011, for European Application No. 10188272.8. |
EPO Office Action dated Apr. 9, 2014, for European Application No. 10188272.8. |
EPO Office Action dated Jun. 22, 2016, for European Application No. 10188272.8. |
Norwegian Office Action dated Jan. 13, 2018, for Norwegian Application No. 20110680. |
Number | Date | Country | |
---|---|---|---|
20170044850 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
60749451 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11609709 | Dec 2006 | US |
Child | 13009475 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14062739 | Oct 2013 | US |
Child | 15254833 | US | |
Parent | 13009475 | Jan 2011 | US |
Child | 14062739 | US |